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A consistent formulation is presented for the direct numerical simulation of an arbitrarily shaped
colloidal particle at a deformable fluidic interface. The rigid colloidal particle is decomposed into
a collection of solid spherical beads and the three-phase boundaries are replaced with smoothly
spreading interfaces. The major merit of the present formulation lies in the ease, with which
the geometrical decomposition of the colloidal particle is implemented, yet allowing the dynamic
simulation of intricate three-dimensional colloidal shapes in a binary fluid. The dynamics of a rod-
like, of a plate-like, and of a ring-like particle are presently tested. It is found that plate-like particles
attach more rapidly to a fluidic interface and are subsequently harder to dislodge when subject to
an external force. Using the Bond number, i.e. the ratio of the gravitational force to the reference
capillary force, a spherical particle with equal affinity for the two fluids breaks away from a fluidic
interface at the critical value Bo = 0.75. This value is in line with our numerical experiments. It
is here shown that a plate and a ring of equivalent masses detach at greater critical Bond numbers
approximately equal to Bo = 1.3. Results of this study will find applications in the stabilisation of

emulsions by colloids and in the recovery of colloidal particles by rising bubbles.

I. INTRODUCTION

Solid particles of colloidal dimensions, which adsorb
at a fluidic interface, are present in a wide range of ap-
plications. Notable examples include the stabilisation of
emulsions [1] and the recovery of minerals by rising bub-
bles [2]. The growing interest in the fundamental un-
derstanding of these processes has motivated us to de-
velop a fully-resolved three dimensional model. The ma-
jority of the existing three-phase flow models found in
the literature is restricted to simple colloidal shapes, for
which a precise mathematical representation exists. The
bulk of these numerical advancements have largely in-
volved spheres [3, 4] and only a handful have considered
ellipsoidal particles [5-7]. When it comes to arbitrarily
shaped colloids mostly two-dimensional studies are found
in the literature [8, 9]. The scarcity of three-dimensional
extensions can probably be attributed to the difficulty
in representing the particle shape and to the associated
higher computational cost [10]. The decomposition of
an arbitrarily shaped colloidal particle into a collection
of spherical beads is here suggested. While the idea be-
hind such a geometrical decomposition has already been
suggested in the past [11], we are the first to report a
consistent formulation with realistic three dimensional
applications. Our new formulation applies to the cate-
gory of so-called “diffuse interface models”, meaning that
each phase boundary is replaced with a smoothly spread-
ing interface [8, 9, 12-14]. The major merit of the present
formulation lies in the ease, with which the representa-
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tion of the intricate three-dimensional shape of the colloid
is implemented. Another advantage is the effective simu-
lation of the inter-particle interactions in a system made
of multiple arbitrarily shaped colloids. The dynamics of
a rod-like, of a plate-like, and of a ring-like particle at a
fluidic interface are presently tested.

II. MODEL
A. Representation of the solid assembly

The arbitrarily shaped rigid colloid, hereafter referred
to as the solid assembly, is decomposed into a collection of
Ny spherical beads. To numerically represent the three-
dimensional shape of the b-th bead the volume fraction
¢b(x,t) is introduced. As one moves from the inner bead
to the outer bead region the volume fraction ¢, smoothly
transitions from unity to zero across a diffuse interface of
length &,. A number of smooth profiles are suggested
in reference [15]. We here use a truncated hyperbolic
function defined as

1 if [€p] <1 — &,
¢b(x) — 0 if |£b| > 1y + &,
%[tanh (rb&%}g’l) + 1] else.

(1)
where 1y, is the bead radius, £,(x) = x — X, the distance
vector from the bead centre of mass X;, to the spacial
coordinate x, and &. a cut-off length. Introducing capital
letters to distinguish between the Lagrangian and the
Eulerian fields, the volume fraction of the solid assembly



“S” is suggested as

bZe:S%(X) )
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beS

Ps(x) =

Note that the capital letter “S” differentiates the field ¢g
of the “Solid” assembly from the field ¢, of the b-th spher-
ical “bead”. The denominator in Equation (2), originally
suggested by Molina and Yamamoto [16], ensures that
the total volume fraction ¢g remains lower than unity
when the smooth profiles of several neighbouring beads
overlap. Note that the truncation is used primarily to
speed up the execution time since the hyperbolic func-
tion is only calculated across the diffuse interface of the
colloid. The effect of the truncation on the drag force is
discussed in the result section. Its effect on the contact
angle is discussed in the reference [14]. A significant ad-
vantage of the present representation lies in the ease with
which the implementation of ¢g is done, yet allowing a
large freedom in describing the three dimensional shape
of the assembly.

B. Transport of the solid assembly

The centre of mass of the solid assembly is denoted
by Xs = (XsYs)", where the upperscript ' indicates
the transpose operator. As illustrated in Figure 1 the
position X, of the b-th spherical bead is fixed in the body
frame, i.e. in the frame moving with the solid assembly.
The hat symbol indicates a quantity expressed in the
body frame. The bead position in the inertial frame is
given by

X, = X5 + Rg - Xy, (3)

where Ryg is the rotation matrix associated with the solid
assembly. The rotation matrix is expressed as a function
of the four dimensional quaternion Qg = (g0 q1 g2¢3) ',
where ¢o denotes the scalar part of the quaternion and
(g1 92 q;g)T the three dimensional vector part. The rota-
tion matrix is given by

-4 —d G142 ~ God3 G103 + God2
g2 + 9093 35— 4% — 43 4243 — qods | - (4)
193 — 9092 G293 +q0q1 35 — -

Rs=2

For the computation of the time-dependent trajectory
Xs(t) of the solid assembly the hydrodynamic force Fp,
the capillary force F., and an external force F. repre-
senting the weight of the colloid are retained [14]. For
readability purposes the Lagrangian transport equations
are shown later in Equations (12-13, 16-17).

C. Fluidic interface model

In a similar fashion the fluidic boundary is replaced
with a smoothly spreading interface layer. To this end

»
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FIG. 1. Schematics of a solid assembly at a fluidic interface.
The assembly is shown in the body frame and in the inertial
frame.

the two additional volume fractions ¢4 (x,t) and ¢p(x,t)
respectively associated with the fluid “A” and the fluid
“B” are introduced. The separation of the binary fluid
mixture into its two constituent phases A and B is driven
by the minimisation of the free energy

= [ fon.im.09)ix )

where V is the region of space occupied by the isothermal
system, kg the Boltzmann constant, Tj the temperature,
Vo a constant unit volume, and f the free energy density
scaled by the reference energy density po = kgTo/vo. A
number of formulations specifically developed for the use
of diffuse interface models have been proposed [9, 12, 13].
The formulation recently suggested by the same authors
and validated for a single sphere is here retained [14]. In
their work, the free energy density was given by

2
= four + %|V(¢A - ¢B)|2

2 2
+%W(QﬁA - ¢s)|2 + %3|V(¢B - <J5s)|2 (6)

where fyur = ¢aIn(¢a) + ¢In(¢p) + xPadp was the
bulk contribution and y a parameter describing the affin-
ity between the two fluid phases. The three tunable in-
terfacial length scales &, £a, and &g preceding the gra-
dient terms allowed for a change in the particle hy-
drophobicity. Because of the phase summation con-
straint ¢a + ¢ + ¢s = 1 the free energy is rewritten
as f(1, ¢s), where this new order parameter is defined
as Y(x,t) = ¢a — ¢p. This field 9 is updated in time
according to the modified “Cahn-Hilliard” equation [13]

o

S +V- [wu—M(I—nS®ns)~V,u =0, (7)
where M is the mobility, I the unit tensor, ng =
—V¢s/|Vs| the local unit vector normal to the surface
of the solid assembly, and u(, ¢s) = 0F /¢ the chem-
ical potential. Away from the particle diffuse interface
the outer product ng ® ng is set to the zero tensor.



D. Coupling with hydrodynamics

The flow around the solid assembly is resolved using
the “smooth profile method”, which uses a fixed cartesian
grid to solve the Navier-Stokes equations [15, 17]. The
smooth profile method is particularly attractive to sim-
ulate the flow around moving objects since it suppresses
the need for a remeshing algorithm. In this method the
total fluid velocity field u is decomposed into two com-
ponents as

u= (1 - ¢S)Uf + ¢sug. (8)

The first term (1—¢g)uy corresponds to the velocity field
of the binary fluid. The second term is the velocity field
of the solid assembly defined as

¢sus = ¢s (Vs + Qg x £g), 9)

where Vg, g, and £s = x — Xg are respectively the
translational velocity of the assembly, its rotational ve-
locity, and the distance vector from the assembly centre
of mass Xg. The evolution of the total field velocity,
which satisfies the incompressibility condition V- u =0
over the entire computational domain, is governed by the
following modified momentum equation

p [?;tl +(u-v) u} = V[-pl+av]-¢Vutpests, (10)

where p is the density of the binary fluid, p the pres-
sure, o, = n[Vu+ (Vu) "] the viscous stress tensor, and
71 the viscosity. The first additional term —¥Vy is the
capillary field with respect to the two fluid phases. The
second additional term p¢gfs is the penalty field, which
enforces the rigidity constraint of the solid assembly. The
development of the smooth profile method is now well
documented and has found widespread applications rang-
ing from the rheological behaviour of colloidal dispersion
[18] to the study of self-propelled microorganisms [19].
Application of the smooth profile method to study the
interaction of colloids with a binary fluid mixture, as is
the case here, is however relatively new. For the sake
of conciseness this section was intentionally kept short.
Further reading on the smooth profile method may be
found in the selected references [10, 15-17].

IIT. SIMULATION PROCEDURE

Let y™ be the order parameter at the initial time ¢".
The field ¥ 1! is first advanced in time as

fn+1

Pt =t — / V- Jndt,
tn

J'=y"u" — M (I—ng ®ng)-Vu". (11)

The position of the centre of mass along with the quater-
nion of the solid assembly are then updated in time as

tn+1

/ vidt, (12)

tn
tn+1

n n 1 n n
e =Qg+ 3 / Ag - Qgdt. (13)
t'n/

X5 = X5 +

The 4 x 4 orthogonal matrix Ag is given by

0 -0, —-Q, -,
Q, 0 -0, 9

A
S —q,

, (14)

where (2, Q,Q.)" = Qs. A fractional step approach
is employed to solve the momentum Equation (10). An
intermediate velocity is first calculated as

tn+1

u" =u"+ / {—(u”-V)u"
o
+% {v (=pI+oy)— w"Hw"“} }dt. (15)

The intermediate pressure p* is calculated by solving a
Poisson equation V - u* = 0. The translational and ro-
tational velocities of the solid assembly are updated in
time as [20]

tn+1

VI = VI 4+ mg ! (Fh+FC+Fe)dt, (16)
tTL

gntl
A ~ A—1
n+1 _ n
QU = Q41 -
tTL

6 x (I ) + Ty + Tt (17)

where mg = f ¢spsdx is the mass of the solid assembly,
Is = [ ¢sps (E%I — 05 ®Lg)dx the inertia tensor expressed
in the inertial frame. When expressed in the body frame
Is becomes a constant diagonal tensor. The torques are
expressed in the body frame as T = Rg -T. The same
transformation applies to the rotational velocity. The
hydrodynamic force and torque are derived by assuming a
momentum conservation between the solid assembly and
the fluid. Since the capillary contribution is accounted
for in the calculation of the intermediate velocity the two



| /A &/ /¢ x  w/A  &/A  &)& Pe Re Ca Bo N N
St| - - - - 6 3 [0.506] - 0.01 - - 1283 [1-9]
S2 1 1 1 2.5 6 3 0.6 0.1 0.01 0.1 0 1283 [25,24,24}
S3| 1 1,15 [1,1.5] 2.5 [12.1,6,6] 3 0.6 0.1 001 1 [0.04-2.62] 64x128x64  [1,99]

TABLE I. Parameters used in the simulation sets S1, S2, and S3. The quantities with a length dimension are normalised with
the size A of a grid element. N is the total number of grid nodes.

time integrals are given by

tn+1

[ ®rEga= [ ot - ugax (s)
tn v
tn+l

/ (Th +T,)dt = /vegﬂ

2
x [pqsg“(u* - ug)] dx, (19)

where u§ = Vg + Qg x Kg“. Finally the velocity field
of the assembly is enforced onto the total fluid velocity
field as

n+1

1
u™t = u* + / (—prs + Qﬁsfs) dt. (20)
tﬂ,

The pressure pg, originating from the rigidity constraint
of the solid assembly, is obtained from the incompress-
ibility condition V - u™*! = 0. The time integral of the
force density field is calculated as

g1

/ psfsdt = gt (ug™ —u*). (21)

tn

where ugH = V’Sl+1 + Qg“ X Kg“. The above equa-
tions are discretised in space using a second-order central
differencing scheme for the first partial derivatives and
a fifth-order compact scheme [21] for the second partial
derivatives. The variables are advanced in time using a
forward Euler method. The authors are aware of more
efficient discretisation schemes [4, 22] normally employed
for solving the advection Equation 7. It was however
found that the above schemes delivered stable simula-
tions when the capillary number exceeded Ca > 0.1. A
mineral particle of about 100 pm in size and sedimenting
in water towards an air-liquid interface normally attains
a speed of some milometers per second [2]. Under such
experimental conditions the capillary number typically
falls below the value Ca < 1073.

IV. RESULTS

The three dimensional grid is uniform. Because a Fast
Fourier Transform is employed to solve the two discrete

Poisson equations V - u* = 0 and V - u"*! = 0 period-
icity is enforced on each side of the computational do-
main. A wall boundary could have been implemented
using for instance a Neumann boundary condition [10].
The periodicity will rather affect the velocity field. It
will have little adverse effect on the capillary force, since
this force is computed across the diffuse colloidal inter-
face. It is also assumed that the two fluids have equal
viscosity and density. This assumption greatly simpli-
fies the numerical modelling and will not alter the main
message of this work, which is the development of a nu-
merical model for simulating the dynamics of an arbi-
trarily shaped particle at a fluidic interface. The govern-
ing equations were implemented in their non-dimensional
form using the Reynolds number Re, the Peclet number
Pe, and the capillary number Ca given by

~ pUoLg _ UoLo

Re , Pe = , Ca = LUO,
n Dq Y

(22)

where Uy is a reference velocity arbitrarily set. It could
for instance be the terminal velocity of the solid assem-
bly. The reference length is defined as Ly = &, the diffu-
sion coefficient as Dy = poM, and the reference surface
tension as 79 = poLg. This non-dimensionalisation is
identical to that used by other authors who previously
simulated the phase separation of binary fluids [23, 24].
The simulation parameters of all the subsequent simula-
tions are summarised in Table I.

A. Drag force acting on a solid assembly (S1)

The hydrodynamic validation of the smooth profile
method has previously been performed [10, 16]. How-
ever to ensure the correctness of our in-house implemen-
tation, the settling of a bead chain in a monophasic fluid
is first simulated. In the present simulations (S1), the
sharp boundaries of two successive beads do not overlap,
ie. |Xp — Xp—1] = 2rp. The bead chain, subject to a
constant external force, is initially placed at the centre
of the system and eventually reaches its terminal velocity
after a short period of time. The terminal velocity of the
chain relative to the fluid is calculated as

Jy, udx
fv dx

The open source program HYDROLIB [25], which
achieves an accuracy in the Stokes drag below 1%, is used

VE V=V - (23)



for the calculation of the reference values. Because of the
periodicity enforced on each side of the domain the nor-
malised theoretical terminal velocity of a single bead does
not equal unity but Vg = 1 — 1.7601¢'/3 + ¢ — 1.5593¢2,
where ¢ = 4nr}/(3L3) [26, 27). The theory deliv-
ers a value of \7;0 = 0.87, HYDROLIB [25] a value
of \7? = 0.87 and the present simulation a value of
\7;0 = 0.76. The non-dimensionalised relative terminal
velocity is shown in Figure 2. The figure also illustrates

1.0 ‘ ‘ |
t? D
15 o8 O HYDROLIB [25] |
2= 06 o &/&%=05 |
Zg l & A &/6 =06
0.4f |
I R g .
8o 0.2 A A Q i
! 00 O ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9
18 : ‘ ‘ ‘ ‘ ‘ ‘
< 16% F), |
< 14r (X Xl)()@ 1
o i A - ]
5 }g o 5 A A'ﬁA PAREIN /
1 2 3 4 5 6 7 8 9
Number of beads NN, in the chain

FIG. 2. Relative terminal velocity as a function of the number
of beads in the three dimensional chain (Top). The reference
data obtained with the open-source program HYDRLIB [25]
are used to calculate the relative errors (Bottom).

the relative terminal velocity with increasing number of
beads for two cut-off lengths &. (See Equation 1). The
relative error decreases with the number of beads. In the
case of the sphere and of the short rods (N, < 3) the
larger errors can probably be attributed to the contribu-
tion of the relatively inaccurate flow field around both rod
extremities. The longer the rod is, the smaller is the con-
tribution of its extremity on the total drag. With a larger
number of beads in the chain both the error and the ter-
minal velocity eventually reach constant values. With an
interfacial thickness set to &/A = 3 and a bead radius
set to /A = 6 an accuracy of 11% and 9%, respectively,
in the terminal velocity are achieved for £./&, = 0.5 and
&:/& = 0.6. This error range is in line with previously
reported data [15, 16]. A smaller value of & results in
more accurate results. A smaller interfacial thickness is
however associated with a higher grid resolution and a
smaller time increment. We therefore choose for all sub-
sequent simulations since it achieves an efficient trade-off
between accuracy and numerical efficiency.

B. Solid assembly at a fluidic interface (S2)

The rotational motion of various arbitrary geometries
at a fluidic interface is presently tested. As illustrated in
Figure 3 (set S2) the dynamics of a ring-like, of a rod-like,
and of a plate-like assembly are simulated. The three as-

Plate (S2)

D
J ‘ )
)

Plate (S3) Ring (S3)

Ring (S2) Rod (S2)

Sphere of equivalent mass (S3)

FIG. 3. Three-dimensional solid assemblies used in the two
simulation sets S2 and S3.

semblies have almost equal mass and are not subject to
an external force. The distance from the centre of mass
of the b-th bead to the nearest neighbouring bead is set
to | X, — X3 = 2(1y, — £.). The fluidic interface, de-
fined as the isosurface ¢ (x) = 0 forms a horizontal plane
at the time t/ty = 0, where tg = Lo/Uy. The centre of
mass of each assembly coincides with the fluidic inter-
face initially at rest. The orientation angle a between
the long axis and the fluidic interface is arbitrarily set
to a = 75°. This slight inclination is imposed to avoid
the unstable upright position at a = 90°. Figure 4 shows
that, as a result of the capillary torque, each solid as-
sembly smoothly rotates about the y-axis until a stable
position is reached. The lack of available data on the ro-
tational motion of elongated particles at a fluidic inter-
face makes it impossible to quantitatively compare the
evolution of the angular position. The present simula-
tions hence act as qualitative tests and allow us to verify
the final orientation of the solid assembly attained at the
equilibrium. As expected the long axis x of each solid as-
sembly eventually aligns with the fluidic interface. The
slower rotation of the ring and of the rod can be partly
explained by looking at the respective ratios of momen-

~plate — 399

. . . . . sring
tum inertias. The two inertia ratios I,,~/I,,

~rod aplate
and I, /I, = 5.17 cause the plate to reach a stable

equilibrium more rapidly. The plate reaches an orienta-
tion angle close to a ~ 4°. Further simulations showed
that a smaller ratio of the fluidic interfacial thickness
to the bead radius &/r, brought the inclination angle to
Z€ro.

C. Solid assembly crossing a fluidic interface (S3)

The settling of three solid assemblies across a fluidic
interface is now investigated. The size of the domain
and the number of beads in each assembly are reduced
to save computational time. The rod-like geometry is
left out and replaced with a sphere of equivalent mass
(See Figure 3). Each assembly is subject to a constant
external force which pulls the assembly in the downward
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FIG. 4. Orientation a of each solid assembly as a function of
time. At the time t/to = O the centre of mass is placed at the
fluidic interface initially set in horizontal position.

vertical direction. The sagittal plane of each assembly
is set in position normal to the external force. The cen-
tre of mass of each solid assembly is initially placed at
the altitude Yg(0)/r,*" = 2.15 relative to the horizontal
fluidic interface initially at rest. The term “eqv” here-
after indicates a quantity associated with the sphere of
equivalent mass. This altitude was found large enough
for each solid assembly to reach its terminal velocity be-
fore being affected by the capillary force. The temporal
deformation of the fluidic interface is shown in Figure
5 for two Bond number numbers. In the left subfigure
the plate gets trapped at the interface (Bo=0.91). In the
right subfigure the plate later detaches (Bo=1.36). See
the Supplemental Material [28] for a video clip of the
simulation. The Bond number indicates the ratio of the
downward force to the reference capillary force. The for-
mulation previously used by other authors [29, 30] for a
spherical colloidal particle is here retained for compari-
son purposes. The Bond number, rewritten as a function
of the external force F., is given by

_ 2 F
Bo — (pS p)g eqv 3‘ e| (24)

YAB 47T7ABreqv

where g is the gravitational acceleration and yap the
fluidic surface tension. In the absence of a solid phase
a fourth-order expansion of Equation 6 will show that
the free energy takes the form f(u,0) = —a1?/2 +
B /4 + k|VY|?/2, where a = x/2 — 1, B = 1/3, and
k=£E%+ (& +€3)/4 [14]. The fluidic surface tension is
then given by [13, 31]

(2 a)S /2 Kl /2
33 '

Previous experiments have shown that for Bo < 1 the

fluidic interface is able to sustain the solid assembly with

little deformation. With increasing Bo, the assembly
penetrates deeper into the bottom fluid phase, resulting

YAB = [o (25)

y/L,

W
1.0 —< §\ 1| 10.0

05F : 1 105
(a) Bo = 0.91 (b) Bo = 1.36
095 05 1.0 05 1o 10
':C/L.’I? x/L.’I?

FIG. 5. Evolution of the fluidic interface for various Bond
numbers. The time step between two successive isolines
coloured in grey is constant. The 3D plots and the field mid-
sections 1 are shown for the plate (S3) at time ¢3 and ti6
respectively.

in a larger deformation of the fluidic interface. Figure 6
shows the relative vertical displacement h/reqy as a func-
tion of the Bond number for three different contact angles
f. The interfacial energy, and thus the contact angle, is
set by changing the two Cahn coefficients €4 /¢ and &g /€.
The persisting spurious velocities, known to appear near
curved diffuse interfaces and previously reported by oth-
ers [4, 32], affect the curvature of the fluidic interface in
the vicinity of the assembly. For 6 # 90° the fluidic inter-
face is slightly curved near the three-phase contact line
because of these spurious currents. Therefore, equation
7 is solved independently for an exact estimation of the
contact angle. The procedure used to compute and set
the contact angle is explained in detail in our previous
work [14]. For a spherical particle with a contact angle
0 = 90°, i.e. for a particle with equal affinity for the
two fluids, the agreement between the present numeri-
cal results and those taken from the work of Stratford
et al. [29] is generally good. For comparison purposes a
second set of data, taken from the work of Davies et al.
[5], is also shown. Table II lists the critical Bond num-
bers at which the three assemblies break away from the
fluidic interface. A spherical particle with a contact an-

0 ‘ Sphere (Theory) Sphere [5] Sphere Plate Ring
64° - 0.25 0.25 0.57  0.57
90° 0.75 0.45 0.68 1.25 1.37
116° - 0.60 1.37 2.28 2.62

TABLE II. Critical Bond numbers at which particle detach-
ment off the fluidic interface occurs.
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FIG. 6. Relative vertical displacement of the assembly in the bottom fluid as a function of the Bond number. Data associated

with a detachment are not shown.

gle 8 = 90° theoretically detaches at the critical value
Bo = 0.75 [29, 30]. The critical Bond number Bo, here
estimated at Bo = 0.68, matches well this theoretical
value. Table IT shows that the plate detaches at a crit-
ical Bond number Bo = 1.25 and the ring at an even
greater critical Bond number Bo = 1.37. In the case of
the ring a first three-phase contact line lies on the in-
ner part of the geometry and a second line on the outer
part. These two contact lines quantitatively explains why
the ring is harder to dislodge. Results of this study also
show that, irrespective of the geometry, the critical Bond
number increases with the contact angle. The numerical
data of Davies et al. [5] corroborate qualitatively this
finding, even though the discrepancies tend to increase
with larger contact angles. The detachment process is
further illustrated in Figure 7. The velocity of the three
solid assemblies is shown as a function of the altitude
Yg of the centre of mass. For the lowest Bond number
attachment occurs in all cases and the Lagrangian veloc-
ity of the assemblies drops to zero. With increasing Bond
number the detachment eventually occurs. For Bo = 1.82
the velocity of the sphere is nearly unperturbed by the
capillary force.

3t Bo=10.46 |
=== Bo =091
===== Bo =137

Bo=182 |

U A b
S 4 - A\ e
(a) Sphere\ - T (b) f’late“\‘\__{

06 14 1.0 06 14 1.0
Ys/L,

FIG. 7. Vertical velocity component V, as a function of the
particle altitude, where (V,;Vy Vz)-r = Vg. The data are
shown for 6 = 90°.

V. CONCLUSIONS

The present three-phase model, previously developed
for a single sphere [14], was further improved to simu-
late the dynamics of arbitrarily shaped colloidal parti-
cles in a binary fluid. The method, based on the de-
composition of a particle into a collection of beads, is
relatively straightforward to implement and allows for
intricate three-dimensional shapes to be studied numeri-
cally. The hydrodynamic performance of the model was
validated and showed a precision of about 10% (S1). The
dynamics of a rod-like, of a plate-like, and of a ring-like
particle at a fluidic interface were then tested. It was
found that plate-like particles attach more rapidly to a
fluidic interface (S2) and are subsequently harder to dis-
lodge (S3). The theoretical critical Bond number Bo,
at which a spherical particle with equal affinity for the
two fluids breaks away from a fluidic interface, equals
Bo = 0.75. This value is in line with our numerical ex-
periments. A plate and a ring of equivalent masses were
found to detach at greater critical Bond numbers, ap-
proximately equal to Bo = 1.3. The results of this study
will find application in the stabilisation of emulsions and
in the recovery of mineral particles by rising bubbles. In
both applications the stability of the particle-bubble ag-
gregate will be affected by the particle shape. Future
extension of this work will include the study of multi-
particle systems in binary flows. Decomposing the arbi-
trarily shaped colloids into a series of beads will certainly
prove beneficial for an effective simulation of the inter-
particle interactions.
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