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1 Introduction 

Since Rutherford’s[1] famous paper which first described the scattering of particles in matter, 
the field of ion-solid interaction has matured by now during one entire century. First theoretical 
concepts addressing particle penetration of solids were given by Thomson[2] and Bohr[3,4]. 
Quantum theory entered the field in treatments of ion stopping by Born[5] and Bethe[6]. Still on 
classical grounds, transport theory was first introduced in a paper on multiple scattering by Bo-
the[7]. The discovery of nuclear fission launched theoretical studies by Bohr[8,9] on the scatter-
ing and stopping of fission products. A further milestone in the understanding of particle pene-
tration phenomena is the 1948 paper by Bohr[10]. On this basis, the theoretical understanding 
was enhanced in the early 1960’s in particular by a series of papers by Lindhard[11-13]. Simul-
taneously, an increasing amount of experimental studies on ion stopping and scattering were 
launched in connection with the development of ion acceleration devices and corresponding 
equipment for particle detection. During this period, also first computer simulation studies came 
up[14,15] which later proved to be an utmost efficient tool for the description of collisional phe-
nomena in ion-solid interaction. The relevance for numerous applications became evident, such 
as for the compositional and structural analysis of thin films and near-surface layers, for semi-
conductor technology, and nuclear fission and fusion technology. This caused increasing interest 
not only in the penetration and the scattering of the impinging ions, but also in the modification 
of the irradiated material due to ion implantation[16], radiation damage[17-19] and surface ero-
sion by sputtering[20]. Consequently, ion-solid interaction established around 1970 interna-
tionally as a quickly expanding field at the intersection of solid-state physics and nuclear phys-
ics. 

Numerous reviews and textbooks are available which cover the fundamentals of ion-solid in-
teraction. Torrens[21] reviewed the knowledge about interatomic potentials as of 1972. An ear-
ly lecture series by Sigmund[22-24] gives an overview of transport theory for ion ranges, radia-
tion damage and sputtering. More recent books by the same author[25,26] review energy loss 
theory. Sputtering and related phenomena are extensively covered in a series of books edited by 
Behrisch et al.[27-30]. A textbook by Eckstein[31] focuses on the computer simulation of particle 
irradiation phenomena. This issue is also particularly addressed in a book edited by Smith[32]. A 
compact and comprehensive overview of most aspects of ion-solid interaction and their applica-
tions has been written by Nastasi et al.[33]. A recent collection of expert contributions edited by 
Sigmund[34,35] addresses in particular modern aspects of ion-surface interaction, such as in-
volving very high ion energies with applications in biomedicine, and the ion-induced formation 
and control of nanostructures. For new topics of recent interest, a volume edited by Bernas[36] 
is also recommended.  

In view of this broad and well-collected information, it cannot be the purpose of the present 
report to re-formulate the general fundamentals of ion-solid interactions or any special aspects 
in detail. In the context of the present short introduction, it is rather intended to provide a com-
pact display of the essential knowledge which is valuable for any user of fast ion methods and 
technologies, for a convenient application of the most suitable formalisms and/or computer as-
sistance. 

The present report has been derived from a lecture given at Technische Universität Dresden 
and is based on textbook knowledge, individual publications and own work by the author before 
the year 2012. It concentrates on collisional fundamentals, addressing only short-time phenom-
ena during the slowing down of the incident ions and the generated fast atoms of the target ma-
terial, whereas thermal and chemical effects acting on longer time scales, such as post-
irradiation diffusion and phase formation, are not included. Further, the manifold materials ap-
plications of ion irradiation and implantation with their often specific aspects are not covered, 
nor important more recent developments such as refinements in theory, applications to soft 
matter and biological tissue, specific aspects of the ion irradiation of nanostructures, the self-
organisation of nanostructures under ion irradiation, the role of ion-surface interaction in thin 
film deposition, or the interaction of highly charged ions with solids.  
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Thus, the present report is conceived as a compact source of information which might be 
helpful in particular for students and newcomers using fast ion tools in research and application.  

 

 

2  Binary elastic collisions 

2.1 Classical treatment of binary collisions 

Fast ions traversing a solid may collide with the atomic nuclei (“nuclear collisions”) or the elec-
trons (“electronic collisions”) of the solid. Somewhat misleading, nuclear collisions are often 
called “elastic” although they might be accompanied by energy transfer in the system of elec-
trons as we will see below, and electronic collisions are often called “inelastic” as they imply ion-
ization or excitation events.  
    For both nuclear and electronic collisions, the most elementary approach is the binary elastic 
interaction of two point charges as sketched in Fig. 1. In the laboratory system (LS), a zero veloc-
ity of the target particle is assumed as any thermal velocity is small compared to the ion energy 
range of interest (» 1 eV). After the collision, the projectile and the recoil particle are character-
ized by asymptotic scattering angles   and  , respectively. As the collision does not affect the 
total momentum of the system, the kinematics are determined in the centre-of-mass  system 
(CMS) with the deflection angle  . In the CMS, the two-body system can be reduced to the kine-
matics of a single particle with the reduced mass 

 

     
21

21

mm

mm


       (1) 

where m1 and m2 denote the masses of the moving projectile and the target particle, respectively. 
 

                                
 
    Momentum conservation leads to the transformation relations between the laboratory and 
CMS scattering angles 
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and 

Fig. 1. Elastic scattering in the labora-
tory system (a) and the centre-of-
mass system (b). The moving charged 
particle is indexed by 1, the target 
particle by 2 
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and the reverse transformation 
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    The relative kinetic energy which is conserved in the CMS system is given by 
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where E denotes the LS kinetic energy of the projectile. The LS energy being transferred to the 
target (“recoil”) particle is given by 

 

        
2
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with the energy transfer factor 
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From this, the LS energy of the projectile after the collision results as 
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Fig. 2. Energies of the collision part-
ners versus the scattering angles in 
the laboratory system after binary 
elastic collision events with different 
species of projectiles, for projectiles 
scattered from a silicon atom (a) and 
for boron recoil atoms (b) 
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or after transformation into the LS as  
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    Eqs. (4) and (9) indicate the existence of a maximum LS scattering angle in case of m1 ≥m2. In 
this case, both signs are valid in eq. (9), and two different LS energies exist for any permitted LS 
scattering angle. Fig. 2 shows the relative energies of the scattered ion and the recoil atoms for 
collisions of different ions with a silicon atom and a boron atom, respectively. 

As indicated in Fig. 3 for a classical scattering trajectory in the CMS system, the scattering an-
gle decreases at increasing impact parameter p. The corresponding relation is represented by 
the so-called “classical trajectory integral” 

         (10) 

 

         
 
 

for any spherically symmetric interaction potential V(R) which depends on the distance of the 
collision partners R. The root of the denominator determines the minimum distance of approach, 
Rmin. Projectiles which enter an annulus of differential area dσare scattered into a differential 
solid angle d  (see Fig. 3), from which, at known  p  relation, the differential cross section of 

the scattering process is given by 
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The differential cross section in the laboratory system is obtained by transformation accord-
ing to eq. (4) as 
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Fig. 3. Classical scattering 
trajectory and the definition 
of the differential scattering 
cross section (see text for 
explanation)  
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As an example, we choose the Coulomb interaction potential between two charged particles 
with the charge numbers Q1 and Q2, which is given by (e and 0  denoting the elementary charge 

and the vacuum electric permittivity, respectively) 
 

       
R

eQQ
RV

0

2
21

4
      (13) 

for the evaluation of the trajectory integral (eq.(10)), which yields 
 

      
p
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22
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with the so-called “collision diameter” 
  

      
cE

eQQ
b

0

2

21

4
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which represents the distance of minimum approach during a central collision of particles of 
equal polarity. Combining eqs. (11), (14) and (15) yields the Rutherford scattering cross section 
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which scales with the inverse square of the projectile energy and decreases strongly towards 
backscattering angles. 

Already the cylindrical symmetry of the scattering problem (see Fig. 3) strongly favours larger 
impact parameters and thereby smaller scattering angles. In case of Rutherford scattering, this is 
even strongly enhanced by the angular dependence of the cross sections. Thus, when consider-
ing a beam of projectiles, the vast amount of collisions will scatter into forward angles. Conse-
quently, it is helpful to look for a low-angle simplification of the scattering formalism. This can 
be achieved using the so-called “momentum” approximation[11], in which the small-angle tra-
jectory of the projectile is approximated by a straight line (see Fig. 4). During the scattering 
event, the projectile moving along the z direction experiences a force pulse, the time integral of 
which leads to a small momentum transfer yp in y direction. The resulting scattering angle (in 

the CMS) is then given by the ratio of the transverse and longitudinal momenta, with the de-
crease of the latter being neglected due to the small energy transfer at low scattering angle. 
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Fig. 4. Binary collision at small 
scattering angles in the momen-
tum approximation 
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    Eq. (2) reads in low-angle approximation 
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from which a simple scattering formula is obtained according to 
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    Eq. (19) is directly valid in the LS so that the above CMS-LS transformations become obsolete. 
Thereby, in particular the treatment of sequential and multiple scattering phenomena becomes 
considerable simplified. For the Coulomb potential, eq. (19) yields in consistence with the low-
angle approximation of eq. (14) 

 

             
p

b
        (20) 

2.2 Validity of the classical treatment 

For a Coulomb potential, Bohr[10] has given a simple criterion for the validity range of the clas-
sical trajectory model according to the condition 
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where   denotes Planck’s constant,   the projectile velocity and 0  the electron velocity of the 

first Bohr orbit. At the first glance, the criterion (21) is in contrast to general perception. For the 
scattering of wave packets at objects, a classical beam treatment is feasible when the wavelength 
is small compared to the size of the object, i.e. in the limit of large projectile velocity. However, 
for the present case of atomic collisions, the collision diameter may be regarded as the object 
size, which scales with 21  , thus inverting the velocity dependence of the criterion for classical 

treatment. 
It should be noted that eq. (21) neglects atomic screening (see sect. 3). Further, the charge 

number of an ion moving in a solid is not necessarily equal to its atomic number (see subsection 
4.3.1). Thus, only rough estimates can be expected when evaluating eq. (21) with the atomic 
numbers of the collision partners. Doing so, nuclear collisions between moving ions and atomic 
nuclei in a solid can be treated classically up to energies between ~100 keV/amu and many 
GeV/amu for the lightest and heaviest combinations of collision partner, respectively, which en-
tirely covers the parameter range of ion beam technology applications. However, quantum-
mechanical treatment becomes often necessary for collisions with electrons, with a lower energy 
limit between 100 keV/amu for hydrogen ions and several 100 MeV/amu for very heavy ions. 

2.3 Quantum-mechanical scattering 

    In the quantum-mechanical picture, the scattering of a plane matter wave representing the 
projectile is described by the transition of the scattering system from an initial state i  to a final 

state f . In first Born approximation, the differential cross section reads 
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where i and f denote the velocities of the ingoing and outgoing matter waves, respectively. 

For elastic scattering in a spherically symmetric potential, the result becomes 
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with  1m   denoting the matter wavelength of the projectile divided by 2 . 

3 Nuclear interaction in a screened Coulomb potential 

So far, we have treated the interaction of point charges associated with a pure Coulomb poten-
tial. This is only valid at sufficiently high velocities and low impact parameters, when the moving 
ion is deprived of all its electrons (see subsection 4.3.1) and penetrates the cloud of the target 
electrons before it is scattered by the nucleus. In the general case of ion scattering at atomic nu-
clei, the screening of the Coulomb potential by the electrons of both the ion and the target atom 
has to be taken into account. As the electron systems will be dynamically altered along the tra-
jectory during scattering, a full quantum-mechanical treatment would be extremely laborious. 
Therefore, the treatment of energetic atomic collision has been largely based on statistical mod-
els. 

3.1 Statistical models of the atom 

Before turning to the interaction of two atoms, we will first consider the statistical 
description[37-39]  of a single atom with atomic number Z. A spherically symmetric screened 
Coulomb potential resulting from the statistical model of the atom is conveniently written as 
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where r is the radial distance from the atomic nucleus, a a screening parameter and   a screen-

ing function which describes the deviation from the Coulomb potential. Consequently, 
  10 r holds at the position of the nucleus, and     0 rr   at large distances, 

where the charge of the nucleus is fully screened.  
    The Thomas-Fermi [37,38] potential of the atom is based on quantum statistics of the elec-
trons, from which a relation between the local electron density, ne(r), and the electrostatic po-
tential  r  is established by a variation calculus which minimizes the sum of kinetic and poten-

tial energy. On the other hand, ne and   have to self-consistently fulfill the electrostatic Poisson 

equation. From this procedure, the Thomas-Fermi screening function results as numerical solu-
tion of the differential equation 
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with the above boundary conditions, and the screening radius as  
 

                        31

08853.0
Z

a
aTF       (26) 

with 0a  denoting the radius of the first Bohr orbit in the hydrogen atom. The screening function 

is often approximated by a sum of exponentials. For the Thomas-Fermi function, an example is 
the Molière[40] function according to 

  

        62.03.0 1.055.035.0   eeeM    (27) 

with ar . Eq. (27) holds with good precision for 50   . According to eq. (26), the screen-

ing distance is normally in the order of 10-2 nm, so that eq. (27) is only valid for the inner volume 
of an atom in a solid, with a typical radius of about 0.3 nm.  

Using a different calculus for the energy minimization in the statistical model of the atom, 
Lenz[41] and Jensen[42] arrived at an alternative screening function, given by 

 

         eLJ

432 002647.00485.03344.01   (28) 

with ar67.9 . 

3.2 Interatomic potentials 

At known potentials of the individual atoms, the interaction potential of the two-atom system 
can be obtained in an approximate way by a linear superposition of the electronic densities of 
the individual atoms[41,42], which neglects any distortion of the electronic systems during the 
interaction. Statistical approximations of quantum-mechanical correlation and exchange in the 
electronic system can be included. Numerical solutions for each individual ion-target combina-
tion are required. 
    Alternatively and with the aim to produce a simple universal diatomic potential, which ap-
proximately describes all ion-target combinations, Lindhard et al.[11] have chosen the so-called 
“similarity” approach. The screened Coulomb potential formalism of the individual atom is 
transferred to the interaction of two atoms via 
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where R denotes the internuclear distance as in sect. 1, Z1 and Z2 the atomic numbers of the colli-
sion partners, and a the screening radius with the ansatz (corresponding to the Thomas-Fermi 
potential) 
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     (30) 

    It is obvious that this potential is a good approximation when the atomic numbers of the colli-
sion partners are widely different, 21 ZZ  or vice versa, as it approaches the interaction of a 

heavy atom and a point charge, which is described by the single-atom potential, eqs. (24) and 
(26). For the other extreme, 21 ZZ  ,  the authors performed selected individual numerical calcu-

lations using the linear superposition of electronic densities as mentioned above, and found the 
results being in reasonable agreement with eqs. (29) and (30), with deviations in the 10% re-
gime only.  
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In a more rigorous treatment of the diatomic interaction, Firsov[43,44] also found eq. (29) to 
be a good universal approximation. However, the screening radius was chosen as  
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Within the screened Coulomb formalism, a better confidence in a universal potential has been 
achieved by performing a larger variety of individual numerical calculations based on the super-
position principle, and fitting an appropriate screening function to the results. Rather than from 
the above statistical models, results from full quantum-mechanical calculations were inserted 
for the atomic electron densities[45], including solid-state charge distributions[46]. The present-
ly widely accepted average interatomic potential for the interaction of fast atoms with solids, has 
been derived from such numerical calculations for 522 ion-target combinations. The resulting 
so-called “universal” potential by Ziegler, Biersack and Littmark[47], which will be denoted as 
“ZBL” potential in the following, is given by the screening function 
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with the normalized internuclear distance UaR  and the screening radius 
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Fig. 5 compares the different screening functions addressed above, and demonstrates the ex-
cellent fit of the ZBL potential to the results of the individual calculations involving quantum-
mechanical atomic charge distributions. The maximum reduced radius of 3 corresponds to a typ-
ical atomic diameter in a solid. Thus, the Thomas-Fermi function would introduce significant er-
rors in particular for low-angle scattering. 
 

          
               
For completeness, two additional approximate screening functions shall be mentioned which 

have employed for simplified treatments in binary collision theory. The power law approxima-
tion [11]  

         ss
U

s

k  1      (34) 

Fig. 5. Screening functions vs. in-
ternuclear distance according to 
eqs. (25), (28), (32) and (35). The 
Bohr screening function is the sin-
gle exponential exp⁡(−𝜉). The 
shaded area indicates individual 
results from 522 ion-target com-
bination which form the basis for 
the “universal” potential (see 
text). (After ref.[47])  
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corresponds to   sRRV  . The parameters s and ks can be obtained from fitting to any, e.g. of the 

above, screening functions in a certain range of the normalized screening radius, with variations 
from 1s to 5s  in the overall range of interest. 

Mainly for use in connection with ion channeling (see sect. 5), Lindhard[48] has introduced 
the so-called “standard” potential 
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1
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which is a reasonable approximation to the Thomas-Fermi screening function in particular for 
larger impact parameters. 

3.3 Scattering Cross Section 

For any of the above interatomic potentials, the differential scattering cross section can now be 
obtained using eq. (10). For the calculation of an approximate universal scattering function, 
Lindhard et al.[11] made use of the low-angle momentum approximation (see sect. 2.1). For a 
screened Coulomb potential, eq. (17) can be analytically evaluated with the result 
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with the function g to be calculated for any given screening function   as 
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A convenient dimensionless “reduced” energy is introduced according to 
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According to eq. (36),  
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so that the product of reduced energy and scattering angle depends only on a normalized impact 
parameter.  Further, it varies significantly less than the individual variables  and since, at giv-
en impact parameter, the scattering angle decreases at increasing energy. In this view, the low-
angle approximation is extrapolated to larger scattering angles via 

 

     
2

sin2


        (40) 

    The wide-angle extrapolation works surprisingly well. Compared to numerical integration of 
the trajectory integral, eq. (10), typical deviations are in the order of 10% or less. Defining now a 
reduced scattering variable 
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2

sin21 
t       (41) 

and combining with eqs. (39) and (40), the impact parameter p(t) can be calculated numerically 
as the inverse function, from which the differential scattering cross section  2pdd    is ob-

tained. Lindhard et al.[11] write the result as 
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    The universal scattering function f can be evaluated for any given screening function. With 
1 , the result becomes for the pure Coulomb potential 
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    Using eq. (41), the reduced scattering variable t can be transformed into the scattering angle, 
from which the differential cross section in non-reduced units is obtained according to eq. (42). 
Inserting eq. (43) reproduces exactly the Rutherford cross section of eq. (16). This demonstrates 
that the large-angle extrapolation of eq. (40) is exactly valid for all angles in the limit of high en-
ergy. 
    In the power-law approximation (see eq. (34)), the universal scattering function results as  
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with B denoting the beta function. 
 

 
 

Fig. 6. Lindhard’s scattering func-
tion (see eq. (42)) versus the re-
duced scattering variable (eq. 
(41)) for different interatomic po-
tentials, including a power-law ap-
proximation to the interatomic po-
tential (see eq. (34); thin dotted 
line) with s = 2 and ks = 0.8. The 
thin dashed line represents a low-
energy power-law fit according to 

𝑓(𝑡1 2⁄ ) = 1.43(𝑡1 2⁄ )
0.35
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Fig. 6 compares the universal scattering functions for different interaction potentials. Above 
1021 t , screening can be neglected and Rutherford scattering becomes valid. The power-law 

approximation with s = 2 results in a constant scattering function, with yielding a rough estimate 
for medium scattering variables. For better Winterbon et al.[49] recommend s = 3; 2; 1 in the re-
duced energy ranges 2.0 ; 208.0   ; 10 , respectively, with respective parameters s = 

1.309; 0.327; 0.5 for Thomas-Fermi screening. 
Still for the power-law approximation, the transformation of eq. (44) via eqs. (6) and (41) 

yields 
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with the constant 
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A comparison of scattering cross sections with experimental data is shown in Fig. 7[50]. As for 
the individually calculated screening functions (see Fig. 5), both the more rigorously calculated 
values and the experimental data fall between the universal Thomas-Fermi and Lenz-Jensen 
predictions. The data obtained with quantum-mechanical atomic electron densities show char-
acteristic oscillations, which are attributed to atomic shell effects. The amplitude of these “shell” 
oscillations, however, appears to be largely underestimated in comparison to the experimental 
data, and the phases are in disagreement for the low scattering variables. In the maxima of the 
shell oscillations, the experimental cross sections are larger than the theoretical ones by up to 
about 30% for the ion-target combination of Fig. 7. The ZBL potential (see eqs. (32) and (33)) 
has been obtained on similar grounds as the present ‘2 DHFS’ predictions, but additionally aver-
ages over shell effects for the different ion-target combinations. Thus, similar errors might be 
expected as observed here, when deriving scattering cross section from the ZBL potential ac-
cording to the classical trajectory integral as it is presently mostly practiced. 

 

              
 
 
 

Fig. 7. Scattering cross section relative to the prediction of the universal scattering formula, eq. (42), being eval-
uated for the Lenz-Jensen potential. The corresponding result for the Thomas-Fermi potential is denoted by ‘TF’. 
The ‘2 LJ’ curves result from numerical evaluations of eq. (10) with a statistical interatomic potential obtained 
from the superposition of two Lenz-Jensen atoms, whereas the ‘2 DHFS’ curves have similarly been calculated 
from two superimposed quantum-mechanical electron density distributions. Both have been evaluated for dif-
ferent energies, corresponding to the experimental conditions. Experimental results are represented by the dif-
ferent point symbols. (after ref.[50]) 
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4  Ion Stopping 

4.1 General definitions 

For any fast particle traversing matter at an energy E, the stopping force1 is defined as the ener-
gy loss per pathlength s according to 

 

         
ds

dE
EB        (49) 

As the areal density of target atoms within the traversed sheet of matter determines the ener-
gy loss rather than the thickness itself, it is adequate to define the so-called stopping cross sec-
tion as 

 

         
nds

dE
ES       (50) 

where n denotes the atomic density of the material. 
Stopping is a statistical process involving collisions with electrons and atomic cores. The dif-

ferential probability per unit pathlength for a collision with an energy transfer T is given by
   TndTdp  , corresponding to an energy loss  TnTd  of the ion. Integration over all possible 

energy transfers yields the general expression 
 

         TEdTES ,      (51)  

In the description of ion stopping, it is common to separate the stopping due to the interaction 
with electrons from the stopping due to the scattering in the screened Coulomb field of the nu-
clei according to  

 

          ESESES ne       (52) 

where Se and Sn represent the “electronic” and the “nuclear” stopping cross section, respectively. 
A priori, the simple linear superposition of eq. (52) is not obvious. Correlations between elec-
tronic and nuclear collisions must be anticipated in particular at lower impact parameters. Ac-
cording to the Pauli principle, the electronic system of the “quasimolecule” rearranges when the 
nuclei approach each other to inner-shell distances, so that energy will be transferred without a 
direct collision with an electron. However, lower impact parameters occur relatively rarely as 
discussed above. On the other hand, distant collisions are characterized by the interaction with 
outer shell or Fermi gas electrons, where the nuclear interaction becomes small due to atomic 
screening. Although these considerations are in favor of the separation ansatz, the final justifica-
tion will be given by the results to be shown later (see sect. 4.4), in particular by the dependence 
of Se and Sn on the ion energy. 

4.2 Nuclear Stopping 

Nuclear stopping results from the energy transfers during binary elastic collisions as described 
in sect. 3. It can be conveniently described by means of the Lindhard universal scattering formal-

                                                           

1 Formerly, the stopping force has been denoted as “stopping power”, which is dimensionally incorrect 
(see ref.[51]). 
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ism (see sect. 3.3), if, in addition to the reduced energy according to eq. (38), a reduced path-
length is introduced as[12] 

      sna   2
      (53) 

where  is the energy transfer factor of eq. (7). With the definitions of sect. 3.3 and eq. (6), eq. 

(51) leads directly to the result[12] 
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    For the results of the numerical evaluation, different fitting formulas have been given by dif-
ferent authors, such as by Matsunami et al.[52] for Thomas-Fermi screening according to 
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and by Ziegler et al.[47] for the ZBL potential according to 
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As seen from Fig. 8, the differences for the different screening functions are small due to the 
integration over the scattering function.  

 

      

In the power-law approximation, the integration of eq. (51) with ET max as upper integra-

tion limit yields 
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    Extracting only the dependence on the ion energy and the ion and target masses using eq. 
(48), we obtain  
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Fig. 8. Universal energy dependence of 
nuclear stopping in terms of reduced 
energy and pathlength, from fit formu-
las according to Matsunami et al.[52] 
(dashed line) and Ziegler et al.[47] (sol-
id line) (see eqs. (53) and (54), respec-
tively). Low-energy (dotted line) and 
high-energy (dashed-dotted line) ap-

proximations are given by 3.02√𝜀 and 
0.515 𝑙𝑛(𝜀) 𝜀⁄ , respectively  
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    The middle term is independent on 1m  at sufficiently high energy with 1s  (see sect. 3.3), 

and also for 21 mm  as well as for 21 mm  . In these cases and for a given target material, nuclear 

stopping depends on the velocity of the projectile.  

 

4.3 Electronic Stopping 

4.3.1 Charge State of an Ion Moving in a Solid 

Through a variety of atomic processes, the interaction of the electronic systems of the moving 
ion and the target atoms may result in a transfer of electrons from or to the ion. There have been 
numerous treatments of these charge exchange phenomena (see, e.g. refs.[9,10,53-57]). Here, we 
will only mention the most simple concepts as well as recipes for practical use.  

The charge exchange leads to fluctuations of the charge state of an individual ion during its 
passage through matter. When entering the surface, the actual mean or “effective” charge at a 
given energy, effZ1 , is typically established within a few nm as a balance between average elec-

tron capture and loss. In a simple statistical picture, electron capture is efficient if there is suffi-
cient time for the target electrons to accommodate to the electron system of the ion. Assuming 
the target electrons to be at rest in the LS, their velocity relative to the ion is equal to the ion ve-
locity. Then, a so-called “adiabatic” transition can take place provided the ion velocity is smaller 
than the average velocity of the electrons in the atomic system of the ion. In the statistical model 
of the atom, the latter is given by 32

10Z .  Consequently, Bohr[10] has written the effective charge 

as 
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At higher ion velocity, electron loss by collisions with the target electrons dominates, so that 
in the limit of high energy the ion will be deprived of all electrons. For a simple estimate for all 
velocities, eq. (59) can then be extrapolated according to 
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Both experimental and more elaborate theoretical studies have broadly confirmed that the ef-
fective charge is determined by the ion velocity, but also an additional dependence on the target 
electron density. For practical use, different semi-empirical fit formulas have been proposed, cf. 
refs.[58-60], which allow a predictions of the effective charge with a precision down to a few %.  

4.3.2 Low-Velocity Electronic Stopping 

In the limit of low ion velocity at 32

10Z  , the ion moving in the solid approaches a neutral at-

om (see eq. (60)). Following the picture given by Fermi and Teller[61]  for f  , where f de-

notes the Fermi velocity 

       3123 e
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( em denoting the mass of the electron), the ion is slowed down by momentum transfer due to 

scattering at the target electrons. In the frame of the moving ion as indicated in Fig. 9, only scat-
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tering processes with a final momentum outside the target Fermi sphere are allowed since the 
Fermi sphere is completely occupied. The corresponding velocity space volume is approximately

24 f . The density of contributing electrons with a velocity close to the Fermi velocity is 

fee nn 3 . As the electrons impinge the ion from the forward half space, the gas-kinetic ex-

pression 4fee nj  is roughly appropriate for the effective electron flux “seen” by the ion. In ac-

cordance with the definition of the stopping force (see sect. 4.1), the stopping cross section can 
be written as 

            pR
ndt

dp

n
S se  11

     (62) 

where p denotes the momentum of the ion, sR the number of scattering events per unit of time, 

and p  the average momentum transfer per scattering event. The latter can be approximated by

femp  which is half of the maximum momentum transfer. With es jR    for a scattering cross 

section and 2nZne  , putting everything together results in 

 

              ffee ZmS  2      (63) 

with the important result that low-energy electronic stopping is proportional to the ion velocity.  
 

                  

A more rigorous treatment of the scattering geometry shows that eq. (63) holds exactly if the 
so-called “transport” cross section 
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is inserted. The evaluation of the differential cross section is rather complex. Taking into account 
radially varying partial electron densities of the collision partners, Lindhard and Scharff [62]  
obtained 
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In view of the scaling with the velocity, the low-energy stopping cross section as function of 
ion energy is often written as 

       EkES ee       (66)  

Fig. 9.  Scattering of an electron from the Fer-
mi sphere of the target electron gas at an ion 
moving at a velocity being small compared to 
the Fermi velocity 𝑣𝑓 . The outer circle denotes 

the target Fermi sphere, which is slightly shift-
ed with respect to the moving ion. Only scat-
tering events are allowed with a final state 
outside the Fermi sphere, i.e. for electrons 
originating from the shaded volume, as indi-
cated by the dashed trajectory of a representa-
tive electron 
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with a constant ke which depends on the collision partners.  
Eqs. (65) and (66) describe a nonlocal average energy loss. For, e.g., the purpose of computer 

simulation it is also interesting to calculate the electronic energy transfer during a nuclear colli-
sion and its dependence on the impact parameter. The model of Firsov[63] considers the inter-
penetration of the electron clouds of the collision partners (see Fig. 10). In the CMS frame, elec-
trons are mutually crossing the intersecting plane, and, as the relative velocity is small compared 
to the Fermi velocities, adiabatically accommodate to the dynamic diatomic configuration. For a 
free electron gas and a Thomas-Fermi interaction potential, the dependence of the local elec-
tronic energy transfer on the impact parameter results as 
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which strongly decreases at increasing impact parameter. The integration according to eq. (51) 
yields[64]  
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For the energy transfer as function of the impact parameter, an alternative semi-empirical ex-
pression has been proposed by Oen and Robinson[65] reading 
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where c1 denotes the decay constant of the leading term of the exponential series approximation 
of the employed screening function (see eqs. (27) and (32)), and Rmin the distance of closest ap-
proach (see Fig. 3). This function is often being used in computer simulations. Its integration 
over the impact parameter yields eq. (66) with good precision. 

Fig. 11 compares the predictions of eqs. (65) and (68) with experimental data obtained by the 
transmission of a large variety of ions through thin carbon foils[64]. In average, the Lindhard-
Scharff result fits the data very well, whereas the Firsov one slightly overestimates. However, 
again (see Fig. 7) the data show pronounced shell oscillations which cannot be described by the 
universal formulas, with significant deviations by factor of up to ~2 for the present data set. This 
indicates the necessity to employ individual data sets from, e.g., experiments or semiempirical 
tabulations when precise data are needed (see sect. 4.5). 

 

Fig. 10. Electronic energy loss in the 
Firsov[63] picture. Electrons are transferred 
between the ion (1) and the target atom (2) 
and accommodate during the scattering pro-
cess at varying distance R between the colli-
sion partners  
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Fig. 11. Low-energy electronic stopping cross sections of different ion species at different velocities in 
carbon, from experiments (dots) and the theoretical predictions by Lindhard and Scharff (solid lines, eq. 
(65)) and Firsov (dashed lines, eq. (68)). Velocities are given in terms of the velocity of the first Bohr orbit. 
The experiments cover the energy range of 0.2…1.5 MeV. (after ref.[64])  

4.3.3 High-Velocity Electronic Stopping 

Different concepts of the theoretical description of electronic stopping at high ion velocities 
(i.e. 32

10Z  ) have been developed by numerous authors. A comprehensive review is given in 

Sigmund’s books[25,26]. Here, we only briefly address the most important models, disregarding 
any details. 

The early model of Bohr[3,4] is naturally based on classical mechanics. For the Coulomb in-
teraction of the ion with a single target electron, the electron is considered as free and, relative 
to the fast ion, to be at rest before the collision. Then, the binary collision formalism of sect. 2.1 
can be applied. For 12 mmm e  , eq. (6) in combination with eq. (14) yields for the energy 

transfer 
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which is inserted into eq. (51).  With the density of electrons 2nZne  this results in 
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    Apparently, the integral diverges for a maximum impact parameter maxp . A finite maxi-

mum impact parameter can be estimated from the picture of the so- called “adiabatic cutoff”. As-
suming a characteristic time   of the collision, the electrons of a target atom contribute to the 
energy transfer only if their mean orbital frequency  is smaller than  /2 . Otherwise, they 
would adiabatically accommodate to the dynamic diatomic configuration, similarly as described 
in subsection 4.3.1. Using the momentum approximation (see Fig. 4 and eq. (17)), the character-
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istic collision time can be estimated from the transverse momentum transfer and its associated 

force integral,     0zFdtFp yy , with the result 
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so that the integration in  eq. (71) becomes limited to  
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    This results in the classical Bohr formula of electronic stopping 
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As estimated from the Bohr criterion (see sect. 2.2), the classical treatment of electronic stop-
ping is not appropriate towards high ion energies. A quantum-mechanical description was first 
given by Bethe[6] (see also the review by Fano[66]). As sketched in Fig. 12, the scattering pro-
cess is described by a transition of states of the ion-atom system with an initial state 
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which is composed of the initial state i of the atom and a plane wave with wave vector ik


for 

the ingoing ion, and a corresponding final state described in the same way. With i  and f denot-

ing the initial and final total energies of the atoms, respectively, the stopping cross section is in 
analogy to eq. (51) 
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where the summation extends over all possible final states of the atom. These may be purely 
atomic states after electronic excitation or combinations with plane electron waves after ioniza-
tion. For the differential cross section, the first Born approximation, eq. (22), is inserted with the 
reduced mass em and the interaction potential  
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Fig. 12. Quantum-mechanical treatment 
of high-velocity electronic stopping 
(schematic) with the internuclear dis-
tance R, the target atom with different 
electron orbitals and distances 𝑟𝑗  of the 

electrons from the nucleus, and the wave 

vectors 𝑘⃑ 𝑖 and 𝑘⃑ 𝑓 for the incoming and 

outgoing plane waves, respectively, rep-
resenting the ion 

 



23 

 

which describes the Coulomb interaction of the ion with the target nucleus and its individual 
electrons. 

With the momentum transfer vector fi kkq


 , eqs. (22), (76) and (77) result in 
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    From energy conservation, the minimum and maximum energy transfers for a given final state 
result as    ifq min and emq 2max  , respectively. The results of the detailed quantum-

mechanical evaluation can only be summarized here. As a consequence of the first Born approx-
imation, only the state of one electron of the atom can be altered. The evaluation of eq. (78) nat-
urally demonstrates two regimes of momentum transfer as depicted in Fig. 13. Momentum 
transfers larger than the inverse of a characteristic atomic radius ata result in an outgoing plane 

wave for the final state of the electron, which describes an ionization event. At small momentum 
transfers, different final states may result corresponding to different levels of electronic excita-
tion. Both regimes are separately evaluated, yielding the Bethe formula 
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with the so-called “mean ionization potential” I  given by 
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where iff  denote the dipole oscillator strengths of the atom. Eq. (80) cannot be readily evaluat-

ed. According to Bloch (see ref. [66]), the mean ionization potential is expected to scale with the 
atomic number Z2 of the target material. A good approximation is 210 ZeVI  except for the 

lightest target materials, which has been derived from the comparison with experimental data. 
With this respect, the Bethe formula must be regarded as semi-empirical. 

It should be noted that the leading term with the strong energy dependence ( 1 E ) is identi-
cal in both the classical and the quantum-mechanical result, whereas the logarithmic terms vary 
slowly with the energy and differ only slightly in the energy dependence. Fig. 14 shows an evalu-
ation of both results for two widely different ion-target combinations, in comparison to semi-
empirical data. The results of both formulas are in rather good agreement with the experimental 
data over a wide range of energies and ion-target combinations and match the high-energy limit 

Fig. 13. Regimes of contributions to 
high-energy electronic stopping re-
sulting from the quantum-
mechanical treatment. The different 
quantities are explained in the text.  
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perfectly, although the classical description should not be valid at all in the light-ion case. For the 
heavy Ge ion (Fig. 14(b)), the classical trajectory regime extends to GeV energies. Indeed, the 
classical prediction appears to be better here at intermediate energies. On the other hand, the 
Bethe formula gives an excellent fit for the hydrogen data (Fig. 14(a)) in almost the entire quan-
tum-mechanical regime. This is in accordance with the anticipation that charge transfer should 
only play a minor role for the lightest ions. In contrast, the predictions for the heavy ion overes-
timate the stopping at intermediate energies, which might indicate charge transfer effects, and 
the predictions might be improved by inserting an effective charge of the ion (see subsection 
4.3.1) into the stopping formulas rather than the charge number Z1 of the naked ion. This will en-
ter the definition of semi-empirical data collections which will be discussed in sect. 4.5 below. 

As an alternative to the above “atomic” pictures of high-velocity atomic stopping, Lindhard 
and Winther[67,68] have formulated a “dielectric” continuum description. The interaction of 
moving ion with the electron gas of the solid induces dipoles. Due to the retardation of the inter-

action, these result in a net dipole field indE


 at the position of the ion which points in backward 

direction.  Then, the stopping force becomes 
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The evaluation yields 
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where  

Fig. 14. Electronic stopping for two 
different ion-target combinations 
(a,b) according to Bethe (solid lines, 
eq. (79)) evaluated with 
𝐼 = 10⁡𝑒𝑉 ∙ 𝑍2 (see text), and accord-
ing to Bohr (dashed lines, eq. (74)), 
correspondingly evaluated with 
𝜔 = 10⁡𝑒𝑉 ∙ 𝑍2 ℏ⁄ . The predictions 
are compared to semi-empirical da-
ta (dotted lines) obtained from SRIM 
2011[69]. The full arrows indicate 
the energy below which electron at-
tachment becomes effective accord-
ing to eq. (59), and the broken ar-
rows denote the transition from 
classical to quantum-mechanical 
scattering (see eq. (21))  
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denotes the plasma frequency of the electron gas and   ,kl  its longitudinal polarizability as 

function of the wave vector k and the frequency . Notably, the leading term of eq. (82) is identi-
cal to the ones of eqs. (74) and (79). The polarizability can be calculated from first order pertur-
bation theory resulting in 
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where the “local electron gas” summation extends over n subshells in momentum space with Nn 

electrons each and the energies and wave vectors En and nk


, respectively. 

 

    

4.4 Total Stopping Cross Section 

For the ion-target combinations chosen for Fig. 14, Fig. 15 summarizes the results of sects. 4.3.1-
3. In the light ion case, the contribution of nuclear stopping to the total stopping (see eqs. (52)) 
is almost negligible except for energies far below 1 keV. In contrast, it is dominant for heavy ions 
in the keV to MeV range. In both cases, there is a clear separation of the energy regimes where 
electronic vs. nuclear stopping, and vice versa, dominates. This justifies the separate treatment 
of electronic and nuclear stopping a posteriori. However, some uncertainty of the concept could 

Fig. 15. Theoretical predictions of stop-
ping for a light ion (a) and a medium-
mass ion in a lighter substance (b), for 
high-energy electronic stopping (thick 
solid lines) according to Bethe (eq. 
(79)) and Bohr (eq. (74)) (see Fig. 14), 
for low-energy electronic stopping (thin 
solid lines) according to Lindhard and 
Scharff (eq. (65)), and for nuclear stop-
ping (dashed lines) from the Matsunami 
fit formula (eq. (55)). The dotted lines 
show semi-empirical data of the total 
(nuclear+electronic) stopping obtained 
from SRIM 2011[69]. Note the double-
logarithmic presentation in (a)  
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be expected in the rather narrow energy regimes where nuclear stopping and electronic stop-
ping are of similar magnitude.  
    In detail, the Lindhard-Scharff prediction of electronic stopping works well in case of H in Ni 
(note that the semi-empirical data of Fig. 15 represent the sum of nuclear and electronic stop-
ping), whereas it underestimates the stopping of Ge in Si. This is in accordance with Fig. 11 
where Ge ( 321 Z ) is found at the minimum of the Z1 oscillations. Nuclear stopping appears to be 

well described by the universal nuclear stopping integral, eq. (54).  

4.5 Semi-empirical Stopping Data 

Although the theoretical predictions described in sects. 4.2 and 4.3 are in reasonable agreement 
with experimental findings in their individual ranges of applicability, they are not sufficiently re-
liable for precise calculations of, e.g., ion ranges, which are essential for certain applications, as 
in particular for the development and production in microelectronics. Consequently, stopping 
data collections have been composed from experimental data. As experimental data of stopping 
often suffer from systematic errors, the predictions given above can form a guideline to find the 
best fits to different experimental data sets for specific ion-target combinations and energy 
ranges.  

Earlier collections of stopping data and semi-empirical fits have been published by, e.g., 
Northcliffe[54], and in a series of books by Andersen and Ziegler[70], Ziegler[71] and Littmark 
and Ziegler[72]. The data contained in the latter volumes form the basis of the data sets which 
are available with the SRIM software package[69]. As the latter can be regarded as the present-
day standard source of stopping data, the procedures to generate the data[47] will be briefly de-
scribed in the following. 

From the quantum-mechanical and dielectric descriptions of high-velocity electronic stopping 
(see subsection 4.3.3), the atomic number of the ion enters the stopping cross section only via 

2

1Z in the leading terms of eqs. (79) and (82), respectively. This suggests a scaling of the velocity-

dependent electronic stopping Se of all ions with the electronic stopping Se,H of protons, for which 
a fairly broad database exists, according to 
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where effective charges have been inserted according to the concept described in subsection 
4.3.1. (It should be noted that the effective charge of the proton has no physical meaning, but is 
merely part of a fitting concept). In order to obtain a semi-empirical set of proton stopping data, 
Ziegler et al.[47] evaluated Lindhard’s dielectric stopping theory (eq. (82)) with realistic local 
electron densities from quantum-mechanical Hartree-Fock-Slater calculations[73] or with more 
precise specific electron densities where available. (It should be noted that the dielectric theory 
describes the velocity-dependence reasonably well even at velocities below the stopping power 
maximum.) The theoretical results for different target atoms were fitted to experimental proton 
stopping power data sets, which formally results in the effective proton charges  2,ZZ eff

H  . For 

target elements with little or no experimental information, interpolation procedures were used. 
The heavy-ion effective charge was calculated according to the theory of Brandt and 
Kitagawa[57], from which the authors delineated a universal fitting algorithm which gives more 
precise results than the simple equation (58). The low-velocity electronic stopping is taken as 
   ~eS  with 1  according to the findings described in subsection 4.3.2, unless experimental 

data indicate that a different exponent is more appropriate. Finally, the nuclear stopping is taken 
from the universal fitting formula given in eq. (56). 

These semi-empirical stopping data sets are generally in good agreement with the experi-
mental data. (It should be noted that the experimental data often scatter significantly even for 
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identical ion-target combinations.) It is difficult to rate an all-over accuracy, but an average of 
%5  should be a reasonable estimate for most cases. The specific accuracy for a given ion-target 

combination depends on the velocity range and the quantity and quality of the corresponding 
experimental database. However, there are also significant deviations in specific cases (see sub-
section 4.6.2). 

The described semi-empirical stopping data are available through the SRIM freeware[69] and 
have continuously been updated by Ziegler et al. With a convenient user interface, the electronic 
and nuclear stopping data can be quickly obtained for all ion energies and ion-target combina-
tions.  

4.6 Scaling and Additivity Rules 

4.6.1 Isotope Scaling 

Let us first consider different isotopes of an incident ion species. As seen from eqs. (65), (74), 
(79) and (82), electronic stopping scales with the velocity of the projectile without a further ex-
plicit dependence on its mass. As discussed in sect. 4.2, this holds also for nuclear stopping (see 
eq. (58)) except for low-energy light ions. For light ions, however, the contribution of nuclear 
stopping is minor anyway (see, e.g., Fig. 15(a)). Thus, the stopping cross sections of isotopes are 
identical at identical velocity. Consequently, at known stopping data  11 ES  for an isotope 1 with 

mass 1,1m , the stopping of an isotope 2 with mass 2,1m in the same substance and at energy 2E  is 

obtained from 
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4.6.2 Reciprocity 

At low velocities 0  where the projectile is essentially neutral and remains neutral after a col-

lision with a neutral target atom, the electronic energy transfer by excitation only depends on 
the relative motion of the collision partners. Therefore, the stopping cross section must be iden-
tical if the projectile and the target atom are interchanged[74]. This is directly evident in the 
Firsov picture of low-energy electronic stopping and reflected in eqs. (67) and (68) with the 
symmetry in Z1 and Z2. Also the Lindhard-Scharff formula (eq. (65)) is essentially reciprocal, if  a 
factor 61

1Z  is neglected which depends only weakly on Z1. Thus,  
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in the low-velocity regime. Sigmund[74] has verified this relation for numerous pairs for which 
stopping data are available. He also points out that some predictions from SRIM[69] are in clear 
contradiction to reciprocity, with individual unrealistically high stopping data for heavy ions. 
Thus, when extracting such data from SRIM as recommended above, it might be helpful to check 
for consistence with the reciprocal system, and employ corresponding light-ion data in connec-
tion with eq. (87) where applicable. 

The treatment of nuclear stopping is entirely symmetric in Z1 and Z2 (see sects. 3.3 and 4.2). 
However, there is an asymmetry in the masses as, e.g., seen from eq. (58), with the resulting rec-
iprocity relation 
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4.6.3 Stopping in Compounds 

To first approximation, the stopping in a compound material is obtained by simply adding the 
contributions from the atomic constituents. For a compound with the atomic fractions qi of the 
constituents with  

i

iq 1 , Bragg’s rule[75] reads  

        
i

iiC ESqES      (89)                  

where SC and Si denote the stopping cross sections of the compound and the pure elements 
which form its constituents, respectively. Eq. (89) neglects any chemical interaction. Neverthe-
less, deviations from Bragg’s rule, as far as reported from experiments, rarely exceed 20-30%. 
The SRIM package[69] also uses Bragg’s rule. However, also deviations are implemented as far 
as they are known from experiments or can be extrapolated in a proper way. 

 

 

5  Ion Channeling 

For the treatment of stopping in the previous section, it was implicitly assumed that the atoms of 
the solid are randomly arranged. However, most materials exhibit a crystalline structure. Ex-
tremes are artificial large-size monocrystals such as being used in microelectronics, but also, e.g., 
standard metallic or ceramic materials mostly consist of single-crystalline grains with widely 
varying sizes. Thus, it is mandatory to consider the potential influence of crystallinity on the pas-
sage of ions through matter. 

If an ion enters a crystalline solid, pronounced effects of crystallinity may be expected only for 
selected conditions of incidence, as shown in Fig. 16. Due to low-impact parameter nuclear colli-
sions in the first atomic layers, the incidence at arbitrary angles will mostly generate trajectories 
which are similar to those in random media. However, an ion incident along a low-index crystal 
direction and entering close to the centre of the channel which is formed by the atomic rows 
surrounding it, will undergo only small-angle scattering events so that it will maintain its direc-
tion with only smooth oscillations around the centre of the channel. 

After first corresponding experimental evidence in the early 1960’s[76,77], Lindhard[48] has 
formulated a theoretical basis for ion channeling. Intensive investigations of the effect during the 
subsequent decade are documented in the textbook edited by Morgan[78]. A compact overview 
on the fundamentals of ion channeling is also given in the book by Feldman, Mayer and Pic-
raux[79], which is mainly devoted to the application of ion channeling in materials characteriza-
tion.  

         

Fig. 16. Trajectories of ions entering a crystal-
line solid (schematic): (a) Random trajectory 
of an ion entering at a large angle with respect 
to a low-indexed crystal direction; (b) random 
trajectory of an ion entering in the low-
indexed direction, but hitting a surface atom; 
(c) channeled trajectory of an ion entering in 
the low-indexed direction close to the center 
of the channel. d denotes the distance of the 
atoms in the atomic strings surrounding the 
channel  
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5.1 Critical Conditions 

The channeling trajectory (see Fig. 16(c)) is no longer determined by the scattering at individual 
atoms, but by the scattering from the strings of atoms which surround the channel. As the devia-
tion of the ion flight direction from the direction of the channel is small, the ion trajectory close 
to a string can be approximated by the coplanar situation of Fig. 17, where the ion trajectory is 
only described by the radial distance r from the string which extends into the z direction. The ion 
is then considered to be channeled if its minimum distance rmin to the strings remains larger than 
a critical value, below which large-angle collisions would occur kicking the ion out and steering 
it into a random direction. 

Similar to the electrostatic potential of a charged wire, the radial interaction potential be-
tween the ion and the string is given by 
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where d denotes the distance of the atoms along the string and V the binary interaction potential 
as described in sects. 2.2 and 2.3. For a screened Coulomb potential according to eq. (29), the 
string potential result 

                                 

Fig. 17.  Channeled ion scattered from a string of atoms surrounding the channel, with a distance 𝑟𝑚𝑖𝑛  of 
minimum approach. The average string charge is indicated by the shaded area. 𝜓 denotes the angle of the 
trajectory at large distance from the string (corresponding to the direction of an incident ion).  

    The positions of the ion at the twofold distance of minimum define a characteristic length of 
the scattering process  
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with the screening distance a  as in sect. 3.2 and the formal equivalent to the screening function  
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Inserting the “standard” potential (eq. (35)) results in 
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Neglecting energy loss and decoupling the motion in the transverse plane from the axial mo-
tion, the latter being essentially unaffected, the total energy of the transverse motion is  
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where denotes the (small) angle of the trajectory with respect to the string  direction. With the 

angle   at large distance from the string, which can be identified with the angle of incidence 

when the ion enters the channel, energy conservation requires 
 

             2

min ErU       (95) 

Quite arbitrarily, a characteristic length lc of the scattering process is defined by the distances

min2r of the ion trajectory from the string, and as a condition for channeling it is required that the 

characteristic distance along the string contains at least two atoms. With 2min clr   at small an-

gles, the condition is 
 

              dr  min         (96) 

Putting eqs. (91), (93), (95) and (96) together, the criterion for channeling becomes  
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with Lindhard’s characteristic angle of axial channeling 
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The approximate analytical solution of the implicit formula (97) for daL   results in the 

critical angle of channeling at a given energy  
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    This is valid in the limit of high energy. At daL  , a good estimate is ac  1 . In the opposite 

low-energy regime, the critical angle becomes 
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    Although the basic idea leading to these criteria appears to be somewhat intuitive (see above), 
they are found in rather good agreement with experimental results and can well be used for 
practical applications. More precise data can be obtained by computer simulation[78].  

The above picture assumes an idealized rigid chain of atoms. In reality, thermal vibrations 
have to be taken into account. Typically, already around room temperature the thermal vibra-
tion amplitude becomes comparable to the distance of minimum approach at the critical angle, 
as defined above. Thus, a good approximation for the critical angle can be obtained when replac-
ing d  in eq. (96) by the mean thermal vibration amplitude rth, which results in the critical an-

gle  
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Channeling cannot only occur along channels between atomic strings in low-indexed crystal-
line direction, but also between the lattice planes of a crystal. The critical condition for planar 
channeling can be derived in full analogy to the above, so that only the results will be given here. 
The continuum potential  yY , where y denotes the distance from the plane, is now obtained by 

averaging over the plane according to 

           dxdzzyxV
d
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where d denotes the average distance of the atoms in the plane given by 
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with the interplanar distance pd . Again with the standard screening function, the potential of the 

plane becomes  
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    Again, a characteristic angle of planar channeling can be defined according to 
 

     
Ed

eZZ
p

0

2

21

4

2


       (105) 

with the high-energy critical angle resulting as 
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    With the order-of-magnitude estimate ad 10  it becomes evident that the critical angles for 
planar channeling are smaller than the ones for axial channeling by a factor of ~3. An estimate of 
the critical angle at elevated temperature can again be obtained by inserting the average (linear) 

thermal vibration amplitude 2thr  into the relation corresponding to eq. (97). The result is 
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5.2 Trajectories and Flux Distributions 

For axial channeling, the simplified picture of an ion trajectory shown in Fig. 16(c) is misleading 
in the sense that the special situation of so-called “hyperchanneling” is indicated, when the ion 
remains in the same channel during its passage through the crystal (see Fig. 18(b)). This is only 
realized at very small transverse energy when, e.g., the ion enters the channel very close to its 
centre. In the general case, ions which fulfill the channeling condition may possess a broad range 
of transversal energies which allows them to overcome the potential minima in the areas of the 
multistring potential between adjacent strings, i.e. they may frequently jump between adjacent 
channels. This results in a random trajectory in the transverse plane as indicated in Fig. 18(a), 
with areas 2

minr  around the strings not being accessible at a given transversal energy according to 
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eq. (95). Thus, in the case of axial channeling, the probability to find the ion in the non-forbidden 
zone of the transversal plane is uniform. 
  

   

     Fig. 19(a) schematically displays ion trajectories from a beam which hits the crystal in a chan-
nel direction. Due to the interaction with the heading atoms of the strings, individual ions are in-
itially deflected depending on their lateral position at the entrance, and thus receive different 
transversal energies and oscillation amplitudes. Due to its random lateral motion, each ion con-
tributes a constant probability distribution to the total ion flux distribution in the channel, as in-
dicated in Fig. 19 (b). 

                     

Fig. 19. (a) Idealized axial channeling trajectories of ions which enter the crystal parallel to the direction 
of the channel in the plane spanned by two strings, and (b) their contributions to the ion flux distribution 
across the channel. The dotted contours indicate the shadow cones around the heading atoms of the 
strings, which cannot be entered at a given energy 

 
    For an approximate analytical treatment, the cross section of the channel is replaced by a cir-
cle of radius r  and equal area   Ar 2 (see Fig. 20). The flux distribution at a radius r is com-

posed from trajectories with radial amplitudes r  between r and r . Each trajectory with ampli-

tude r spreads out over an area 2r in the lateral plane, so that its contribution at r is 

proportional to   12 
r . Thus, the radial flux distribution becomes 
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and with the correct normalization 
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which exhibits a pronounced maximum at the center of the channel. 

Fig. 18.  Ion trajectories under stand-
ard channeling (a) and hyperchannel-
ing (b) conditions, projected onto the 
transverse plane. The dashed rhombs 
indicate the channel area 𝐴⊥. The 
shaded circles represent the forbidden 
zones of radius 𝑟𝑚𝑖𝑛  according the 
transversal energy of the ion (see eq. 
(95)) 
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For planar channeling, there are well-defined periodic oscillations of the trajectories without 

any randomization. (Fig. 19 may also be applied to planar channeling when being understood as 
a cross section normal to the guiding planes and in the plane of the ion trajectories.) Considering 
an ion with an amplitude xof its trajectory, the probability to find it at a distance x from the 

midplane between the two guiding planes is given by the harmonic expression   2122 
 xx . 

Therefore, the flux distribution for planar channeling results as 
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and again with the correct normalization 
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Fig. 20. Simplified channel geometry for 
the analytical description of the flux dis-
tribution of axial channeling. The cross-
sectional contour of the channel is re-
placed by a circle of equal area with radi-
us 𝑟⊥. The grey circle represents the area 
which is occupied by an ion trajectory 
with radial amplitude 𝑟′  

 

Fig. 21. Ion flux distributions for axial chan-
neling (a) and planar channeling (b), for a 
beam incident along the channel direction or 
the planes, respectively, from eqs. (109) and 
(111), respectively. The respective abscissas 
represent the distance from the channel axis 
divided by 𝑟⊥ (see Fig. 20), and the distance 
from the midplane divided by 𝑑𝑝 2⁄ . For com-

parability, the distribution functions have 
been multiplied by  𝜋𝑟⊥

2  and 2𝑑𝑝, respectively  
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Fig. 21 displays the above results. Although the distributions for axial vs. planar channeling 
are not directly comparable due to the different geometries, the width around the centre ap-
pears to be smaller for planar channeling. This is qualitatively consistent with the smaller critical 
angle of planar channeling (see sect. 5.1). 

5.3 Dechanneling 

In an ideal crystal with a rigid lattice, a channeled ion will never leave the channeling direction. 
Thus, dechanneling requires deviations from the ideal lattice, which may arise from thermal vi-
brations or from lattice defects, as indicated in Fig. 22. 

An initially channeled ion with conditions of incidence close to the critical conditions (see 
sect. 5.1) approaches the atomic strings (or planes) closely, so that target atoms being displaced 
from their mean position by thermal vibrations might cause a large angle collision and thereby 
scattering into a random direction. The fraction of the non-channeled ions then increases with 
increasing penetration depth through the crystal. Alternatively, dechanneling may occur at crys-
tal defects such as self-interstitials, interstitial impurities, dislocation lines or other stacking 
fault configurations. 

       
Due to the principle of reversibility of the trajectory, any dechanneled ion will not be able to 

re-enter a channel unless being scattered again from a displaced atom.  

5.4 Stopping under Channeling Conditions 

A significant reduction of nuclear stopping is immediately expected, as only small-angle colli-
sions occur with insignificant nuclear energy transfers. On the other hand, any strong influence 
of channeling on the electronic stopping is less obvious. In particular under axial channeling 
conditions where the relative time of residence close to the atomic strings is small (see sect. 5.2), 
the ions mainly meet interstitial electrons with a density different from average, which may re-
sult in modified electronic stopping. In the binary collision approach to low-energy electronic 
stopping, the electronic energy transfer is predicted to strongly decrease at increasing impact 
parameter (see eq. (67)), which would result in a reduced electronic stopping of channeled ions. 
However, these effects depend strongly on the specific material and the specific irradiation con-
ditions.  

As an example, Fig. 23 shows the stopping force of two different ions in Si under channeling 
conditions versus the random values, as obtained from transmission measurements through 
crystalline Si films with submicrometer thickness[80]. In the present range of MeV energies, 
electronic stopping entirely dominates. The results for axial and planar channeling fall closely 
together, and are lower than the random values by 20…30% (For axial channeling, it should be 
noted that the <100> channel, which has been chosen here for experimental reasons, is less open 
than the <110> in the diamond lattice.) A reduction of stopping of this magnitude is typical for 

Fig. 22. Examples of dechanneling 
(schematic): (1) transition from a 
channeling trajectory to a random tra-
jectory due to thermal vibration of the 
lattice; (2) dechanneling at an intersti-
tial atom and backscattering 
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the channeling in the electronic stopping regime along axes or planes with the lowest Miller in-
dices. 
 

     
 

6  Computer Simulation of Ion-Solid Interaction 

Already during the early stage of the field of ion-solid interaction, it has been realized that ion 
penetration and associated phenomena can profitably be addressed by computer 
simulations[14,81,82], into which the elementary processes of scattering and energy loss as de-
scribed in the previous sections can be entered. Overviews have been given by Eckstein[31] and 
Smith[32]. There are two basically different approaches which are partly complementary and 
which differ in their typical areas of application as well as in the corresponding computational 
effort, which will be described below. 

6.1 Binary Collision Approximation 

6.1.1 Code Description 

In the binary collision approximation (BCA), the motion of a fast atom moving in a solid is de-
scribed by a sequence of asymptotic trajectories between binary collisions (see Fig. 24). The bi-
nary collisions are normally treated as elastic, with the kinematics and interaction potentials as 
described in sects. 2 and 3, thus mimicking the nuclear scattering and stopping. Electronic stop-
ping can either be applied nonlocally along the free paths⁡𝜆𝑐, mostly being taken from semi-
empirical data collections (see sect. 4.5), or locally according to eqs. (67) or (69). 

 

Fig. 23. Stopping force of MeV lithium (a) and 
nitrogen (b) ions in a silicon single crystal in 
random direction (full squares) and for chan-
neling along the <100> axis (open circles) and 
the {110} plane (open triangles). The solid 
lines show the predictions from SRIM[69] 
(1995 version). The dashed lines represent an-
alytical fitting curves. (After ref.[80])  
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BCA codes have been developed for random or amorphous substances[83-88] as well as for 

crystalline targets[15,89-91]. However, crystalline codes can also be used for the simulation in 
polycrystalline and random media by rotation of the crystal for each incident ion or for each new 
collision[15]. Often, BCA codes have been termed “Monte Carlo” simulation due to the random 
character of some of the internal variables. However, in a crystalline code with a fixed lattice, on-
ly the conditions of ion incidence can be chosen randomly. From that on, the entire trajectory is 
deterministic due to the fixed position of the target atoms (unless thermal vibrations are admit-
ted). The free pathlength between the subsequent collisions is chosen randomly for random me-
dia, whereas the position of the target atoms is chosen randomly for both random and amor-
phous media. 

 

For the interaction of fast atoms with an amorphous substance, TRIM (TRansport of Ions in 
Matter)[47,69,88,85] is the most widely spread and used BCA code. Therefore, we will refer in 
the following particularly to the TRIM model. The amorphous substance is modeled by a fixed 
free pathlength equal to the mean distance of the atoms in the solid according to  

 

               
31 nc      (112) 

A detailed schematic of the collision geometry is shown in Fig. 25. 
 

 

   

Fig. 24. Sequence of collisions of a moving at-
om (red) with target atoms (blue) denoted by 
i…i+2 in the binary collision approximation, 
with intermediate free pathlengths 𝜆𝑐 . With the 
x coordinate directed along the inward surface 
normal, 𝛼 and 𝛽 denote the azimuthal and po-
lar angles of motion, respectively, and Φ and Θ 
the azimuthal and polar deflection angles, re-
spectively, in the laboratory system (Φ is not 
explicitly shown) 

is not            

Fig. 25. Details of projectile (red) and recoil 
atom (blue) trajectories in the binary colli-
sions, and selection of next target atom 
(upper right). For explanation, see text. For 
points A and B, see section 6.1.3 



37 

 

The asymptotic trajectories define the so-called “time integral”  by the distance of the intersec-
tion of the asymptotic trajectories from the scattering plane. Similarly, a time integral R  is de-

fined for the recoil atom. TRIM uses the time integrals from the hard-sphere approximation, 
reading  

              
2

tan


 p      (113) 

with 𝜗 denoting the scattering angle in the center-of-mass system, and 
 

                 0R       (114) 

Each new collision partner is chosen within a circle around the asymptotic trajectory with the 
maximum impact parameter maxp as its radius. The choice 
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defines a cylinder of length⁡𝜆𝑐 which contains one target atom in average, so that one collision 
takes place per atom of the substance. (However, it should be noted that some versions of the 
TRIM family[92,93] allow additional “soft” collisions with larger impact parameters in outer an-
nular regions.) The actual impact parameter is then chosen randomly from a random number 

 1,0pr  according to  

               prpp max      (116) 

A second random number r  selects the azimuth within the impact parameter circle as 

 

                   r2      (117) 

which defines also the azimuthal deflection angle of the subsequent collision. The polar deflec-
tion angle is related to the impact parameter by the classical trajectory integral, eq. (10). How-
ever, its solution for each new collision would require excessive computational effort. One way 
out is the calculation and tabulation of the scattering function  p  for all occuring projectile-

target combinations at the beginning of the simulation run, so that the data for each collision can 
be obtained from table lookup and interpolation[84,87]. Instead, TRIM uses an analytical ap-
proximation (“Magic”)[47,85] with specific parameters for the chosen screening function, which 
reproduces the results of the exact integration of eq. (10) very well. In standard TRIM[47,69], 
the ZBL screening function (eqs. (32) and (33)) is employed.  

Nonlocal electronic energy loss is treated according to 
 

              cenle nST ,      (118) 

Alternatively, local electronic energy loss leT ,  can be employed at sufficiently low energy. TRIM 

uses the Oen-Robinson formula (eq.(69)), again with parameters which are specific to a given 
screening function[31]. Often, also a combination of nonlocal and local electronic energy loss is 
defined, such as the equipartition  lenlee TTT ,,5.0  . 

The “state” of a moving atom directly after a collision i (see Fig. 24) is described by the space 
coordinates  iii zyx ,,  at the deflection point, the directional angles  ii  ,  and the energy iE . The 

simulated sequence of collisions then consists of a geometrical translation with an operator TS 
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and a re-direction with an angular transformation operator TA 
 

                     iiii TA  ,,, 11      (120) 

For brevity, the explicit expressions for TS and TA are not given here. With the nuclear energy 
transfer from eq. (6), the energy is reduced according to  

 

             eii TTEE 1      (121) 

As any incident projectile, also any recoil atom which is generated by a nuclear collision can 
be traced in this way. The initial position of the recoil is given by (see Fig. 24) 

 

            iiiiic zyxTSRzyx ,,,,,,, 000      (122) 

and its initial directional angle by 
 

          iiTAR  ,,, 00      (123) 

with corresponding operators TSR and TAR, respectively, again without their explicit expres-
sions here. The initial energy of the recoil is 

 
                  bUTE 0      (124) 

with a “bulk binding” energy bU . This implies that a recoil is only generated at bUT  .  

The trajectories of any incident projectile or recoil atom can then be traced until they meet a 
surface, or the energy falls below a predefined “cutoff” energy coE which defines the endpoint of 

a specific trajectory. Fig. 26 shows an example of ion and recoil trajectories which have been 
generated by TRIM[69]. 

 

      

6.1.2 Input Parameters 

As described above, the cutoff energy coE and the bulk binding energy bU  have to be predefined 

for each specific application of the BCA simulation. The choice of the bulk binding energy is not 

Fig. 26. Ion and recoils trajectory simula-
tions using TRIM[69] for 20 keV nitrogen 
ions incident on iron: Ions only (a,c) and 
ion plus recoil (b,d) trajectories, for 5 
(a,b) and 100 (c,d) incident ions. The 
three-dimensional trajectories are pro-
jected onto a plane. The pairs (a,b) and 
(c,d) are from different runs each with 
different ion trajectories  
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obvious[31]. Standard TRIM[47,69] uses a few eV as default parameter for different materials, 
reflecting the enthalpies of vacancy formation. Applications of other codes prefer 0bU  in the 

absence of better knowledge[65,92,93]. The cutoff energy should be chosen as large as possible 
in order to limit the computation time, but small enough to exclude any influence on the results. 
Additional energy parameters will be addressed in sections 9-11. 

In addition to the energy parameters, the local versus nonlocal description of the electronic 
stopping (see above) can be regarded as a free parameter. There is also some freedom in the 
choice of the screening function. These possible variations of the input parameters may be of 
significant influence on the results. In particular for low energy, where nuclear stopping is im-
portant, the definition of electronic stopping is ambiguous, and the choice of the energy parame-
ters becomes more influential. Depending on the problem, the results of the simulations may 
vary significantly with the choice of these parameters. Thus, the predictive power of BCA simula-
tions relies on agreed sets of input data which have proven to be useful in comparison with ex-
perimental data, rather than on well-defined parameters which are known a priori.  

6.1.3 Range of Validity  

Towards high particle energy, there is no physical limit to the validity range of BCA simulations 
(provided that suitable nuclear interaction potentials are employed). A practical limitation re-
sults from the increasing computational effort due the large number of collisions along high-
energy trajectories. However, as nuclear stopping and angular deflections become small at suffi-
ciently high energy, this can be counteracted by algorithms which replace frequent collisions by 
rare effective ones, such as in standard TRIM[47,69].  

Towards low energy, the range of validity is determined by the breakdown of the binary colli-
sion approximation when many-body interaction becomes significant. A quantitative criterion 
can be developed from the requirement that the BCA distance of minimum approach of the colli-
sion partners must be smaller than the nearest-neighbor distance in the solid[15,31]. A measure 
of the former is the distance between points A and B in Fig. 25, which increases at decreasing 
energy. The evaluation for a suitable screened Coulomb potential results in a critical energy 
around 20 eV as a rough average for different projectile-target combinations. A similar magni-
tude results from the criterion that the flight time of the projectile along the nearest-neighbor 
distance should be shorter than the inverse of the lattice vibration frequency, meaning that the 
projectile interacts only once with a vibrating lattice atom. This corresponds to the criterion that 
the projectile velocity should be larger than the sound velocity of the material. In summary, the 
binary collision approximation becomes definitively questionable at energies below ~10 eV. 

It should be noted here that the analytical modeling of ion-solid interaction inherently implies 
the binary collision approximation as well. Thus, the above discussion of the validity range iden-
tically applies to analytical theory. 

6.1.4 Dynamic Simulation 

Basic codes using the binary collision approximation, such as standard TRIM[47,69] and 
MARLOWE[15] for amorphous and crystalline materials, respectively, represent static simula-
tions in the sense that the irradiated substance is not affected by the ion bombardment. Thus, 
they describe the limit of zero irradiation fluence, not covering, e.g., the accumulation of im-
planted species or ion-induced damage, the target erosion by collisional emission of atoms from 
the surface, or stoichiometric alterations of multicomponent substances due to collisional relo-
cation of atoms.  

Several extensions of BCA codes which allow the simulation of the dynamic development of 
the stoichiometry[93-98] or damage[86,99-101] versus ion fluence have been described in liter-
ature. While damage accumulation will be addressed in a later section (10.3), the algorithm of 



40 

 

TRIDYN[93,102,103], which is applicable to one-dimensional surface erosion and/or deposition, 
and the in-depth dynamic development of the elemental composition, will be described in the 
following. 

Realistic broad-beam irradiations with significant compositional modification require ion flu-
ences of typically 1016 ions/cm2 or higher, so that a realistic ion-by-ion simulation would exceed 
even the present-day computer capabilities by far. Therefore, each projectile in the simulation 
(so-called pseudoprojectile) is chosen to represent a certain increment of ion fluence (typically 
1012 ions/cm2 or larger) according to 
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where totM denotes the total number of pseudoprojectiles by which an irradiation with a real flu-

ence tot is simulated. 

     
 
As shown in Fig. 27, the target substance is initially subdivided into N  slabs of equal thick-

ness 0x , extending to a depth which is not affected by the irradiation. Each slab is allowed to 

contain aN  different atomic species, including one or more species of the incoming beam, with 
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where the partial atomic densities 0jn , which are entered as input parameters, are the inverse of 

the fixed atomic volumes of the species j . Eq. (126) neglects any chemical interaction between 

the different species which would lead to a nonlinear superposition of the atomic volumes. 
  

The simulation of the history of the pseudoprojectile including generated recoils (Fig. 27(a)) 
may result in the implantation of the pseudoprojectile, the emission of pseudoatoms from the 
surface, and their relocation in the bulk (Fig. 27(b)). Each added or removed pseudoatom repre-

Fig. 27. Scheme of dynamic relaxation in 
TRIDYN[93,94]. (a) Initially, the target sub-
stance is subdivided into slabs of equal thick-
ness. The incident projectile transfers energy to 
target atoms which are set in motion. (b) The 
projectile has been implanted, and target atoms 
have been transported to other slabs or emitted 
from the surface, leaving vacant sites behind. (c) 
According to the resulting under- or over-
densities, the thickness of the slabs is allowed to 
relax to be ready for the subsequent incoming 
ions. The slabs are indexed by 1…N, their thick-
nesses are denoted by Δ𝑥  
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sents a change ij of the local areal density of the respective species j in slab i according to the 

normalization factor of eq. (125). The new areal densities are then calculated from the old ones 
by 

                                                                ijiiijij xnq        (127) 

 
At constant atomic volumes, the thickness the slabs is then relaxed (see Fig. 27(c)) according to 
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to be ready for the incidence of the subsequent pseudoprojectile with modified fractional com-
positions 
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By this procedure, certain slabs may become very thin or excessively thick. These are added to 
a neighboring slab or split into to two slabs of half thickness, respectively. In TRIDYN, the crite-
rion for slab combination or splitting is .5.15.0 00 xxx i    

The procedure of BCA simulation and relaxation is repeated for the chosen total number 𝑀𝑡𝑜𝑡    
of pseudoprojectiles. For a given total fluence (see eq. (125)), the number of pseudoprojectiles 
has to be chosen sufficiently large in order to obtain a sufficient statistical quality of the result. 
At an excessively small total number of pseudoprojectiles, the number of added or removed at-
oms per pseudoprojectile in certain slabs may even exceed the total number of atoms in that 
slab, which has to be avoided. As a rule of experience, the number of atoms in any slab should 
not change by more than about 5% per pseudoprojectile throughout the whole run in order to 
avoid artefacts. 

6.2 Molecular Dynamics Simulations 

In molecular dynamics (MD) simulations (often also denoted as classical dynamics simulations) 
of ion-solid interaction[14,31,32,104-106], the Newtonian equations of motions of a many-body 
system are solved in time steps for an ensemble of atoms representing the solid (see Fig. 28). 
Compared to BCA simulations, there is a number of obvious advantages. Many-body interaction 
is generically included, so that there is no low-energy limitation. Consequently, incident projec-
tiles and recoil atoms can be traced until they are thermalized with the solid. With the choice of a 
realistic interaction potential, even their final interstitial or substitutional position can be mod-
eled. Advanced interaction potentials may take into account three-body forces and thereby di-
rected bonds in covalent solids. Further, any dynamic alteration of the cell due to ion implanta-
tion or atomic relocation can easily be accounted for.  

              

Fig. 28. Schematic representation of a molecu-
lar dynamics computational cell, with elastic 
forces between the atoms and frictional cou-
pling at the bulk boundary being indicated. The 
incident ion (arrow) may be integrated into the 
solid after slowing down 
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However, the comparatively large computational effort sets limits to the practical applicability 
of MD simulations. In practice, there is an upper limit to the accessible particle energies in order 
to avoid excessively large computational cells. The limited computational speed also imposes a 
limitation of the time between the incidence of subsequent ions for the modeling of realistic ion 
fluences, so that often unrealistically short equilibration times for each single ion with its associ-
ated recoil atoms must be accepted.  

6.2.1 Numerical integration 

Different algorithms have been developed for the simultaneous integration of the equations of 
motion[31,32]. As a common example, the Verlet[107] algorithm is presented here. The position 
vectors ir


of the atoms of the computational cell at the )1( n th time step of the simulation result 

from the ones at the n th time step as  
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where )(nt denotes the duration of the nth time step, and i


and ia


the velocities and accelera-

tions of the atoms, respectively. The propagation relation of the velocities is 
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The accelerations are given by the forces iF


resulting from the interaction with the neighboring 

atoms according to 
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where iV represents the interaction potential between atom i and the surrounding atoms. The 

Verlet algorithm is precise in second order of the time step. Typical time step durations are a few 
fs. 

In order to save computer time at a given cell size, higher-order algorithms can be employed 
which allow larger time steps due to better precision. Variable time steps can be optimized using 
different empirical recipes, such as, e.g., in ref.[108]. As a further standard procedure for the re-
duction of computer time, neighbor lists are defined for sufficiently short-ranged potentials, thus 
reducing the number of interaction terms in eq. (132) significantly.   

Depending on the problem, the number of atoms in the computational cell and the computing 
power, the simulation for each incident ion or primary recoil can presently be run for a total 
physical time up to about 10…100 ns and for a maximum number of atoms in the cell of the or-
der of 107…8. 

6.2.2 Interaction potentials 

The application of MD simulations down to thermal energies of the moving atoms requires the 
definition of interaction potentials which are consistent with the atomic binding in the solid. In 
particular and in contrast to the potentials described in sect. 3, these potentials must have an at-
tractive regime at intermediate atomic separation, which, e.g., defines the equilibrium intera-
tomic distance. For an efficient use in the MD simulations, the interaction potential should be 
implemented analytically. Correspondingly, numerous simple and more elaborate functionals 
have been proposed. Generally, such functionals exhibit parameters which are optimized to fit a 
set of properties of the investigated specific system, such as the dimer bond lengths, the elastic 
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and thermophysical properties, or the enthalpies of fusion or point defect formation. Mostly only 
a subset of these properties is satisfactorily reproduced, so that the optimum potential parame-
terization depends on the purpose of a specific simulation even for the same monoatomic or 
compound material. 

  Here, we will explicitly address a few of the most commonly used functionals for the solid-
state potential. If only binary central forces between the atoms are considered, the potential of 
atom i reads 
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with the pair potentials ijV of interactions with the surrounding atoms. An example of a simple 

pair potential between two atoms at an internuclear distance R is the Lennard-Jones 
potential[109]  
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with parameters  (representing the minimum of the potential function) and  (defining the 
equilibrium dimer distance). An example is plotted in Fig. 29(a). 

Whereas the Lennard-Jones potential or the similarly simple Morse[110] potential have been 
employed in particular in early MD simulations for metals, numerous more advanced functionals 
have been developed. For system with mainly metallic binding, the so-called embedded-atom 
model (EAM)[111,112] is often employed. Any atom in the solid can be regarded as being em-
bedded in the electron gas formed by the valence electrons of the other atoms. The potential is 

then written as ( jiij rrR


 ) 
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where ef denotes a universal embedding function (given numerically) which depends on the lo-

cal electron density en , and   a short-range central pair potential taking into account the inter-

Fig. 29. Simple pair potential function for mo-
lecular dynamics simulations. (a) Lennard-Jones 
potential for Cu-Cu interaction (eq. (134)); (b) 
the Lennard-Jones potential (solid line) com-
pared to the Cu-Cu screened Coulomb potential 
(dashed-dotted line) with the “universal” 
screening function (eqs. (29), (32) and (33)). An 
interpolating spline function is indicated by the 
dotted line. The Lennard-Jones parameters for 
Cu are 167.0 eV and 2315.0 nm   
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action with the direct neighbors. The local electron density is superimposed from the atomic 
electron densities at

en of all atoms, i.e. 
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which are obtained from, e.g., quantum-mechanical Hartree-Fock calculations. The pair potential 
is defined as a Coulomb potential 
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with effective charges effZ of the surrounding atoms written as 
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with 0Z as the number of valence electrons and parameters ,   and  . For the embedding func-

tion, also the Finnis-Sinclair[113] tight-binding relation   eee nnf   can be employed[114] 

which results in a different parametrization. 
Whereas the EAM potential has become a standard for a large variety of metals and interme-

tallic compounds, the construction of interaction potentials for covalent or ionic systems is con-
siderably more laborious, so that those are only available for selected systems. A corresponding 
class of parameterized potentials comprises the so-called “bond-order” potentials, which addi-
tionally incorporate three-body terms. Then, the potential is given by 
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An example is the Stillinger-Weber[115] potential which has been developed originally for sil-
icon. In analogy to eq. (134), the two-body term is written as 
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with energy and bond length parameters  and  , respectively, and the functional 
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with parameters A, B, p and q again in analogy to the Lennard-Jones potential, and an additional 
cutoff parameter a. Similarly, for the three-body term 
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with    
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where jiij xxx


 , and with ijk denoting the angle subtended by the reduced distance vectors 
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where 0  denotes the bond angle in the ideal crystal. Thus, eq. (144) optimizes the bond angles. 

The exponential terms in eqs. (141) and (144) provide a smooth exponential decrease so that 
the interaction potential vanishes at the cutoff distance a. 

Other commonly used bond-order potentials have been formulated by Tersoff[116-118] (orig-
inally for Si, C, Ge and SiC) and Brenner[119] for carbon including hydrogen-carbon interaction. 
Numerous modifications and extensions are available, in particular to treat compounds (see, e.g., 
ref.[120] and references therein). Further, special potentials have been developed for systems 
where long-range Coulomb forces and charge transfer between the atoms are important, such as 
in oxides (see. e.g., refs.[121,122]).  

The interaction potentials described above are valid for the dynamics in the solid at moderate 
kinetic energy, being adjusted, as mentioned above, to the properties of the solid close to ther-
mal equilibrium. Thus, they do not cover the interaction of energetic atoms as described by the 
screened Coulomb potentials of sect. 3.2. This is demonstrated in Fig. 29(b) for the model case of 
a Cu dimer. For this case, the Lennard-Jones potential becomes clearly too hard above a relative 
energy of  ~10 eV, so that a smooth transition between the solid-state potential and the screened 
Coulomb potential has to be accomplished in order to cover the entire energy range for energet-
ic ion bombardment. For this purpose, the selected solid-state potential is commonly combined 
with the ZBL potential (eqs. (29), (32) and (33)), using an appropriate spline fit. 

6.2.3 Boundary Conditions 

In order to reduce the computational effort of MD simulations as much as possible, the number 
of atoms in the computational cell should be kept as small as possible. On the other hand, any 
significant influence of the truncation on the results has to be excluded. The choice of the size 
and the processing at the boundaries depend on the specific problem.  

Often, periodic lateral boundary conditions are chosen, by which energetic particles, which 
leave the cell through a plane perpendicular through the surface, are re-entered at the opposite 
plane. This would be appropriate, e.g., to simulate large-area irradiation. In contrast, for the sim-
ulation of single energetic impacts, it may be preferable to use open boundaries, as periodic 
boundaries might introduce an artificial non-linear superposition of atomic motion.  

Similar considerations apply to the bottom boundary of the cell. In addition and in particular 
for broad-beam incidence, the deposited heat has to be removed from the cell in order to avoid 
overheating far above a given substrate temperature. With periodic lateral boundary conditions, 
this would be accomplished only at the bottom boundary plane. A simple algorithm is to keep 
the bottom plane of atoms fixed, and to define a small number of bottom atomic layers where a 
velocity-dependent friction term is added to the equations of motion, which removes the heat 
during a sufficiently long equilibration time[123]. Another common method is the 
Berendsen[124] “thermostat” applied to a few bottom atomic layers, within which the velocities 
are scaled after each time step according to 
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where T is a predefined time constant, 0T the macroscopic temperature of the system to be 

modeled and T  the kinetic temperature of the thermostat layer as calculated from the kinetic 
energies before the velocity scaling. 

 

 

7  Ion Ranges and Range Distributions 

7.1 Analytical Treatment 

Stopping in connection with nuclear scattering determines the trajectory of an ion in a solid, as 
indicated in Fig. 30. Due to the statistical character of the scattering processes, the trajectories 
will be widely different. By electronic and nuclear stopping, the ion is continuously slowed 
down, and it will finally come to rest in a material of sufficient thickness when its residual ener-
gy reaches roughly the lattice binding energy. At known stopping force, the mean total path-
length of the ion can be directly calculated from 
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where E now denotes the energy of incidence, and the total stopping cross section S represents 
the sum of electronic and nuclear stopping according to eq. (52). When nuclear stopping can be 
neglected (as, e.g., for light ions), and electronic stopping is proportional to the ion velocity at 
sufficiently low energy (see eq. (66)), the mean total pathlength becomes 
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If at very high energy both nuclear stopping and the contribution of low-velocity electronic 
stopping to the total pathlength can be neglected, stopping scales basically with the inverse of 
the energy (see eqs. (74), (79) and (82)), so that   2EERt  . 

When nuclear stopping dominates, only approximate analytical solutions can be obtained. For 
power-law scattering (see eq. (57)), the universal result reads in reduced Lindhard-Scharff units 
[49] 

 

Fig. 30.  Trajectory (schematic 2-dimensional projection) 
of an individual ion incident at an energy 𝐸 and an angle 𝛼 
with respect to the surface normal, which comes to rest in 
the solid (a). The associated range definitions are the total 
pathlength 𝑅𝑡 and the longitudinal, lateral and normal pro-
jected ranges, 𝑅𝑝

=, 𝑅𝑝
⊥ and 𝑅𝑝, respectively. During broad- 

beam irradiation, ions will come to rest within a subsur-
face sheet, which is indicated by the hashed area. The tra-
jectory of a reflected ion is also indicated (b)  
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where s denotes the power-law exponent and s a constant which is calculated from ks. For an 

average exponent 2s  (see Fig. 6), this results in a proportionality to the incident energy ac-
cording to  
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The mean depth of deposition is given by the mean “longitudinal” projected range of the ion 
(see Fig. 30), which can be significantly shorter than the average pathlength. However, when the 
influence of angular deflections by nuclear scattering is minor, the mean total pathlength can be 
taken as good estimate for the mean projected range. This is given in situations where (i) the ion 
energy is sufficiently high so that most of the slowing-down path is dominated by electronic 
stopping with its negligible angular deflections of the ion, or (ii) when the mass of the ion is large 
compared to the target mass, so that the angular deflections in nuclear scattering remain small. 

In general, transport calculations have to be performed in order to determine the depth dis-
tribution of ions being implanted into a solid. Let us write the distribution of the longitudinal 
projected range as  


,, ExfR  where x denotes the depth and E and 


 the energy and direction of 

incidence, respectively.   xExfR 


,, gives the probability that an ion comes to rest at a depth 

between x and xx   

 

     
 
The differential-integral equation governing Rf  [12,13,49] can be derived from the scheme 

displayed in Fig. 31. Consider a subsurface differential depth element x . There are three possi-

bilities for an ion traversing x : (1) a nuclear collision might take place which alters the energy 

and the direction of the ion; (2) an electronic collision might occur which alters the energy but 
not the direction; (3) the ion does not undergo any collision. Then, the range distribution at 

xx  is composed from three sets of distributions with different parameters and probabilities 

according to (1)-(3), but taken at the depth 𝑥, as the medium, assumed to be homogeneous, can 
be translated by x . This reads  
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with the nuclear and electronic differential scattering cross sections nd  and ed , respectively, 

the electronic energy transfer E , and the angle of incidence with respect to the surface nor-

Fig. 31. Schematic of the “backward” transport 
formalism for the analytical calculation of pro-
jected range distributions, for an ion incident at 
an energy E and an angle 𝛼 with respect to the 
surface normal. In the differential subsurface 
layer denoted by its thickness 𝛿𝑥, the ion can 
undergo a nuclear (1) or electronic (2) collision, 
or it can just be transmitted (3). See text for fur-
ther explanation  
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mal. Expanding the left-hand side in x and the last term of the second line in E, which allows to 
introduce the electronic stopping cross section according to eq. (51), results in the Boltzmann-
type transport equation 
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The transport equation is solved most conveniently in an infinite medium with the ion starting 
at 0x . Then, the direction of incidence is not distinguished. The normalization condition reads  
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As an artifact of the treatment in the infinite medium, a fraction of the range distribution may 
extend into the negative half space due to backscattering (see Fig. 30). The probability that an 
incident ion becomes backscattered is denoted as the reflection coefficient r, which can be ap-
proximated by  
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This holds only approximately, as the theory allows multiple crossing of the 0x  plane in the 
infinite medium, whereas in reality a backscattered particle is lost after the first transition. This 
is a general problem of the analytical transport theory when being applied to a finite medium. 
Also the definition of the longitudinal mean projected range by 
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suffers from this problem. 
Different mathematical procedures have been adopted to solve eq. 

(151)[12,13,47,49,125,126,72,127]. Conveniently, the solution proceeds via the moments of or-
der  of the distribution function given by 
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The first moment is the mean range (eq. (154)) at a given energy. The second moment describes 
the width of the distribution. It is connected to the standard deviation 

p of the distribution, 

which is denoted as the (longitudinal) “range straggling”, through 
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Eq. (151) turns then into a system of equations for the recursive calculation of the subsequent 
moments. 

Based on these concepts, simple expressions for the relation between the mean projected 
range and the mean total pathlength have been derived for special cases. For heavy ions in light 
substances, where the ion trajectories are comparatively straight in average, Lindhard et al.[12] 

derived for power-law scattering (see eq. (44)) and 21 mm    
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where the latter term holds for the exponent 2s  in the nuclear stopping regime (see Fig. 6).  
For the opposite case of light ions, Schiøtt[125] obtained 
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which requires 5.0 , and is restricted to an energy regime where electronic stopping domi-

nates, i.e. en SS  . 

The full shape of the distribution function is obtained by reconstruction from the leading mo-
ments, as, e.g, using a set of a Gaussian function and its derivatives. An example for light ions has 
been given by Weissmann and Sigmund[126]. As shown in Fig. 32, the distributions peak at 
higher energies far from the surface with a negligible “overhang” to negative depth. At 1 , 
however, the negative depth fraction becomes significant, so that the prediction of the distribu-
tion near the surface becomes doubtful. For the present case, Gaussian functions resulting from 
the moments up to order 2 are already a very good approximation, with only minor corrections 
by the third moment. 

Thus, for practical purposes, the range distributions can be approximated in many cases by 
Gaussian functions with mean values and standard variations taken from transport theory. Cor-
responding predictions can be conveniently obtained again from the SRIM software pack-
age[69], which contains a transport equation module[128] to calculate the mean longitudinal 
projected range as described above and its straggling, and in addition the straggling 

p of the 

lateral range distribution, the mean value of which trivially vanishes (see Fig. 30).  
 

     

 
For the practical situation of broad-beam implantation, the range distribution in direction 

normal to the surface is of interest (see Fig. 30). At normal incidence, it is identical to the longi-
tudinal range distribution as described above. At oblique incidence, the mean range in direction 
of the surface normal incidence can be roughly calculated from the mean longitudinal range ac-
cording to 

 

Fig. 32. Projected range distributions 
from analytical transport theory, for 
hydrogen ions in heavy targets at dif-
ferent energies in the keV range, denot-
ed by the reduced energy according to 
eq. (38). The depth scale is given in 
terms of the reduced length according 
to eq. (53) times the constant of low-
energy electronic stopping in reduced 

units, (−𝑑𝜖 𝑑𝜌⁄ )𝑒 = 𝜅𝑒√𝜀 (see eq. (66)). 
The dotted lines represent Gaussian dis-
tributions resulting from the first two 
moments of the distributions (see text), 
whereas the solid-line distributions in-
clude the third moment and thereby the 
skewness of the profiles. (After 
ref.[126])  
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Similarly, the range straggling is obtained from the longitudinal and lateral straggling as 
 

                        22222
sincos EEE ppp

     (160) 

Eqs. (159) and (160) hold well if the resulting range distribution does not cut the surface signifi-
cantly. 

7.2 Computer Simulation 

Once the basic principles and relations being established by analytical theory, it is obvious that 
any refinements can be better accomplished by computer simulation. For ion ranges as indicated 
above, the analytical theory suffers in particular from a poor description of ion scattering near 
the surface when ion reflection becomes significant. This, e.g, sets a limit to the applicability at 
glancing angles of incidence. Other complications arise, e.g., for the description of ranges in com-
pounds, with non-planar or structured surfaces, or for inhomogeneous bulk materials such as 
layered structures. All such limitations can be overcome when applying computer simulation. In 
addition, the latter can be applied to crystalline materials, and they are more flexible with re-
spect to the model parameters, such as the definition of electronic stopping or of the energy pa-
rameters as described in sect. 6.1.  

                 

Fig. 33. Range and damage distributions for boron ions incident on germanium at normal incidence and 
two different energies, as simulated by TRIM[69] with 20000 ion trajectories. (a,b) 500 eV, calculated in 
the monolayer collision mode. The reflection coefficient is 24%. 11.5 vacancies are produced per incident 
ion. (c,d) 500 keV, calculated in the quick damage production mode. The reflection coefficient is negligible 
(<0.5%). 890 vacancies are produced per incident ion.  

BCA computer simulation can be considered as a direct refinement of analytical theory in the 
sense that both rely on the binary collision approximation (see sect 6.1.3). Whereas analytical 
range theory is exclusively valid for random media, BCA computer simulations can be adjusted 
to treat random, amorphous and crystalline media. For the fast simulation of ion range distribu-
tions in amorphous media, the TRIM code is most widely accepted, being available with the SRIM 
package[47,69]. The range distributions result as the depth distributions of the endpoints of the 
ion trajectories as shown in Fig. 26 (a,c). Fig. 33 shows selected results obtained from TRIM for 
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largely different energies. At low energy of incidence, the range distribution cuts the surface 
with a significant fraction of reflected ions (Fig. 33(a)). In contrast, reflection becomes negligible 
at high energy, and a highly asymmetric distribution is obtained tailing towards the surface (Fig. 
33(b)). 

BCA range simulations are rather fast (the examples of Fig. 33 take a few minutes on a stand-
ard personal computer). Ranges and range distributions obtained from TRIM are generally very 
reliable with a precision of around 5-10% for the mean ranges. There are, however, cases where 
the program uses inaccurate stopping cross sections (see subsection 4. 6.2). In such rare cases, 
deviations from experimental data of several 10% may occur. 

The description of range distributions in crystalline material turns out to be rather complicat-
ed. Even if the ion beam enters a crystal ideally along a channeling direction (see sect. 5), large-
angle scattering will always occur at the heading atoms of the atomic strings or planes, which 
leads into random trajectories and forms a random fraction of the projected range distribution. 
Ions with less close encounters at the surface may enter channeling trajectories with relatively 
large oscillation amplitude, so that the probability of being dechannelled during the first few os-
cillations becomes relatively large. This will add another random fraction which, however, is 
displaced to a larger depth. The remaining channeling fraction may exhibit significantly en-
hanced pathlengths due to reduced stopping. This may, e.g., result in long tails towards the bulk 
and even in double-peak profiles (see, e.g., ref[129].).  

 

 
 
In view of these complications, computer simulation is the only way to reasonably predict 

range distributions in crystalline material. An example is given in Fig. 34(a)[130]. The distribu-
tions predicted by Crystal-TRIM[90] are found to reproduce the experimental data very well 
even down to the low-concentration tails of the profiles. For comparison, the simulated profile in 
the amorphous material is shown. The bombardment along the axial [100] direction results in 
an extreme broadening of the profile with a significantly increased mean range. In order to avoid 
channeling, a tilt angle of ~7° with respect to the low-index direction is commonly used, which is 
sufficiently large compared to the critical angle of channeling (see sect. 5.1) and sufficiently far 
from other low-indexed axial directions. However, even with this tilt and when planar channel-

Fig. 34. Range distributions of As ions 
implanted into monocrystalline Si at 
low ion fluence (a) for different angles 
of incidence, and for increasing fluence 
(b) demonstrating the effect of damage 
buildup (see sect. 10.3). Experimental 
data (symbols) are from secondary ion 
mass spectrometry[131], the corre-
sponding histograms from Crystal-
TRIM[90] BCA computer simulation 
with a special empirical algorithm for 
damage buildup[101]. The data in (a) 
relate to different crystal orientations 
with respect to the direction of the ion 
beam; the simulated profile for amor-
phous Si is included for comparison. 𝜃  
and 𝜑⁡denote the angles of wafer tilt 
and rotation during implantation, re-
spectively. (After ref.[130]) 
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ing is avoided, the profile deviates significantly from the prediction for the amorphous material, 
and depends on the azimuthal rotation of the implanted wafer. A particularly long tail arises at a 
sample rotation angle which opens the {220} plane for channeling.                              

Fig. 35 shows results obtained from crystalline BCA simulations for low-energy hydrogen 
bombardment of Ni[132]. The profile for the amorphous medium is again significantly shallower 
as compared to the crystalline one. Although the ions are implanted at 10° tilt which largely 
avoids axial channeling, both the single-crystalline and the poly-crystalline mode of the simula-
tion (see subsection 6.1.1) yield a double-peak structure for the undamaged material, which 
arises from planar channeling. This is not observed in the experiment (not shown). However, 
when introducing a small amount of interstitial atoms and vacancies into the crystal, the end-of-
range peaks disappear and the profile broadens, and the profile for the polycrystal simulation is 
in excellent agreement with the experimental result. This confirms that the ions partially enter 
channeling trajectories by scattering at interstitial target atoms, which contributes to the broad-
ening of the range distribution. 

             

Molecular dynamics simulations have also been employed for the calculation of ion ranges. As 
stated in sect. 6, they do not require any definition of parameters which are necessary in BCA 
simulations (except for electronic stopping which is introduced in a similar way). Thus, provided 
the chosen interaction potential is sufficiently realistic, they should be generally more reliable, 
at, however, a significantly lower computational speed. In order to reduce computer time, it is 
sufficient to address only the primary collisions in MD range simulations, unless at very low ion 
energies the regime of multiple interaction is entered. Comparisons between MD and BCA[133-
135] simulations for irradiation of Si with different ions at sub-keV to 50 keV energies, and a re-
lated round-robin study of energy distributions after transmission of keV ions through a few 
monolayers of different solids[136] reveal some differences even at energies of several 10 keV. 
However, they do not question the validity of the BCA simulations in this energy regime within 
the expected accuracy (see above). Hobler et al.[135] find at energies around 100 eV good 
agreement between MD simulations and suitable BCA simulations even in the details of the 

Fig. 35. Range distributions of 10 keV 
deuterons in nickel incident at 10° with 
respect to the surface normal, as gener-
ated by MARLOWE[15,82] (version 
10.9) in single-crystalline (a), polycrys-
talline (b) and amorphous (c) mode. 
The single-crystalline distribution has 
been averaged from 10 simulations at 
different azimuthal angles of incidence. 
Solid lines relate to perfect crystals, 
whereas the dashed lines have been ob-
tained for an assumed randomly dis-
tributed Frenkel pair concentration of 
0.5%. (After ref.[132]) 
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three-dimensional deposition contour, as shown in Fig. 36. Partial channeling into [110] direc-
tions is clearly visible. As expected, there is a tendency of increasing deviation towards the low-
est energy of 50 eV, which approaches the validity limit of the BCA simulation. 

 

               

7.3 High-Fluence Ion Implantation 

In the preceding sections, range distributions have been addresses which represent the proba-
bility that an incident ion comes to rest at a certain depth in a given material. For a continuous 
ion beam of fluence  , the volume concentration ic  of the implanted species grows initially ac-

cording to 

                          xfxc Ri ,         (161) 

This holds only for small fluences and if any density changes can be neglected. At large flu-
ence, the simple scaling of eq. (161) would result in excessively high concentration. For many 
materials, the concentration is limited by the takeup ability of the host, such as by stoichiometric 
limits or by a maximum concentration of a gaseous species. This can be accounted for in the 
simple model of "local saturation", which assumes that any atom which is implanted into a re-
gion where the maximum concentration has already been reached, is immediately released from 
the substance. Then, the profile evolution with a maximum concentration max

ic  is given by 
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An example is shown in Fig. 37(a). Additionally, high-fluence implantation profiles are influ-
enced by a number of effects which cannot easily be accounted for in a simple analytical model. 
The presence of the implanted species influences the stopping and scattering of the incident ions 
so that the range profiles may be changed during the implantation. This may lead to a distortion 
of the implantation profiles in addition to the distortion which is caused by the relaxation of the 
host matrix (as, e.g. swelling due to the implanted atoms). Such mechanisms are covered by dy-
namic BCA computer simulation (see subsection 6.1.4). The model of local saturation can be in-

Fig. 36. Logarithmic lateral contour plot 
of the deposition probability of 50 eV 
(a) and 200 eV (b) boron ions at normal 
incidence onto a (100) silicon crystal. 
The point of incidence is the midpoint of 
the upper borderline of each frame. The 
solid and dotted lines show the results 
from MD and BCA simulations, respec-
tively. (After ref.[135])   
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corporated into the simulation, by limiting the maximum concentration of the implanted species. 
A corresponding result from a TRIDYN[93,102,103] calculation is shown in Fig. 37(b). In com-
parison with the simple analytical approach, already the profile at the lowest fluence is broad-
ened due to swelling. Towards the highest fluences, there are additional effects of sputtering 
which will be discussed in sect. 9.4. 

 

             

Fig. 37. Implantation profiles under local saturation, for 100 keV nitrogen implanted into silicon with a 
maximum atomic fraction of 0.571 corresponding to Si3N4. The increasing fluences are 2.51017 cm-2 (solid 
line), 51017 cm-2 (dotted line), 11018 cm-2 (dashed line), 21018 cm-2 (dashed-dotted line) and 41018 cm-2 
(solid line). (a) Simple scaling of the range profile according to eq. (162), with the range profile taken from 
TRIM[69] (version 2000-39). (b) From TRIDYN[93,103] simulations including range broadening and sput-
tering. The nitrogen peak at the surface is due to preferential sputtering (see sect. 9.3). (c) From TRIDYN 
simulations with a simple diffusion model (see text)   

TRIDYN further offers a simplistic algorithm of diffusion in case of local saturation, by which 
excess atoms that are deposited in the saturated regions are transferred to the nearest non-
saturated profile edge rather than being discarded. The result is shown in Fig. 37(c), with con-
siderable additional broadening towards the surface for the highest fluences. The applicability of 
the above models depends critically on the properties of the system being under investigation. 

 

8  Cascades and Spikes 

In the previous chapters, mainly the fate of the ion impinging onto the solid surface has been 
considered. We will now address the response of the target atoms to the ion irradiation. The en-
ergy deposition around the ion trajectory leads to a local increase of the kinetic energy of the 
surrounding target atoms, which may either directly result from nuclear collisions, or indirectly 
from a primary energy transfer to electrons, which then couple to the lattice by electron-phonon 
interaction. 

A schematic classification of the corresponding regimes is shown in Fig. 38. If the energy of 
the incident ion is primarily dissipated by nuclear interaction, a dilute collision cascade may be 
created (Fig. 38(a)), where binary collisions between moving atoms and atoms at rest dominate. 
In this “linear cascade” regime, the overall effect of the cascade results from a linear superposi-
tion of the effects of the individual recoil atoms. Thus, for energies being larger than about 10 eV 
(see subsection 6.1.3), the binary collision approximation can be applied in either analytical col-
lisional theory or BCA computer simulation. In contrast, at sufficiently high energy density de-
posited by nuclear interaction, an ensemble may be created where most collisions take place be-
tween moving atoms (Fig. 38(b)), which results in a quick thermalization at high temperature. 
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Subsequently, this so-called elastic thermal spike cools down by interaction with the surround-
ing material according to the laws of thermal diffusion. Consequently, diffusional models are ap-
plied for the analytical description. However, also MD computer simulation is well suited for this 
regime.  
 

                     
 

Fig. 38. Collision cascade and thermal spike regimes: (a) linear collision cascade; (b) non-linear collision 
cascade and associated elastic thermal spike; (c) inelastic thermal spike induced by high electronic stop-
ping  

It is important to note that also the linear cascade will develop into an elastic thermal spike. 
This thermalization, however, may occur at a mean energy which is below the range of interest, 
if, e.g., phenomena shall be described which appear only above certain energy thresholds – see 
sects. 9 –11).  

At sufficiently high ion energy, the energy is mainly dissipated into electronic collisions which 
initially create a hot local electron gas (Fig. 38(c)). By electron-phonon interaction, this may 
partly transfer its energy to the atomic system. In this so-called inelastic thermal spike, the cou-
pled electron and atomic ensembles dissipate their kinetic energy again according to diffusion 
laws.  

8.1 The Linear Cascade  

Depending on the incident energy and the species of the incident ion and the target atoms, there 
is a wide range of cascade morphologies even in the regime of the linear cascade, as schematical-
ly indicated in Fig. 39. A cascade may be comparatively dilute in the case of light ion incidence 
associated with small primary energy transfers, which may result in a number of small subcas-
cades along the ion trajectory (Fig. 39(a)). Denser subcascades may be formed during high-
energy heavy ion bombardment, when the low nuclear collision cross section allows only a few 
primary collisions with high energy transfer. In these situations, an average cascade volume for 
a single incident ion cannot easily be defined; however, the average over many ion trajectories 
results in a continuously filled average volume. In contrast, for the dense cascade depicted in Fig. 
39(b), which typically occurs with similar ion and target masses in the nuclear stopping regime, 
similar volumes are filled by each incident ion, so that the average cascade volume is essentially 
defined by a single ion event.   

The analytical description of the linear cascade follows similar transport concepts as de-
scribed above for ion ranges (see sect. 7). An elaborate treatment is given in refs.[22-24], from 
which only the main assumptions and results will be reproduced here. During the dissipation of 
the collisional cascade in space and time, subsequent generations of recoils contain increasing 
numbers of moving atoms at decreasing energies, so that low-energy recoils will largely domi-
nate the total number. As these do not remember the original direction of ion incidence, the cas-
cade can be considered as isotropic. Then, the cascade for one incident ion can be described by a 
distribution function F which is defined in such a way that 
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                     rddErEEFrEEdN
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000 ,,,,,,      (163) 

describes the probability to find a cascade atom with a start energy between 0E and 00 dEE   in 

the volume element rd
3 around the position vector r


, for an ion incident at 0r


 in direction 


 

(see ch. 5) and at energy E.  
 

     
 
For brevity, the transport equation governing F is not detailed here. Again, it can be solved for 

an infinite medium by the definition of moments (see eq. (155)). Obviously, F vanishes at cas-
cade atom energies above the energy of ion incidence, i.e. 

 

                EErEEF  00 ;0,,,


     (164) 

As indicated above, high-energy recoils contribute to the cascade distribution function only to 
a minor extent, so that a formal extension of F to infinite energies E0 will imply only a small er-
ror. Doing so for the higher moments ( 0 ) of the distribution function, the space and energy 
variables can be separated resulting in a factorization of the cascade distribution function ac-
cording to 
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where FE, which is denoted as recoil density, represents the distribution of the start energies of 
the cascade atoms. The energy deposition distribution function FD describes the spatial deposi-
tion of kinetic energy within the cascade. For reasons to be addressed in ch. 10, it is often called 
the “damage distribution” function. C is a normalization constant. Eq. (165) implies that the en-
ergy distribution is independent of the position in the cascade, which is obviously an approxima-
tion, as outer zones of the cascade volume contain less energetic recoil atoms than the zone di-
rectly around the ion trajectory. 

Being finally interested in atomic relocations within the cascade, it is appropriate to consider 
only the energy which is dissipated into atomic motion rather than by electronic stopping.  An 
appropriate definition of the corresponding energy distribution function can only include the 
energy transfer from the ion to primary recoils. Otherwise, as any primary recoil distributes its 
energy in subsequent nuclear collisions to higher generations of recoils, the summation of the 
energy transfers in all recoil generations would count energy of the same origin in a manifold 
way. This restriction to primary recoils, however, implies that the ranges of the recoils are small 
compared to the spatial extension of the cascade, which appears to be mostly justified as the 
ranges of the recoil atoms will be mostly significantly smaller than the range of the incident ion. 
Nevertheless, deviations from this rule are expected as, e.g., for similar ion and target masses, in 

Fig. 39. Collision cascade structures re-
sulting from a single incident ion 
(schematic): (a) small subcascades oc-
curing typically at light ion irraditation; 
(b) dense cascade at high nuclear stop-
ping, in particular at similar masses of 
the ion and the target atoms 
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particular for oblique incidence with the corresponding reduction of the projected ion range. 
This latter situation, however, would not be realistically described by the infinite medium ap-
proximation (see ch. 7) anyway. 

The volume integral of the energy distribution function  

                 rdrEFE DD

 3,,      (166) 

yields the fraction  ED of the initial ion energy which is dissipated into atomic motion of the 

cascade atoms (rather than in electronic collisions).  ED  is often denoted as “damage energy”.  

As most cascade atoms move at low energy where electronic stopping is small compared to 
nuclear stopping, the relative fraction   EED is generally close to unity. Quantitative predic-

tions can be obtained from the transport equation 
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which is formally similar to eq. (151) without, however, the dependence on depth but containing 
an additional recoil term. The results of numerical solutions[137] are shown in Fig. 40 for differ-
ent constants of low-energy electronic stopping. For the small recoil energies which dominate 
the linear cascade, 
  

          EED  9.0      (168) 

can be taken as a reasonable approximation. 
 

         

The energy deposition distribution can then be calculated in analogy to the calculation of the 
ion range distribution. Similarly, the spatial distribution of energy being dissipated into electron-
ic collisions can be obtained. A qualitative display of a typical result is shown in Fig. 41[138] for 
an ion which enters the solid surface at an energy below the maximum of electronic stopping, 
where, however, electronic stopping is still largely dominating (see sect. 4.3). The ion is first 
slowed down mainly by electronic collisions with a negligible probability of significant energy 
transfer in nuclear collisions. The electronic energy deposition initially decreases according to 
the decrease of electronic stopping at decreasing ion velocity. After about half the total range, 
nuclear energy transfer becomes significant, and the spatial regime of the collision cascade is en-
tered. Before the ion comes to rest, the electronic energy deposition per unit depth increases 
again due to multiple scattering of the ion and the numerous small contributions from the colli-

Fig. 40.  Fraction of the kinetic energy of 
an ion or a primary recoil which is not 
dissipated into electronic stopping, versus 
the reduced primary energy. The results 
apply to equal ion and target masses.

k

denotes the low-energy electronic stop-

ping constant so that (−𝑑𝜖 𝑑𝜌⁄ )𝑒 = 𝑘𝑒√𝜀 
(see section 4.3.2). (After ref.[137]) 
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sion cascade. The “damage” distribution peaks at lower depth than the range distribution, as the 
nuclear energy transfers become small towards the end of the ion range. 

 

 
 
Again using a suitable transport equation and employing a power-law potential for the nucle-

ar scattering cross section (eq. (47)), the recoil density FE can be calculated analytically if elec-
tronic stopping is neglected. As one may expect, the resulting formula scales with the initial en-
ergy E. Afterwards, the neglect of electronic stopping is heuristically compensated by replacing E  
by  ED , so that the result becomes 
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where s is the power-law exponent and       dd  ln  the derivative of the logarithm of the 

gamma function. Eq. (169) holds for energies EE 0 , and thus describes the vast amount of the 

cascade atoms unless the energy of incidence is extremely low. Towards low energy, the appro-
priate power-law exponent increases to 1s as mentioned in sect. 3.2. For s , the first term 
in eq. (169) equals   2611  , resulting in 
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The recoil density cannot readily be normalized as the normalization integral diverges for 
00 E . However, we recall that the linear cascade regime only applies to recoil energies above a 

certain threshold Eth. The applications of the linear cascade model to be discussed in chs. 9 – 11 
will require the definition of a characteristic threshold energy as well, which can be formally 
used for normalization. If both the total cascade distribution function F and the recoil density FE 
are normalized to one, the combination of eqs. (165), (166) and (170) results in 

Fig. 41. Characteristic three-dimensional 
deposition functions of an ion at normal 
incidence (schematic), displayed as a con-
tour cut (centre of the individual frames), 
and as a projection in the plane of inci-
dence (bottom), and a projection onto the 
plane normal to the direction of incidence 
(right). The distributions of energy dissi-
pated into atomic motion and dissipated 
by electron stopping are often denoted as 
“damage” and “ionization” distributions, 
respectively. (After ref.[138])   
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For the computer simulation of the development of collisional cascades in the linear regime, 

both BCA and MD codes have been used. The example shown in Fig. 42[139] displays the tem-
poral development of collision cascades in copper. Initially, high-energy recoils are generated 
which dominate the early stage of the cascade, from which atoms with lower energy evolve. 
With a time constant of ~50 fs, the cascade develops towards the maximum number of atoms 
moving with a start energy above a few eV. Due to the shorter slowing-down time of the ion, the 
time constant is slightly shorter at the lower ion energy. The decay time constants are between 
50 fs and 100 fs. Except for some deviations in the decay phase, the results from the BCA and MD 
simulations are in good agreement. Although this might be partly attributed to the choice of the 
simulation parameters, it is surprising that the BCA simulation appears to work well down to 
energies of ~1 eV, which is clearly below the expected validity range of the binary collisions ap-
proximation.   

            

8.2 Thermal Spikes 

Thermal spike models describe the temporal and spatial development of a temperature field 
 trT ,  as function of position r and time t which is induced by the energy deposition of the ion. At 

sufficiently high ion mass and/or energy, the ion trajectory can be approximated by a straight 
line, along which energy is deposited in primary collisions according to the stopping force. From 
this, an axially symmetric thermal spike develops for a sufficiently fast ion. Neglecting the sta-
tionary temperature of the solid before ion incidence, the initial balance of energy per unit vol-
ume along the trajectory reads with the mass density  and the specific thermal capacity c 

 

                 0,02  trcTr
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Fig. 42. Development of a collision cas-
cade as function of time after projectile 
incidence, as calculated from MD (sym-
bols) and BCA (lines) computer simula-
tion, for self-irradiation of copper at 250 
eV (a) and 1 keV (b). The results display 
the instantaneous number of recoils with 
a start energy E0 above different threshold 
energies of 1 eV (full triangles), 2 eV (full 
diamonds), 3.5 eV (full squares), 5 eV (full 
circles), 7.5 eV (open triangles), 10 eV 
(upright crosses), 20 eV (diagonal cross-
es), 30 eV (open diamonds), 50 eV (open 
squares) and 100 eV (open circles). (After 
ref.[139]) 
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where  r2  denotes the two-dimensional delta function.  

The radial dissipation of energy is described by the equation of heat conduction in cylindrical 
geometry, 
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where c  denotes the thermal diffusivity with the thermal conductivity . If the thermal 

diffusivity is independent on temperature, the solution is with the initial condition of eq. (172) 
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8.2.1 Elastic Thermal Spike 

For the consistent treatment of the elastic thermal spike, the thermal diffusivity of a gas of hot 
atoms can be described in terms of atomic collisions as addressed in ch. 2, which results 
in[140,141]   
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with a constant 45C  nm-2. Further, applying the Dulong-Petit rule 223 mkc  , the solution 

of (173) becomes with the abbreviation nCmk   2  [141] 
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if the expression in angular brackets is positive, and 0 otherwise. 
 

       

Fig. 43 shows the result for 100 keV xenon incident on copper. At these conditions, nuclear 
stopping clearly dominates (by a factor of more than 10 compared to electronic stopping; the 
latter is not taken into account). The thermal spike expands in radial direction from the ion tra-
jectory. At a radius of up to 5 nm, transient temperatures above the boiling point of copper are 

Fig. 43. Development of temperature 
in an elastic thermal spike at different 
radial distance r from the centre of the 
trajectory of a single xenon ion in cop-
per at an energy of 100 keV, as calcu-
lated using eq. (176). The thin horizon-
tal lines indicate the melting and 
boiling points of copper, respectively, 
which are roughly 1060 K and 2540 K 
above room temperature, respectively 
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reached, whereas at 10 nm the temperature peaks close to the melting point. The relation to the 
equilibrium phase transition temperatures, however, is rather questionable in view of the ex-
tremely short transients. At the radius of 3 nm, the peak temperature is close to 1 eV. However, 
this radius is close to the mean radius of the primary nuclear collision zone, which can be esti-
mated from BCA computer simulation. Thus, the thermal dissipation model becomes increasing-
ly questionable towards lower radii. At these small radii, also the time scale imposes restrictions 
to the validity of the model, as times close to the typical duration of thermal lattice vibrations 
(10-13…10-12 s) are not meaningful in terms of heat propagation. Further, times below ~10-12 s 
conflict with the typical slowing-down time of the ions of 10-13…10-12 s as well, as the initial en-
ergy distribution and the development of the spike are no longer separated in contrast to the as-
sumptions of the model. Nevertheless, some confidence can be attributed to the result at inter-
mediate time at least close to the surface, where any deviation of the cascade morphology from 
the idealized cylindrical geometry and the implicit neglect of the energy loss along the ion trajec-
tory play only a minor role. 

8.2.2 Inelastic Thermal Spike 

In the regime of very high electronic stopping, i.e, for heavy ions at energies around the stopping 
force maximum, nuclear stopping and thereby the primary energy transfer from the ion to the 
atomic lattice can be neglected. Multiple ionization along the ion track (see Fig. 38(c)) and sub-
sequent Auger cascades may lead to a density of high-energy electrons which is sufficiently high 
for thermalization in the electronic system. As this occurs on a time scale of about 10-15 s, the ini-
tial energy deposition is well decoupled from the subsequent transfer of energy to the lattice at-
oms by electron-phonon interaction and the final dissipation of the atomic motion. This is the 
basis of the inelastic thermal spike model developed by Toulemonde et al.[142,143] which will 
be described in the following.  

As the ion trajectories are straight in this regime of negligible nuclear scattering, the cylindri-
cal spike geometry as described in the previous section is appropriate. The coupled set of ther-
mal transport equations for the electrons (with the index e) and the lattice atoms (with the index 
a) is written in analogy to eq. (173) as 
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Here, g describes the electron-phonon coupling and Qe the heat source per unit length, which is 
supplied to the electronic subsystem. For the latter, a Gaussian pulse in time is assumed accord-
ing to 
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where C denotes a normalization constant such that the integration over the radial area and the 

time yields the electronic stopping cross section. The mean time st 15

0 10   describes the aver-

age time within which the ballistic electrons created by ion-electron collisions deposit their en-

ergy. The standard deviation t  of the pulse represents the thermal equilibration time of the 

electrons[144]. The radial distribution function  rEFe ,  describes the energy density transferred 

from the ion to the ballistic electrons, and is taken from a model which has been developed for 
particle radiation therapy[145]. The thermophysical constants of eq. (177) are taken from 
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standard free-electron models. The electron-phonon coupling constant g can be replaced by the 

mean diffusional free pathlength gee   , which remains as a free parameter. The lattice 

thermophysical constants of eq. (178) are taken from known experimental data. The coupled 
equation system is then solved numerically. 

     

A result for the irradiation of  -SiO2 with swift heavy ions is shown in Fig. 44[142]. The latent 
heats of melting and evaporation have been taken into account for the calculation of the local lat-
tice temperature Ta versus the time after ion incidence. The temperatures calculated at times be-
low ~10-13 s must be interpreted as some average kinetic energy in the spike, as thermalization 
in the lattice does not occur below the characteristic period of lattice vibrations. The electron 

mean diffusional free pathlength has been chosen to 4e nm, which fits experimental data of 

amorphization track radii assuming that amorphization occurs at temperature above the melt-
ing temperature.  

 
 

9   Sputtering 

As schematically indicated in Fig. 38, atoms of the irradiated solid may be relocated from their 
original sites due to the kinetic energy gained in primary or secondary elastic knock-on process-
es, or in an elastic or inelastic thermal spike. This may result in an ejection from the surface if the 
energy of the respective atom is sufficiently large to overcome the binding energy at the surface. 
This is known as sputtering[27-30,146].  

9.1 Linear Cascade Sputtering 

9.1.1 Analytical Treatment 

The analytical theory of the linear cascade (see sect. 8.1) has been rigorously applied to sputter-
ing by Sigmund[20,147]. We recall that the analytical theory assumes an infinite medium with 

Fig. 44. Development of temperature 
in an inelastic thermal spike at differ-
ent radial distance r around the trajec-
tory of a single ion in -quartz at a 

stopping force of 22 keV/nm, accord-
ing to eqs. (177) and (178) for a mean 
electron diffusional pathlength 𝜇𝑒  = 4 
nm and an initial temperature of 300 K. 
The thin horizontal lines indicate the 
melting and boiling points of 1972 K 
and 3223 K, respectively. (After 
ref.[142])  
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an isotropic angular distribution of the cascade atoms. For the treatment of sputtering, the sur-
face is introduced a posteriori, which induces anisotropy. In addition, as it will be detailed below, 
the probability that an atom is sputtered depends on the ejection angle. Therefore, the isotropic 
distribution over the direction of motion 0


of the cascade atoms is included in the cascade dis-

tribution function (see eq. (171)) which now reads 
 

     
 

2

0

300

,,

4

6
,,,,

E

rEF
rEEF D


 


      (180) 

The differential number of cascade atoms, which move at a start energy E0 into the solid angle

0d in direction 0


 into the halfspace through an arbitrary plane f


 in the cascade volume (see 

Fig. 45), is then given by  
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where x denotes the coordinate normal to the plane.  
 

                   

The area integral of FD yields the 1-dimensional distribution of deposited energy as function of 
depth 
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Depths larger than an escape depth at given energy,  0Ex , do not contribute to sputtering. 

With the escape depth being sufficiently small, fD can be assumed to be constant and is taken at 

the position of the plane, x = 0. Then, with the recoil directional angle 0  being defined by 

fdfd


 00cos  , the volume integration of eq. (180) yields the double-differential sputter 

yield, which represents the number of atoms per incident ion, energy interval and solid angle el-
ement which arrive at the plane, according to 
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The escape depth can be estimated from the stopping force as  .00 dxdEEx   (It should be 

noted that this can also be derived from a more rigorous treatment of the stationary recoil fluxes 
due to an incident beam[147].) Further, in consistency with the approximation for the recoil 

Fig. 45. Collision cascade (schematically 
indicated by the spherical contour) initial-
ized by an ion at energy E and direction 𝜂 
with an angle 𝜃 with respect to the surface 
normal, and a cascade atom transmitted 
through a plane at x = 0, with the corre-
sponding characteristics 𝐸0, 𝜂0 and 𝜃0 
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density, eq. (170), a power-law approximation with s  is applied for the stopping cross sec-
tion of the low-energy recoils (see eq. (57)), which results in 
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where 240   represents a constant and 0219.0a nm an appropriate universal screening radi-

us. The damage function can be replaced by the nuclear stopping force of the incident ion, taking 
into account the projection onto the surface normal direction, i.e.   cos

nD dxdEf   where the 

directional vector 


 has been replaced by the angle of incidence in view of the azimuthal sym-

metry in the random medium. 
 

     

Identifying now the artificially inserted plane with a real surface, a planar surface binding 
model is applied with a surface binding energy Us, which, for monoatomic materials, is identified 
with the heat of sublimation, which typically lies between ~2 and ~8 eV. This implies a refrac-
tion of the trajectory of any transmitted atom (see Fig. 46) with momentum conservation paral-
lel to the surface and total energy conservation, described by 
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where E1 and 1  denote the energy and angle of the transmitted atom. Then, transformation of 

eq. (183) according to eq. (185) yields the energy-angle distribution of the sputtered atoms 
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which reproduces the Thompson[148] energy distribution of the sputtered atoms, 
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which is shown in Fig. 47. Ef is independent of the species and the energy of the incident ion. As 

shown by differentiation, it peaks at an energy 2max

1 sUE  . The mean energy of the sputtered 

atoms, however, is significantly higher. By averaging over an energy range extending to the en-
ergy of incidence, an upper estimate can be obtained as 
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which yields a mean energy of  ~30 eV at an incident energy of 1 keV and a surface binding en-
ergy of 4 eV. 

Fig. 46. Transmission (a) and backreflection (b) at a 
planar surface threshold for small and large subsur-
face recoil propagation angles 𝜃0 with respect to the 
surface normal, respectively. In (a), 𝑣0 and 𝑣1 de-
note the recoil velocities before and after transmis-
sion, respectively, and 𝜃1 the angle of emission   
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The sputtering yield, i.e. the number of sputtered atoms per incident ion, then results from in-
tegration of eq. (186) as 
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The energy integration can be extended to infinity with only a minor error, as the integrand 
steeply decreases at increasing sUE 1 . 

     We recall that the transport theory treatment is valid for an isotropic cascade evolution in an 
infinite medium with an internally starting ion. For large incident ion mass, the real cascade will 
mainly develop in forward direction, so that the theory overestimates the sputtering yield, 
whereas light ion bombardment increases the probability of momentum reversal. Still, the yield 
may be overestimated as the theory allows multiple transmissions of the recoil trajectories 
through the surface, similar to the range theory as described in sect. 7.1. Therefore, a correction 
factor  is applied, the theoretical calculation of which, however, is complicated and only suc-
cessful for high ion-to-target mass ratios. Instead, a numerical fit obtained from comparison to 
experimental results is employed, which is shown in Fig. 48. Then, the final formula reads 
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It should be noted that the   1
cos


 dependence roughly holds at angles of incidence up to 

60…70°. At larger angles, the isotropic cascade approximation becomes increasing doubtful, and 
ion reflection causes a decrease of the sputtering yield. 

                

Fig. 47. Thompson energy distribution of 
sputtered atoms according to eq. (187). 
The dashed vertical line indicates the po-
sition of the maximum at 𝐸1 = 𝑈𝑠 2⁄  

 

Fig. 48.  Linear-cascade sputtering 
correction factor 𝛼 (see eq. (190)), 
versus the target-to-ion mass ratio  
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An early comparison to experimental data is shown in Fig. 49 for different rare gases incident 
on copper[20]. Very good agreement is found between the experimental data and the prediction 
of eq. (190), except for the highest energy densities around the nuclear stopping power maxi-
mum for the heaviest projectile (see sect. 9.2). 

 

                      

Fig. 49. (a-d) Sputtering yields vs. ion energy, for different rare gas ions onto Cu at normal incidence. The 
predictions of eq. (190) (solid lines) are compared to various experimental data sets. The dashed lines re-
sult from a low-energy approximation of nuclear stopping. (After ref.[20]; for the experimental data, see 
references therein)  

As a further shortcoming of the above linear cascade theory of sputtering, the existence of a 
threshold incident energy has been disregarded. Sputtering requires a minimum energy transfer 
to a surface atom, and thus a minimum energy of the cascade atoms. This is particularly im-
portant for light incident ions associated with small energy transfers to the target atoms. For 
this, a simple mechanism is the backscattering of the ion at a subsurface bulk atom with only a 
small energy transfer due to the poor mass fit, and a subsequent collision with a surface atom 
which is then ejected. Assuming a backscattering angle close to 180° and a central collision with 

the surface atom, the latter receives an energy  EE   10 , so that the sputtering process re-

quires a minimum incident ion energy 
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However, the ion could also be backscattered by two subsequent collisions at about 90°, which 
would result in a larger final energy at the surface compared to one 180o collision if electronic 
energy loss is neglected, or by a series of small-angle scattering events with even higher final en-
ergy. The latter, however, becomes increasingly improbable, and might also be influenced by 
significant electronic energy loss. Thus, any well-defined threshold energy of sputtering cannot 
readily be given. Semiempirical formulas correcting the sputtering yield have been proposed to 
include threshold effects, partly based on fits to experimental results, such as the one by 
Bohdansky[149] (for normal incidence) 
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with the correction function 
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and a threshold energy which, in comparison to eq. (191), is formally extended to all ion-target 
combinations according to 
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Fig. 50 demonstrates the effect of the sputtering threshold on the prediction of the sputtering 
yield. Below a few 100 eV, there is a pronounced difference from the result of eq. (190). The 
yield essentially vanishes at around 30 eV, which is almost one order of magnitude above the 
surface binding energy. 

 

       

9.1.2 Computer Simulation 

It is straightforward to apply BCA computer simulation (see sect. 6.1) to linear-cascade sputter-
ing by means of codes which trace the entire collision cascade. Mostly the planar surface binding 
model (eq. (185)) is employed to describe the transmission of recoil atoms through the surface, 
or their back-reflection into the bulk (see Fig. 46). Thus, the surface binding energy 𝑈𝑠 enters the 
simulation as an additional energy parameter. However, for elemental materials, this does not 
introduce additional uncertainties when inserting the heats of sublimation. (The choice of the 
surface binding energy for alloys and compounds will be described in sect. 9.3.) A standard sput-
tering version for amorphous materials is TRIM.SP[92,85]  which is based on early TRIM[85].   

Broad data sets of energy-dependent sputtering yields have been created using BCA simula-
tion for amorphous materials[151,152]. Recently, Eckstein[150] has compiled energy-
dependent sputter yields at normal incidence, making use of a universal analytical fit formula 
applied to the computer generated data. The results, which span several decades as function of 
the ion energy for each ion-target combination, are mostly in reasonable agreement with exper-
imental data where available, although there is some tendency that the experimental obeserva-
tion are underestimated. However, the experimental data may suffer from systematic errors, as, 
e.g., surface roughening during bombardment. On the other hand, there are uncertainties in the 
BCA simulations which are related to the choice of the parameters (see section 6.1.2), by which 
the obtained sputtering yields may vary by up to about 30%. 

Fig. 50. Sputtering yield vs. ion energy for 
nitrogen incident on iron, from linear cas-
cade theory (eq. (190), solid line), linear 
cascade theory including threshold energy 
correction according to eqs. (192)-(194) 
(dashed line), the fit data collection by 
Eckstein[150] based on BCA computer 
simulation (thin dotted line), and from 
specific BCA simulations using the 2011 
versions of TRIM[69] (dots) and 
TRIDYN[103] (triangles)  
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Also Fig. 50 confirms that sputter yield predictions by BCA computer simulation have to be 
taken with some care. For the chosen example of nitrogen incident on iron, the fit curve by Eck-
stein[150] largely coincides with the analytical prediction, except at low energy where threshold 
effects become important. In comparison, TRIM[69] with standard parameters overestimates 
the yield near the maximum by a factor of almost two, which is also found for other ion-target 
combinations. Thus, standard TRIM is not recommended for the generation of sputtering data. 
The data calculated by TRIDYN[103] in static mode agree with the analytical predictions within 
the expected accuracy, but show a shift of the maximum yield to lower energy. 

At the first glance, the success the binary collision approximation, which is the basis of both 
analytical theory and BCA computer simulation, appears to be surprising, as the collision cas-
cades are treated down to energies of a few eV, which is the magnitude of the surface binding 
energy. This is clearly below the expected range of validity of the binary collision approximation 
(see section 6.1.3). However, the mean energy of the sputtered atoms is in the order of some 10 
eV as stated above. The mean energy of the contributing cascade atoms is even somewhat high-
er, thus apparently still being consistent with the lower validity limit of the binary collision ap-
proximation. 

In this view, molecular dynamics simulations with their high computational efforts are not 
expected to be an efficient tool for the calculation of linear cascade sputtering yields, as far the 
sputtering of single atoms is concerned. Nevertheless, there are specific aspects where MD simu-
lations (see refs. [154,155] and references therein) are helpful and partly indispensable. For ex-
ample, the characteristic depth of origin of sputtered atoms has been established using MD 
simulation (see, e.g., refs.[156,157]). The vast amount of sputtered atoms (~90%) results from 
the two top atomic layers.  

The angular distributions of atoms sputtered from single crystals are known to show charac-
teristic patterns[158], which depend on the details of the recoil collisions near the surface. Thus, 
a detailed interaction potential as used in MD simulations is helpful to simulate this phenome-
non. An example is given in Fig. 51[153]. In addition, it is demonstrated that the MD simulation 
enables the description of cluster emission, which is out of the scope of binary collision simula-
tions. A significant difference of the ejection patterns for sputtered monomers and dimers is 
found. 

                 

Fig. 51. Angular ejection patterns of atoms (a) and dimer clusters (b) sputtered from a Cu(111) surface 
under with 1 keV Ar bombardment, as obtained from molecular dynamics computer simulation. Mono-
mers are preferentially emitted in <110> direction and, with weaker intensity, in <100> direction, where-
as dimers are preferentially emitted only in <110> direction. 𝜃 and 𝜙 denote the polar and azimuthal an-
gles of ejection, respectively. (After ref.[153]) 
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9.2 Thermal Spike Sputtering   

As shown above, reliable theoretical tools are available for the sputtering from the linear cas-
cade. In contrast, there is comparably little information on thermal spike sputtering both theo-
retically and experimentally. In the thermal spike picture, sputtering is described by evaporation 
of atoms from the surface. According to Maxwell-Boltzmann statistics, the flux of evaporated at-
oms at a given temperature T is given by 
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The thermal sputtering yield from a cylindrical thermal spike is then given by the integration 
over the surface area and over time according to  
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Linear cascade sputtering and thermal spike sputtering can be regarded as being essentially 
independent, as linear cascade sputtering mainly results from fast recoils in the early phase of 
cascade development, whereas the elastic thermal spike develops at a later stage. Thus, the 
yields can be linearly superimposed to obtain the total yield 

                          
th

ss

tot

s YYY        (197) 

For the simplest treatment of an elastic thermal spike with instantaneous initial energy dissi-
pation along an ideal line (see sect. 8.2), the temperature of eq. (174) can be inserted into eq. 
(196). Then, the resulting sputtering would scale with the square of the nuclear stopping force, 
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s dxdEY  . More adequately, eq. (176) is employed. As shown by Sigmund and 

Claussen[141], the resulting yield scales approximately quadratically with the nuclear stopping 
force as well, and is thereby proportional to the square of the linear cascade yield. Their rough 
quantitatitive result is 
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However, this is very sensitive to the initial core temperature in the spike. If the initially depos-
ited energy is more realistically distributed across a cylinder of finite radius (which, however, is 
difficult to define), the thermal sputtering yield drops significantly. Thus, eq. (198) must be con-
sidered as an upper estimate. Nevertheless, it indicates that a significant contribution of elastic 
thermal spike sputtering can only be expected if 𝑌𝑠 ≳ 10. This is in semiquantitative agreement 
with the observed enhancement of the heavy-ion sputtering yield at energies where the linear 
cascade yield is maximum (see Fig. 49(d)), so that this phenomenon is taken as an evidence for 
elastic thermal spike sputtering. 

Further evidence for elastic thermal spike sputtering has been concluded from irradiations 
with heavy oligomer cluster ions[159-161]. At identical energy per incident atom, the sputtering 
yield per atom is significantly higher than for the respective monomer ions. E.g., a nonlinear en-
hancement by a factor of more than 10 has been reported[161] for Au5 cluster ions versus Au 
monomer ions incident on Au.  

Any effect of inelastic thermal spikes (see subsection 8.2.2) on sputtering is expected to be-
come most evident for heavy ions at energies around the maximum of electronic stopping, 
where the nuclear stopping and thereby the collisional sputtering yield become extremely small. 
As recently reviewed by Assmann[162], the experimental data base is rather scarce. Neverthe-
less, sputtering yields are established which clearly exceed the linear cascade yields. The effect 
depends strongly on the type of materials (metals versus, e.g., oxides), which, in the picture of a 
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thermal spike, can partly be attributed to the widely different thermophysical properties. Gener-
ally, the yields depend on the charge state of the incident ions which is indicative of an electronic 
mechanism, as the relaxation to the equilibrium charge state (see subsection 4.3.1) results in an 
additional electronic energy deposition close to the surface. 

An example for a metal is given in Fig. 52 for gold ions at energies slightly below the maxi-
mum of the electronic stopping force[162,163]. Although electronic stopping largely overweighs 
nuclear stopping (by a factor of about 300 in the present range of energies), the experimentally 
data rather follow the energy dependence of nuclear stopping, although being larger in magni-
tude by a factor of about 5. For comparison, the authors performed pure inelastic thermal spike 
calculations according to eqs. (177) and (178), with the resulting time-dependent temperature 
fields inserted into eq. (196). In addition, also the nuclear energy deposition was included by an 
additional source term in eq. (178), so that a combination of an inelastic and elastic thermal 
spike is being modeled. Whereas the thermal spike results alone do not give any satisfactory fit 
to the data, the superposition of linear cascade sputtering and inelastic plus elastic thermal spike 
sputtering only slightly underestimates the data and yields a similar energy dependence. 

 

                         

Fig. 52. Swift heavy ion sputtering for gold incident on titanium at an angle of 72° with respect to the sur-
face normal and with the equilibrium charge state. The experimental data[162,163] are compared to the 
linear cascade prediction (LC - eq. (190)) and thermal spike calculation results[142,143] (eqs. (177), 
(178)) for purely electronic energy deposition (TS(e)) and including nuclear energy deposition (TS(e+n)), 
as well as to the sum of the LC and TS(e+n) predictions. The electronic stopping cross section as obtained 
from SRIM2011[69] is shown for comparison. (The TS(e) and TS(e+n) lines have been interpolated from 
the original data[162] which had only been evaluated at the experimental ion energies.)   

Large sputtering yields of up to about 1000 are obtained from oxides in the regime of high 
electronic sputtering[164,165]. This is qualitatively consistent with the thermal spike model in 
view to the low thermal conductivity as compared to metals. Fig. 53 shows an example for 
SiO2[162]. Good fits are obtained here with the inelastic thermal spike model, with the electron 
mean free diffusional pathlength as a free parameter. The latter is significantly lower in the 
amorphous material, which results in an increased confinement of the thermal spike. 

Sputtering yields in the nuclear stopping regime which significantly exceed the predictions 
from linear cascade theory have been reported, e.g., for frozen gases[166]. In the electronic 
stopping regime, excessively high sputtering yields with values close to 104 have been found for 
ionic crystals such as LiF, which can not be explained by an inelastic thermal spike[163,164]. 
These phenomena have been partly attributed to a contribution of bulk excitons and/or defect 
migration to sputtering, but a clear general picture has not been consolidated. 

For the computer simulation of sputtering in the thermal spike regime, MD simulations are 
the appropriate tool (see, e.g., ref.[155] and references therein). However, quantitative predic-
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tions remain difficult. Due to large computational effort, most of the simulations have been per-
formed with simple interaction potentials (such as the Lennard-Jones potential, eq. (134)), so 
that the results might partly not be realistic. For the same reason, only a few single events of 
spike development after ion incidence can typically be simulated, so that it becomes difficult to 
acquire statistics. 

  

       

However, also the modeling of single hit events may provide interesting new insights. This is 
demonstrated in Fig. 54[167] for the formation of a sputter crater under heavy-ion bombard-
ment, as obtained from molecular dynamics simulation with an EAM potential (see subsection 
6.2.2). The crater is accompanied by a rim with several piled-up atomic layers. Simultaneously, 
the formation of adatoms on the surface is modeled. At the energy of 100 keV, the simulated 
sputter yield is enhanced by a factor of 10 compared to the linear cascade prediction (by an ear-
lier version of TRIM[69]), which confirms the role of an elastic thermal spike. Sputter craters 
have been found at energies down to 5 keV, where, within statistics, the sputter yield is similar 
to the prediction by BCA computer simulation. Quantitatively, the average observed yield of ~15 
at 5 keV would also be consistent with a contribution of thermal spike sputtering according to 
eqs. (197) and (198). This quantitative comparison of analytical and simulated thermal spike 
yields, however, remains vague in view of the systematic and statistical uncertainties.   

                                                                                   

Moreover, the observation of the sputter crater renders the analytical models of thermal spike 
sputtering questionable, as the sputtering might result from some collective ejection of the ma-
terial rather than from evaporation at the surface only, which is implied in eq. (196).   

Fig. 53. Electronic sputtering of vitreous 
silica (full symbols) and crystalline quartz 
(open circles) by different swift heavy 
ions. The sputtering yield is shown as 
function of the electronic stopping force. 
The lines show the result of inelastic 
thermal spike calculations with the mean 
electron diffusion pathlength as free pa-
rameter. (After ref.[162])   

 

Fig. 54.  Sputter crater formed by 100 keV 
Xe incident on Au(001) at a polar angle of 
incidence of 25° with respect to the sur-
face normal, and an azimuthal angle of 25° 
with respect to the [100] direction, as ob-
tained for molecular dynamics simulation. 
The angles have been chosen to avoid 
channeling. (After ref.[167]) 
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Molecular dynamics simulations of inelastic thermal spikes (see, e.g. ref.[168] ) suffer from 
the uncertainty of the electron mean free diffusional pathlength, as do the predictions from the 
analytical thermal spike model (see above).                                           

9.3 Preferential Sputtering of Compounds 

The sputtering yield from a multicomponent system is composed from the partial yields of the 
individual components isY ,  according to 

                   
i

iss YY ,      (199) 

However, the partial yields are in general not proportional to the respective surface atomic frac-
tions, which is known as preferential sputtering[169-171]. Preferential sputtering may arise 
from different surface binding energies of the components. In the picture of the linear cascade, it 
may also depend on the collisional development of the cascade, in particular if the components 
exhibit widely different atomic masses. The energy transfer in primary collisions between the 
incident ions and the target atoms is most efficient for target masses being close to the ion mass. 
Also during the subsequent evolution of the cascade, the energy transfer is most efficient be-
tween partners of the same species, so that cascades of the different species can, very roughly, 
be considered to develop independently. Consequently, even at similar surface binding energies, 
a preferential sputtering of the species with best mass fit to the ion is expected. This, however, 
may additionally be influenced by the energy loss and the scattering of the cascade atoms. 

This complicated interaction of different collisional processes is combined with the dynamic 
alteration of the surface composition at increasing ion fluence, which naturally results from 
preferential sputtering. Thereby, any analytical description of preferential sputtering phenome-
na is subjected to strong limitations.  

The partial sputtering yields can be written as 

                 icisis YqY ,,,       (200) 

where isq ,  and icY ,  denote the atomic fractions at the surface and the so-called “component” 

yields, respectively. Applying eq. (200) to only one component i ( 1, isq ) shows that the compo-

nent yields are identical to the sputtering yields of the pure components. The definition of pref-
erential sputtering implies that the component yield of at least one component is different from 
the others. As this is the regular situation, preferential sputtering must be considered as a stand-
ard phenomenon during the irradiation of multicomponent materials. 

 

               

Fig. 55. Stationary state due to preferential 
sputtering in an initially homogeneous binary 
compound. Component B is assumed to be pref-
erentially sputtered, by which the surface is en-
riched in A. Prolonged irradiation moves the al-
tered layer further into the bulk with a 
stationary depth profile in the limit of large flu-
ence. The thin dotted lines indicate the initially 
homogeneous composition before irradiation 
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As stated above, preferential sputtering alters the surface composition at increasing ion flu-
ence. For simplicity, an initially homogeneous two-component material is assumed which con-
tains the components A and B, with B being sputtered preferentially. The surface concentration 
of A, and thereby the partial sputtering yield of A, will then increase, which counteracts the ini-
tially enhanced sputtering of B, so that the system develops towards a stationary state (see Fig. 
55). In the stationary state (upper index  ), mass conservation requires that the relative 
amounts of sputtered species reflect the bulk composition of the material with the atomic frac-
tions iq , i.e. 
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With eq. (200) written for both the initial (upper index 0) and the stationary state, this yields 
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so that the component sputter yields or the initial partial sputtering yields determine the final 
surface composition. 

 

          

An example is given in Fig. 56 for the preferential sputtering of Ta2O5 by helium 
ions[172,173]. The primary energy transfer to oxygen atoms is larger than to tantalum atoms. In 
addition, for the low-energy light-ion bombardment, the threshold effect becomes important in 
particular for tantalum, which additionally favors the sputtering of oxygen. (Eq. (191) yields a 
helium threshold energy of about 100 eV for the sputtering of pure tantalum.) Thus, tantalum is 
strongly enriched at the surface. For a wide range of angles of incidence, the experimental values 
are in good agreement with eq. (202) (not shown). However, the pronounced dependence of the 
stationary surface composition on the angle of incidence, as seen in Fig. 56, is surprising, since a 

similar 1cos  dependence (see eq. (190)) of the partial sputtering yields would be naively ex-
pected for both components. 

Fig. 56. Stationary surface composition in 
the limit of large ion fluence for low-
energy He irradiation of Ta2O5. Solid 
symbols are from experimental data, 
open squares from TRIDYN[93] simula-
tion. The line is drawn to guide the eye. 
(After ref.[173]) 
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Dynamic BCA computer simulation (see subsection 6.1.4) can be considered as an ideal tool 
for the treatment of preferential sputtering, if collisional phenomena dominate and the influence 
of any physicochemical effects such as thermal diffusion or surface segregation is negligible. 
However, the definition of the surface binding energies of the individual components requires 
special consideration [31,92,93]. A dependence of the surface binding energies of the individual 

components, isU , , on the surface composition (and thereby on the ion fluence) cannot be exclud-

ed. The influence of the surroundings of each sputtered atom can be approximated in a regular 
solution ansatz according to  

 

         
j

jsijis qUU ,,      (203) 

Simple recipes for the definition of the matrix elements ijU can be based on thermophysical data 

as described in ref.[102]. For components which form a solid in the pure state, the diagonal ele-
ments are obviously equal to the surface binding energies of the pure substances, i.e. iii HU  , 

where iH  denotes the sublimation enthalpy (see subsection 9.1.1). For simplicity restricting to 

a two-component solid-solid compound mnBA , conservation of energy requires for the stoichio-

metric compound 
 

              fBABsAs HHmHnmUnU  ,,    (204) 

where fH  denotes the enthalpy of fusion of the compound. The non-diagonal matrix elements 

describe the interaction between atom A and B, and are therefore assumed to be symmetric. 
Then, applying eq. (203) to the stoichiometric compound with  mnnq As ,  and 

 mnmq Bs , , the combination yields 
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For a solid-gas compound consisting of a solid constituent A and a diatomic gas constituent B, 
the analogue to eq. (204) reads 
  

        mfABsAs H
m

HHnmUnU 
2

,,     (206) 

with mH  denoting the molecular binding energy of the gas. As the gaseous atoms will normally 

be surrounded by the solid component and only weakly interact which each other, one may as-

sume 0BBU . This results in  

 

                mfABAAB H
n

mn
H

nm

mn
HUU 







422

1
  (207) 

For specific compounds, however, more specific data for the surface binding energies are availa-
ble (see, e.g., ref.[174]).  

The result of TRIDYN[93,103] dynamic BCA computer simulations is also included Fig. 56, 
with excellent agreement with the experimental results. This suggests that the atomic transport, 
which establishes the composition profile in the altered subsurface layer, is of purely collisional 
nature. A closer inspection of the collisional mechanisms by means of the computer simulation 
reveals that the observed angular dependence of the stationary surface composition is due to de-
tails of the collision sequences which cause sputtering. The heavy tantalum atoms are little influ-
enced by the presence of oxygen. In contrast, oxygen atoms may be significantly scattered by 
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tantalum, which results in a weaker dependence of the partial oxygen yield on the angle of inci-
dence. This demonstrates the ability of computer simulations to understand detailed and com-
plicated mechanisms which would not become clear otherwise. 

9.4 Sputter-controlled Implantation Profiles 

Implantation profiles at high fluence may be significantly influenced by sputtering. As schemati-
cally indicated in Fig. 57, the deposition profile of previously implanted atoms is shifted towards 
the surface at increasing ion fluence. Simultaneously, additional ions are implanted at the deep 
edge of the profile, which causes a profile broadening. Finally, when a surface layer has been 
sputtered off which is thick compared to the projected range, a stationary profile is established 
with a high concentration at the surface. Then, the ingoing ion flux becomes balanced by the par-
tial sputtered flux of the implanted species. 

For simplicity, let us assume a Gaussian range distribution according to 
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where x represents the depth in the system of the moving surface. At a given time t, the depth-
dependent atomic density of the implant,  txni , , result from the superposition of the previous 

range distributions. If the surface is continuously eroded by sputtering with a velocity s , only 

certain large-depth fractions from the previous implantation still contribute. This is expressed 
by the accumulation integral  
  

         
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,      (209) 

where ij  denotes the ion flux. By variable transformation this results in  

 

Fig. 57. Schematic representation of 
the formation of sputter-controlled 
implantation profiles with an im-
plant concentration 𝑐𝑖(𝑥) versus 
depth 𝑥. With the surface moving 
with a velocity 𝑣𝑠 due to sputtering, 
the initial low-fluence profiles which 
reflect the range distribution (a) are 
gradually broadened (b) and ap-
proach a stationary state (c) when 
the sputtered depth becomes larger 
than the mean projected range 𝑅̅𝑝. 𝑥′ 

denotes the depth axis with respect 
to the original position of the surface  
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into which eq. (208) is inserted for integration. If any swelling due to the implanted atoms, as 
well as their contribution to sputtering, is neglected, the removal rate in terms of host areal den-
sity is 

   sis Yjn         (211) 

by definition of the sputtering yield, where n denotes the atomic density of the host. Then, the in-
tegration results in 
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where  erf  denotes the Gaussian error function. Towards infinite time, the stationary implan-

tation profile becomes 
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which, for a sufficiently narrow range distribution with pp R , results in the stationary sur-

face concentration 
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so that the relative surface concentration is roughly given by the inverse of the sputtering yield.  
     In the above simplified treatment, it has been implicitly assumed that the sputtering yield is 
independent of time. In reality, it might be significantly influenced by the presence of the im-
planted species. Thus, eqs. (213) and (214) are strictly valid only for small concentrations of the 
implant. This requires a sputtering yield which is significantly larger than one.  

Without the above simplifications, sputter-controlled implantation profiles can be predicted 
from dynamic BCA simulations. Fig. 58 shows the retained amount and a sequence of implanta-
tion profiles for sulfur ions implanted into molybdenum. The implantation becomes increasingly 
inefficient at fluences above ~2·1016 cm-2, as indicated by the retention curve. The depth profile 
at the lowest fluence, which reflects the range profile, becomes significantly distorted at the 
higher fluences. Stationarity is obtained at a fluence around 1.51017 cm-2, after erosion of about 
20 nm, which is approximately 2.5 times the mean projected range. Compared to the simple er-
ror-functional shape predicted by eq. (213), there is a concentration drop at the surface due to 
preferential sputtering (see the previous subsection). Nevertheless, the stationary profiles ex-
hibit a nearly flat top with an atomic fraction of about 0.4, corresponding to a relative S/Mo con-
centration of 0.67. The sputtering yield for 10 keV sulfur ions incident on molybdenum is 2 ac-
cording to the Sigmund formula, eq. (190). Thereby, the stationary concentration from the 
simple analytical result of eq. (214) is about 30% smaller. Another example of a BCA simulation 
of sputter-controlled implantation is shown in Fig. 37(b). Here, the nitrogen concentration has 
been artificially limited to the stoichiometric value of Si3N4 so that the profiles become similar to 
the local saturation profiles (Fig. 37(a,c)). Additional features are found close to the surface 
which are attributed to preferential sputtering.  
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10  Damage 

The following section will address atomic relocations (“displacements”) in the subsurface bulk of 
the irradiated material which remain after the thermalization of the cascade or spike[17-
19,175]. In an ideal lattice, an individual atomic displacement forms a so-called Frenkel pair 
consisting of a generated interstitial atom and a vacancy which is left behind at the original loca-
tion of the atom. This may be considered as the elementary process of irradiation damage. In 
contrast to sputtering, where the relocation into the vacuum is inherently permanent, bulk relo-
cations are not necessarily stable, as the generated defects might thermally diffuse, resulting in, 
e.g., recombination, clustering or annihilation at the surface. Such post-cascade or post-spike ef-
fects will not be in the scope of the present contribution. Further, the topic will be restricted to 
damage which results from atomic motion, rather than being directly generated by electronic 
excitation, such as it is common in insulators[176,177]. 

10.1 Linear Cascade Damage 

10.1.1 Analytical Treatment 

The formation of defects in a linear cascade has been first addressed for hard-sphere collisions 
by Kinchin and Pease[178]. In order to produce a "stable" Frenkel pair in the above sense, the 
distance between the generated interstitial atom and the vacancy has to be sufficiently large so 
that an immediate recombination due to elastic forces in the lattice and/or due to directed atom-
ic bonds is prevented. Therefore, the initial energy transfer to the recoil, E0, has to exceed a "dis-

Fig. 58. Sputter-controlled implanta-
tion profile for 10 keV sulfur in mo-
lybdenum from TRIDYN[93] com-
puter simulation. (a) Retained 
amount vs. ion fluence, with the hy-
pothetical 100% retention in the ab-
sence of ion reflection and sputtering 
being indicated.  (b) Corresponding 
implantation profiles at fluences of 
1.51016 cm-2 (solid line), 31016 cm-2 
(dotted line), 61016 cm-2 (dashed 
line), 1.21017 cm-2 (dashed-dotted 
line) and 2.41017 cm-2 (solid line). At 
the final fluence, a surface layer of 
27.5 nm has been sputtered off  
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placement threshold" energy Ud . This minimum energy transfer depends on the crystalline di-
rection into which the recoil is set into motion[179]. Therefore, it is understood as an average 
over different knock-on directions. The displacement threshold energy must be larger than the 
Frenkel pair formation enthalpy since kinetic energy is dissipated during the slowing down of 
the recoil. In metals and semiconductors, Frenkel pair formation enthalpies are in the range 
5…10 eV, whereas the displacement threshold energies range from about 15 to 80 eV. It should 
be emphasized that these values relate to isolated defects in a perfect crystal. The displacement 
threshold may become significantly lowered in case of a material with a significant amount of 
defects, such as arising from high-fluence energetic ion bombardment (see sect. 11). 

For a primary recoil generated in a nuclear collision between the fast ion and a target atom, 
the total number of generated Frenkel pairs in the associated subcascade is then given by 

 

              000, EdEPETFTN
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where T denotes the energy transfer in the primary collision, F(T,E0) the recoil density (see eq. 
(170)), and Pd(E0) the probability that a recoil of start energy E0 is being displaced. For the prob-
ability function, the simplest model would be a sharp threshold with Pd vanishing below Ud and 
being equal to 1 above. However, this would ignore the mechanism of replacement collision se-
quences. In particular a low-energy recoil may replace a target atom, which in turn may replace 
another one. In crystals, such sequences may propagate along low-index directions, being fo-
cused by the neighboring strings of atoms. Thus, several recoils are involved which are all 
counted in the recoil density, whereas only one Frenkel pair results with the interstitial at the 
end of the sequence. Thus, Pd = 1 is an overestimate at low energies, which dominate the recoil 
density (see sect. 8.1). To account for this (although somewhat arbitrary), Pd is assumed to line-
arly increase from 0 to 1 between Ud and 2Ud, i.e. 
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For sufficiently large T, eq. (215) then results in  
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With eq. (169), this is only little different from the original Kinchin-Pease formula which had 
been derived for hard-sphere collisions 
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Formally, eqs. (217) and (218) allow for subthreshold damage, too (c.f. the corresponding re-
marks for sputtering in subsection 9.1.1). Therefore, the so-called “modified” Kinchin-Pease 
formula is often employed according to[180] 
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Looking now at the generation of damage along the trajectory of an incident ion, a damage 
cross section D  can be introduced, so that the number of generated Frenkel pairs per unit path-

length of the ion can be written as 
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Attributing the local generation of damage to the primary energy transfers in nuclear collisions, 

the damage cross section results from the probability of nuclear collisions,  Tdn n  , as 
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where  denotes the energy transfer factor according to eq. (7) and E  the instantaneous energy 

of the ion. The total yield of Frenkel pairs for an ion of energy E results then from the integration 
of eq. (220) along the ion trajectory, according to 
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where the trajectory integral has been transformed into an energy integral by means of the total 
stopping cross section      ESESES ne

  (see eq. (52)). 

  

 

Fig. 59. Frenkel pair production 
from the linear cascade for dif-
ferent ions incident on silver 
(solid lines; after ref.[180])., 
from a rigorous evaluation of eq. 
(222) (see text) a displacement 
threshold energy of 39 eV for Ag. 
The dotted line reproduces the 
simple Kinchin-Pease formula 
(eq. (223)).  
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Fig. 59 displays the energy dependence of the Frenkel pair yield for different ions incident on 
silver, as obtained from a detailed evaluation[180] of eq. (222), using eq. (119) with a specific 
calculation of the damage energy  TD . At higher energies, the influence of electronic energy 

loss becomes increasingly important, so that the curves bend over from a linear increase with 
energy. Electronic stopping also increasingly dominates for lighter ions, so that the Frenkel pair 
generation spans over up to three orders of magnitude for different ions at identical energy. 

For a simplified evaluation of eq. (222), the original Kinchin-Pease formula (eq. (218)) is in-
serted, and an average energy transfer is assumed which is large compared to the displacement 
threshold energy. Then, according to eq. (51), the inner integral can in good approximation be 
replaced by the nuclear stopping cross section. For such a “dense” cascade, which occurs for 
large nuclear energy deposition, the electronic stopping is small so that    ESES n

 . Further, 

for sufficiently large energy, dUE  , the lower limit of the outer integral can be set to zero. The 

result then becomes 
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which means that the Kinchin-Pease formula can be directly evaluated for the incident ion ener-
gy in case of dominant nuclear stopping. This rough prediction is also included in Fig. 59, and 

found to be well acceptable for ions with 201 Z at energies up to 100 keV.  

      Alternatively, for light ions with small primary energy transfers, it can be assumed that the 

defect production is mainly due to primary recoils, which corresponds to   1TNF . At keV ion 

energies, the scattering cross section can be evaluated for a power-law potential with the expo-
nent s = 2 (see Fig. 6), resulting in   2321,  TEdTTEd according to eq. (47). The contribution 

of nuclear stopping to the total stopping is assumed to be negligible. Further inserting velocity-
proportional electronic stopping according to eq. (66), the evaluation of  eq. (222) yields[181] 

    








































E

U

U

E

Uk

C
EY d

dde

FP



12ln

2 2
    (224) 

As shown in Fig. 60, this prediction is in good agreement with experimental  data obtained after 
low-temperature bombardment of different metals with hydrogen ions. 

 

     

Fig. 60. Frenkel pair production under 
proton and deuteron irradiation of dif-
ferent metals at incident energies up to 
10 keV. The experimental data (points) 
are compared to the prediction of eq. 
(224) (line). Note that all data have 
been normalized to remove the de-
pendence of the prefactor of eq. (224) 
on the ion and target atomic numbers 
and masses. The maximum absolute 
yield is 1.25 for protons on Ni at an en-
ergy of 10 keV. (After ref.[181])  
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In the frame of analytical theory, the depth distribution  ExfFP , of generated defects is most 

conveniently identified with the 1-dimensional damage function (see sect. 8.1 and eq. (182)), so 
that 

            ExfCExf DDFP ,,        (225) 

with a normalization constant DC  that fulfills    EYdxExf FPFP  , . Alternatively, the Frenkel 

pair distribution can be approximated by the local damage cross section (see eq. (221)) accord-
ing to 

               ExnExf DFP ,,       (226) 

which, in view of the pathlength integration of eq. (222), holds strictly if the ion trajectory can be 
identified with a straight line at sufficiently high energy and/or ion mass, and if the x coordinate 
is taken along the direction of ion incidence.  

10.1.2 Computer Simulation 

The study of radiation damage has been the primary goal of the earliest computer simulations 
involving energetic particles. BCA simulations (see sect. 6.1) allow a convenient and detailed cal-
culation of the local distributions of generated Frenkel pairs from the protocol of the generated 
recoils whose start energy exceeds the displacement threshold. A vacancy is then generated at 
the original site of the recoil, whereas the location of the corresponding interstitial results as the 
endpoint of the trajectory of the recoil.  

TRIM[47,69] offers two routes for the generation of defect distributions. The full-cascade op-
tion traces all recoils and constructs the vacancy and interstitial distributions from the start and 
end positions of the recoils, respectively. This has been chosen for the low-energy vacancy dis-
tribution given in Fig. 33(b). In an alternative fast option, only the primary collisions are treated, 
and the modified Kinchin-Pease formula, eq. (219), is used to calculate the local vacancy produc-
tion from the energy transfer to the primary recoil. This procedure is adequate if the recoil path-
lengths are small compared to the ion range, such as at high ion energy (see Fig. 33(d)). The 
simulated vacancy distributions reflect the shape of the damage function. As mentioned in sect. 
8.1, they peak at a smaller depth than the ion range distributions, and exhibit a significant 
asymmetry towards the surface at sufficiently high ion energy. 

For certain applications, the net defect distribution, i.e. the local excess of interstitials or va-
cancies, is important. The underlying idea is the recombination of close interstitial-vacancy pairs 
at sufficiently high defect concentration either during implantation (see also sect. 10.3) or sub-
sequent thermal annealing, so that only the excess point defects of either kind remain. Their 
concentration can also be obtained from full-cascade TRIM simulation, by merely subtracting 
vacancy and interstitial distributions which have been collected at sufficient statistical quality. 
An example is shown in Fig. 61[182]. Due to the forward momentum of the incident ions, the re-
coils move in average slightly in forward direction (which is neglected in linear cascade theory 
by the assumption of isotropy). This results in a slight excess of vacancies closer to the surface 
and of interstitials towards the bulk. (The number of excess interstitials or vacancies is 3-4 or-
ders of magnitude below the number of initially generated Frenkel pairs.) The crossover depth is 
slightly below the mean projected range in the present example. During thermal annealing, the 
the excess vacancy distribution will shrink due to diffusion to the surface and recombination 
with excess interstitials, thus leaving a vacancy distribution which is centered around half of the 
mean projected range. Therefore, correspondingly observed vacancy-type defects have often 
been denoted as “Rp/2”  defects[183].  
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10.2 Damage and Thermal Spikes 

In contrast to the above case of light ion irradiation (see Fig. 60), the linear cascade prediction 

significantly overestimates the damage production by heavy ions. A damage efficiency D can be 

defined as the ratio of the experimentally observed Frenkel pair yield and the one predicted by 
linear cascade theory, i.e.   

     FPDFP YY exp
      (227) 

In Fig. 62, the damage efficiency is plotted versus a characteristic energy transfer in primary 

collision, 21T , being implicitly defined by eq. (221) as the upper limit of the integral, for which 

50% of the total Frenkel pair yield is obtained[184]. 21T can be regarded as a qualitative measure 

of the subcascade density. Whereas the cascade efficiency for hydrogen is close to 1 (the devia-
tion is within the theoretical and experimental uncertainty), it drops to about 0.3 for the heavi-
est ions under the present conditions. 

 

                                                                          

Fig. 61. Depth profiles of im-
planted ions (histograms), 
excess vacancies (open cir-
cles) and interstitials (dots) 
for oxygen implantations into 
silicon at 160 keV, 5.3·1017 
cm-2 (a) and 80 keV, 3·1017 
cm-2 (b), as obtained from 
TRIM binary collision simula-
tion. The total number of 
generated Frenkel defects is 
~920 and ~1320 per im-
planted ion at 80 keV and 
160 keV, respectively. (After 
ref.[182])  

 

Fig. 62. Damage efficiency vs. 
the characteristic energy 
transfer in primary collisions 
(see text), from low-
temperature irradiation of 
copper with different ions 
and subsequent resistivity 
measurements (data points). 
The line is drawn to guide the 
eye. A damage efficiency of 1 
corresponds to the linear 
cascade prediction of eq. 
(222). (After ref.[184]) 
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This is attributed to an influence of elastic thermal spikes[184]. In this picture, the net defect 
production results from generation in the cascade and dynamic annealing in the thermal spike. 
Recalling the discussion at the beginning of sect. 8, also the linear cascade is finally dissipated in 
a spike. Only the heaviest ions can induce elastic thermal spikes which result in sputtering as 
discussed in sect. 9, at temperatures which allow the surface binding energy of ~5 eV to be over-
come. However, much lower activation energies are required for the atomic rearrangement of 
metastable configurations like Frenkel pairs in metals. Interstitial atoms are known to migrate 
already at a temperature of a few ten K. Thus, it is well conceivable that the activation even in a 
sub-eV thermal spike may cause a significant reduction of the Frenkel pair yield by transient in-
terstitial diffusion and annihilation with vacancies. This explains qualitatively the reduced dam-
age efficiency even for rather light ions (see. Fig. 62). 

In principle, it cannot be excluded that elastic thermal spikes at sufficiently high nuclear ener-
gy deposition could enhance the defect production as for sputtering, in particular in materials 
with poor thermal diffusivity.  This, however, would require an unrealistically high deposited 
energy density in view of the large displacement threshold energy as compared to the surface 
binding energy in sputtering. In addition, simultaneous dynamic annealing might obscure the ef-
fect. Consequently, an enhancement of defect production by an elastic thermal spike has not 
been reported. 

 

                    

The reduction of damage production in metals has also been confirmed for high-energy swift 
ion irradiation. An example is shown in Fig. 63[185]. At an electronic stopping force lower than 
40 keV/nm, the defect production continuously decreases. This can be explained by dynamic an-
nealing in an inelastic thermal spike[186], which acts in a similar way as the elastic thermal 
spike above. However, a clearly distinct second regime is entered at higher electronic stopping 
force, with a prominent increase of the damage production. This can again be attributed to the 
inelastic thermal spike, the temperature of which, however, becomes sufficiently high to locally 
melt the material[186]. As the volume of the melt increases at increasing electronic energy dep-
osition, recrystallisation may lead to an increasing amount of remaining extended defects 
around the ion trajectory. (Physically, the definition of the damage efficiency, which moreover 
attains values exceeding 1, is then no longer meaningful.) 

Damage induced by single swift heavy ions is also manifested by the appearance of cylindrical 
nanometric “ion tracks”, within which the material is structurally transformed. Such tracks have 

Fig. 63. Damage efficiency vs. 
electronic stopping force for 
different swift heavy ions in-
cident on iron at energies be-
tween 0.1 and 4.5 GeV, after 
ref.[185]. The data result 
from low-temperature resis-
tivity measurements after ir-
radiation. The lines are 
drawn to guide the eye.  
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been found in many different materials (see reviews by Fleischer et al.[187], Toulemonde et 
al.[188] and Klaumünzer[189]). Early models of the track formation have invoked the mecha-
nism of “Coulomb explosion”. Ionization by the incident ion generates a high density of fast elec-
trons, which are transported away from the ion trajectory and thus leave a highly ionized core, 
in which the atomic cores could be radially accelerated. However, this picture had to be discard-
ed in view of the femtosecond electronic relaxation times which do not leave time for a signifi-
cant atomic relocation. Instead, the presently preferred interpretation is the inelastic thermal 
spike model as described in subsection 8.2.2, assuming that the structural transformation results 
from local melting in the track. However, a unified and generally accepted picture, which would 
be valid for the variety of all materials, has not been established up to date. It should also be not-
ed that the inelastic thermal spike model is subjected to considerable uncertainties and incon-
sistencies[189]. 

 

       
 
Fig. 64 shows an example for the irradiation of crystalline quartz[163]. A good fit is obtained 

from the inelastic thermal spike model with best available thermophysical data from literature, 
and the mean free diffusional pathlength of the electrons as fit parameter. Another recent exam-
ple (see Fig. 65) is given for the irradiation of vitreous silica with gold ions in a wide range of en-
ergies[190]. Here, the nuclear energy deposition has been included into the thermal spike mod-
eling by adding a corresponding source term to eq. (178). A good fit is again obtained over the 
energy range where data are available, demonstrating the synergism of track generation by both 
elastic and inelastic thermal spikes.  

It should be mentioned that Szenes[191,192] has formulated a simple “analytical” thermal 
spike model for track formation which is based on eq. (179) and thus turns the total deposited 
energy directly into atomic motion. Additional semi-empirical parameters are introduced with 
useful trends to predict the track formation in different materials. However, any additional phys-
ical understanding of the mechanism of track formation is not provided. 

 

Fig. 64. Radii of amorphous 
ion tracks for different swift 
heavy ions incident on crys-
talline quartz vs. electronic 
stopping. The line results 
from inelastic thermal spike 
calculations according to eqs. 
(177) and (178) with an elec-
tronic mean diffusional path-
length of 3.8 nm as fitting pa-
rameter. (After ref.[163])  
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As for sputtering, molecular dynamics simulations are in particular helpful for the description 

of spike phenomena. An example is shown in Fig. 66[193] which shows a number of different 
features with respect to damage generation. On a time scale of a few ps, a strongly disordered 
zone is created with an initial liquid-like appearance (Fig. 66(a,b)) with core temperatures ex-
ceeding 6000 K. Subsequently, a cavity develops in the center which is surrounded by a densi-
fied liquid (Fig. 66(b,c)). This confirms the early picture of Brinkman[194] that the cascade 
forms a vacancy-rich core and interstitials preferentially in its outer region. Fig. 66(b) also indi-
cates the emission of a focused collision sequence as well as some shock waves. During the cool-
ing-down phase of several 10 ps, the system returns first to a liquid core, and finally leaves 
mainly extended defects such as dislocations in the bulk, with numerous vacancy-like defects. In 
addition, the re-solidification results in a protrusion at the surface, which largely compensates 
the bulk vacancies, as only four sputtered atoms have been recorded for this simulated event. 
Thus, the presence of the surface is of significant influence on the generation of radiation dam-
age at sufficiently low ion energy. In the specific event, only three isolated interstitials are found 
to remain. This is qualitatively consistent with the low damage efficiency as described above, 
and confirms the dynamic annealing in the elastic thermal spike. (It should also be noted that 
any sputter crater is not observed at the present energy of 10 keV, in contrast to Fig. 54, which 
was obtained at 100 keV. This is consistent with the significantly lower sputter yield here.) 

10.3 Damage Accumulation 

Under irradiation, target atoms are continuously displaced, and repeatedly displaced at suffi-
ciently high ion fluence. If crystalline effects are neglected, the total number of displacements 

per unit volume, ,Dc increases linearly with the ion fluence. Looking at a sufficiently thin irradi-

ated slab of matter so that energy loss can be neglected, the number of total displacements per 
atom of the irradiated volume can be written as (see eq. (226)) 

Fig. 65. Track radii of structural modification induced by energetic gold ions incident on vitreous SiO2. 
The data (symbols) have been obtained indirectly by the determination of the damage cross section 𝜎𝐷 
from irradiations at increasing fluence (see sect. 10.3), and deriving the track radius according to 

𝑅𝑡 = √𝜎𝐷 𝜋⁄ . The dotted and solid lines show the predictions from the elastic thermal spike model, eqs. 
(177) and (178), for electronic energy deposition alone (TS(e)) and including nuclear energy deposition 
(TS(e+n)), respectively, with an electronic mean diffusional pathlength of 3 nm as fitting parameter. The 
electronic stopping data have been taken from SRIM[69] (2008 version) with reciprocity corrections ac-
cording to Sigmund[74] (see subsection 4.5.2). (After ref.[190])  
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Fig. 66. Snapshots of the development of atomic motion after incidence of a 10 keV Au ion onto an 
Au(001) surface, as generated by molecular dynamics computer simulation.  The angles of incidence were 
chosen to avoid channeling, with a polar angle of 20° with respect to the surface normal, and an azimuthal 
angle of 160° with respect to the <100> direction.  The frames (a-f) show a cross-sectional slab of one 
atomic layer thickness, viewed along the <100> direction, at the indicated times after ion incidence. (After 
ref.[193]) 
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From this, the ion fluence is often expressed in units of displacements per atom (dpa), i.e. 

Ddpa   with 1dpa dpa if each atom has been displaced once in average. 

 However, at increasing fluence newly generated interstitials increasingly recombine with 
previously accumulated vacancies and vice versa. Thus, the increase of the volume concentration 
of Frenkel pairs, ,FPc saturates according to[184] 
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where rV  denotes the recombination volume. For an initially undamaged material, the solution 

is 
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which saturates at a maximum concentration of   1
2



rV , which depends on the specific material.  

The maximum defect concentration in pure metals is typically a few percent. Other materials, 
like crystalline semiconductors, accumulate damage up to full amorphization. In a simple model, 
amorphization may be defined by the condition that each atom in the irradiated volume has 
been displaced once. Assuming a homogeneous damage function with the affected depth being 
approximately equal to the mean projected ion range, the fluence which is necessary for amor-
phization can be estimated by 
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where eq. (223) has been used. This predicts rather well the critical fluence of amorphization of 
silicon under irradiation at room temperature or below, although the detailed mechanism of 
amorphization is much more complicated than a simple accumulation of point defects (for a re-
cent review, see ref.[195]). 

For ion implantation into single crystals, the accumulation of defects may alter the range dis-
tribution at increasing fluence. This becomes in particular visible for the irradiation under chan-
neling conditions, where the dechanneling at defects becomes increasingly significant. This is 
demonstrated in Fig. 34(b), where the channeling tail, which is formed at low fluence in the ini-
tially perfect crystal, remains essentially unaltered at higher fluences. In turn, dechanneling at 
defects results in an increasing amount of random trajectories, so that at the highest fluence 
more than 95% of the implant distribution resembles the range distributions in the amorphous 
material. 

  
 

11  Ion Mixing 

 

In an inhomogeneous multicomponent substance, the relocation of atoms due to ion irradiation 
results in "mixing" of the atoms[196-198]. Prototypes of such materials are a thin marker of for-
eign atoms in an otherwise homogeneous material, which is broadened under irradiation, or a 
stack of two homogeneous layers of different materials, the interface of which is blurred under 
irradiation. First restricting to a marker system, the relocation of the marker atoms can be de-
scribed by a relocation cross section  zxd , , which describes the displacement of a marker at-

om from its original depth x by a depth increment z along the depth axis. For ion irradiation with 
a fluence  , ion mixing becomes a process of multiple relocation. The mean displacement of the 
marker is given by   

      

z

zxzdx ,      (232) 

for sufficiently small relocations so that the cross section does not change markedly, i.e. if the 
relative energy loss of the impinging ions in the region of interest is sufficiently small. The vari-
ance of the relocation distribution results as 

 

       

z

m zxdzxx ,222     (233) 

The integral on the right-hand side is often denoted as mixing parameter 
 

      
z

zxdzM ,2       (234) 

With eqs. (232) and (233), a Gaussian marker distribution centered around  x  and with the 

standard deviation m can be constructed in first order. 

 In case of a bilayer system, the mixing profile is correspondingly error-functional. However, 
as atoms of the upper layer are mixed into the lower one and vice versa, the standard deviation 

of the error function becomes m2  if symmetric mixing is assumed.  

In literature, ion mixing is often quantified in analogy to diffusional broadening or intermixing 

with a diffusion coefficient D, which, for an irradiation time t, exhibits a variance of Dt2  or Dt4
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for a marker system and a bilayer system, respectively, with respective mixing parameters 
 DtM 2  and  DtM 4 . 

 

 

Fig. 67. Mechanisms of ion mixing in a marker layer system: Matrix relocation (a), marker relocation (b) 
and cascade mixing of the marker (c)   

11.1 Collisional Mixing 

In the collisional picture, ion mixing turns out to be a rather complicated process[199]. Basically, 
there are three mechanisms as indicated in Fig. 67 for a marker system. Matrix atoms can be re-
located by primary collisions into or beyond the marker, which results in marker broadening 
and a shift towards the surface (Fig. 67(a)). Marker atoms, which are relocated by primary colli-
sions towards larger depth, form a tail of the marker profile, and thereby contribute to broaden-
ing and a shift towards the bulk (Fig. 67(b)). Finally, collision cascades initiated by sufficiently 
large primary energy transfers to marker atoms are more or less isotropic and cause mainly a 
broadening of the marker (Fig. (67(c)). These processes interact in a complicated way. 

For cascade mixing, the cascades mainly develop by matrix atoms, as the number of marker 
atoms is small. Collisions with the marker atoms thus cause the latter to be relocated. In the no-
tation of sects. 8.1 and 9.1.1 for the cascade atoms, the relocation cross section is given by[199] 
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Here, the first line denotes the flux of matrix cascade atoms through the marker plane at depth x. 

The second line contains the probability of collisions Md with marker atoms, which receive an 

energy transfer T at a direction


. The cosine term reflects the increased collision probability at 

an inclined direction of the matrix atoms. Rf  denotes the projected range distribution of the 

marker recoil atoms. Similarly as for the treatment of sputtering (see subsection 9.1.1), the area 
integral of the cascade function F can be written as 

 

    
 

  0

00

300 cos
,,

4

6
,,,

4

1







 EnSE

xEf
rEEFfd

n

D


   (236) 

For power law scattering, again with s , the evaluation yields together with eq. (234) 
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where  ESn  denotes the nuclear stopping cross section of the incident ions, taken at their mean 

energy at the depth of the marker, Um a relocation threshold energy  for the marker atoms, and 
 mp UR  their mean projected range at the threshold energy.  

The definition of the threshold energy is questionable to some extent. It can be assumed to be 
significantly smaller than the damage threshold energy Ud, as replacement sequences may influ-
ence the relocation more than the Frenkel pair formation. Further, in contrast to the formation 
of isolated Frenkel pairs for which Ud is defined, ion mixing is a high-fluence phenomenon, so 
that the material can be assumed to be already heavily damaged. Stable relocation might then 
result from much smaller initial recoil energies than stable Frenkel pair formation in an undis-

turbed lattice. In the absence of better knowledge, 8mU eV is recommended from experience 

with dynamic BCA simulations in comparison to experiments[102]. 
 

                                

 

 

 

 

Although the choice of Um sets another input parameter with some associated uncertainty, 
dynamic BCA simulations have proven to be a powerful tool for ion mixing calculations (see, e.g., 
refs.[102,200-203]). Fig. 68 shows an early comparison[200] of TRIDYN results with analytical 
predictions and experimental data The analytical prediction of eq. (237)[199] underestimates 
the experimental data significantly, as it only covers isotropic cascade mixing. For matrix and 
marker relocation, the analytical theory provides only root-mean-square results which probably 
largely overestimate the half-width of the distributions. The TRIDYN results obtained with the 
lower displacement thresholds are in rather good agreement with the experimental data. 

 

Fig. 68. Theoretical predictions and computer simulation results for ion mixing of a thin Pt marker in Si 
by 300 keV Xe irradiation. The thin lines display results from linear cascade theory[199] for multiple 
matrix relocation (solid line; root-mean-square (RMS) data), multiple marker relocation (dashed line; 
RMS data) and cascade mixing (dashed-dotted line; half-width-at-half-maximum (HWHM) data). For 
the latter, a relocation threshold energy of 7.83 eV and an associated mean projected range of 0.3 nm 
have been assumed (see eq. (237)). The small symbols show HWHM results from TRIDYN BCA comput-
er simulation with relocation threshold energies of 4 eV (full dots), 8 eV (crosses) and 25 eV (open 
dots). Squares are from different experimental HWHM data. The dotted line represents a fit through ex-
perimental RMS data obtained at a marker depth of 50 nm. (After ref.[200]; for the experimental data, 
see references therein)   
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11.2 Chemical Effects on Ion Mixing 

Even if the quantitative prediction of collisional ion mixing remains unsatisfactory as described 
above, collisional mixing in systems involving similar atomic masses would be expected to be of 
similar magnitude. In contrast, experiments in particular with metallic bilayer systems clearly 
demonstrate additional effects (see refs.[196,197] and references therein) which are attributed 
to chemical interaction of the atoms during the dissipation of the collision cascade. At mean en-
ergies in the eV regime, interaction forces between atoms of the same or different species come 
into play which influence the local configuration after thermalization, and thereby the average 
transport which results in intermixing. The interaction of the atoms in a compound can be de-
scribed by the enthalpy of mixing, mixH , which denotes the heat of formation of the compound 

from its constituents (taken as negative for an exothermic reaction). Further, the cohesive ener-
gy cohH  of the compound is of influence which represents the average enthalpy of sublimation 

of the compound. Qualitatively, it would thus be expected that ion mixing increases at decreas-
ing enthalpy of mixing and increasing cohesive energy, which is indeed observed experimentally 
(see refs.[204,205], respectively). 

 
 

                  

Fig. 69. Universal description of the influence of chemical driving forces on collisional mixing. The data 
points represent experimental mixing parameters Mexp for numerous bilayer systems which have been ir-
radiated with 600 keV Xe ions. The ordinate is scaled according to eq. (238), the line represents the corre-

Hmix Hcoh denote the mixing enthalpy and the cohesive energy, respectively, n the aver-
age atomic density and Sn the nuclear stopping cross section. (After ref.[196]; see refs.[196,206] and 
references therein) 

 
Based on a standard model of diffusion under chemical driving forces, Johnson et al.[206] 

proposed a semi-empirical formula for the mixing parameter in a bilayer system according to 
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where n denotes the average atomic density of the bilayer materials, and with constants 
0037.01 K nm and 272 K  which show universal validity for many metallic elemental bilayer 

pairs. This is confirmed in Fig. 69. 
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11.3 Thermal Spike Mixing 

The above evidence of the effect of chemical driving forces on collisional ion mixing already im-
plies the role of a low-energy (~eV) elastic thermal spike within which transient diffusion re-
sults in atomic transport. There is also clear evidence of the role of inelastic thermal spikes for 
swift heavy ion irradiation in the electronic stopping regime. 

               

As an example, the mixing in Ni-Ti bilayer and trilayer systems has been investigated in detail 
by Leguay et al.[207]. Their data were later interpreted by Wang et al.[208] on the basis of the 
inelastic thermal spike model (section 8.2.2), by attributing the mixing to interdiffusion in the 
molten track around the ion. An example from the thermal spike calculations is shown in Fig. 70 
for the irradiation of a Ni/Ti bilayer. Under the given experimental conditions and with the 
thermophysical properties of the metals, a molten track will not form in pure Ni but in pure Ti, 
as the initial electronic energy density is significantly higher in Ti. The transfer of electronic en-
ergy across the interface due to the electron temperature gradient, and the subsequent electron-
phonon interaction enables melting in the Ni interface region as well.  

 

                                                                         
 
The correlation of ion beam mixing with the formation of a molten track across the interface 

has also been established for covalent and ionic compounds (see ref.[209] and references there-
in). For the examples of Fig. 71, the mixing is critically determined by the stopping in the top ox-
ide layers as the SiO2 backing is more easily liquefied. The mixing parameter scales quadratically 
with the stopping force above a certain threshold which is characteristic for the material, and 
which is associated with the formation of the molten track.  

Fig. 70. Molten track formation in a 
bilayer stack of 16 nm Ni and 14 nm 
Ti on Si under irradiation with 890 
MeV Ta ions, as obtained from inelas-
tic thermal spike calculations. (After 
ref.[208]) 

 

Fig. 71.  Mixing parameter versus the 
electronic stopping force in the top 
layer, for irradiation of three different 
oxides on SiO2. The lines are from lin-
ear fits with corresponding threshold 
stopping forces. (After ref.[209])       
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