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Abstract—We report on the continuous-wave and passively 

Q-switched YbSGG waveguide laser at the wavelength of 1024.8 
nm. The ridged waveguide was fabricated on the surface of 100 at. 
% Yb3+-doped YSGG crystal sample (YbSGG) crystal by the swift 
ion irradiation and the precise diamond blade dicing. Utilizing 
this waveguide as the gain medium and resonant cavity, the laser 
emission at 1024 nm was realized. Coating the Tungsten Disulfide 
onto the waveguide surface as the saturable absorber, the 
Q-switched laser emission was also obtained with the pulse 
duration of 125 ns. 
 

Index Terms—Rare-earth-doped materials, Waveguides, 
channeled, Lasers, Q-switched. 
 

I. INTRODUCTION 
AVEGUIDE laser, as one of basic active devices for the 
photonic integrated circuits, has a fast development over 

the past decade [1]-[4]. It is constituted by a waveguide 
platform in the gain medium. Both the pumping and oscillation 
laser are confined in the waveguide structure working as the 
resonant cavity. As the waveguide has a large transverse and 
longitudinal length ratio, the waveguide laser has a faster 
thermal dissipation compared with the bulk laser [5]. 
Meanwhile, the material used for waveguide laser is not limited 
to the rare earth doped glass and has a broad option. Multiply 
effective gain materials can be used as the substrate for the 
waveguide laser, such as the rare earth doped crystal and optical 
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ceramic [6], [7]. Hence, the waveguide laser has a more 
compact structure than the fiber laser. Applications and 
functions of the waveguide laser depend on waveguide 
fabrication technologies and the selection of the gain medium. 

Several technology have been applied for the waveguide 
fabrication including the proton exchange, ultrafast laser 
writing, epitaxial growth, ion irradiation and so on. Among 
them, the ultrafast laser writing [8] and ion irradiation [9] have 
been proved to be efficient methods to produce the waveguide 
in multi-materials. Especially for the ion irradiation, until now, 
kinds of waveguide structures have been fabricated in more 
than 100 optical materials. Surface waveguides can be easily 
achieved by the ion irradiation [10], which has an interface with 
the air. Different from the buried waveguide (inside the optical 
material), the surface waveguide is more conducive to the heat 
dissipation and more suitable for the air cooling, indicating a 
better performance of the waveguide laser. 

Rare earth doped garnets, including yttrium aluminum garnet 
(YAG) [11] and yttrium gallium garnet (YGG) [12], has 
attracted a continuous attention due to its stable structure, 
remarkable thermal and optical properties. Recently, a partly 
disordered crystal of YSGG is developed by randomly 
substituting scandium for gallium in the octahedral sites of the 
YGG crystal [13]. Compared to YAG and YGG crystals, 
YSGG has lower phonon energies. Hence, active ions in YSGG 
has the reduced multi-phonon decay rates and exhibit a longer 
fluorescent lifetime of the upper laser level [14]. Besides, the 
distance between dodecahedral sites can be increased by 
introducing Sc3+ ions into YSGG, as radius of Sc is larger than 
Ga in the octahedral. The increased distance can reduce the 
relatively strong ion-ion interaction among active ions [15], 
[16]. Therefore, YSGG allows the high dopant concentration of 
ytterbium-ions, which is supposed to be more suitable for 
high-efficiency and Q-switched laser operation. 

In the past few years, two-dimensional (2D) material 
displays outstanding physical and chemical properties 
[17]-[20]. Recently, Tungsten Disulfide (WS2) have joined in 
the family of the 2D material and attracted intense interests. 
Similar to MoS2, WS2 is also layered transition metal 
dichalcogenide. In optics, WS2 film has the saturable 
absorption and the broadband nonlinear optics response. It has 
been ultilized as the saturable absorber for Q-switched pulse 
laser in the fiber and bulk laser system [21], [22]. 

In this work, the continuous-wave (CW) and Q-switched 
laser at the wavelength of ~1024 nm were realized in YbSGG 
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waveguide. The ridged waveguide structure was fabricated on 
the surface of the YbSGG crystal by the swift carbon ion 
irradiation and the precise diamond blade dicing. Under the 
pumping laser at 980 nm, CW laser was observed with 
maximum output power of 52.3 mW and the slope efficiency of 
46%. WS2 was coated onto the waveguide surface as the 
saturable absorber. The Q-switched pulse laser was obtained 
with the minimum pulse duration of 125 ns. 
 

II. EXPERIMENTS 
YbSGG crystal used in this work was grown by the optical 

floating zone method in a four-ellipsoidal-mirror furnace 
(FZ-T-12000- X-I-S-SU-Crystal Systems, Inc). The effective 
segregation coefficient Yb3+ ions was determined to be 100 at. 
% measured by x-ray fluorescence (XRF) analysis. The 
YbSGG crystal was cut into dimensions of 5 × 3 × 3 mm3 with 
all facets optically polished. One of the biggest facets was twice 
irradiated by carbon ion beams. The energy (fluence) of the 
irradiated carbon beam were 6 MeV (1 × 1015 ion/cm2) and 15 
MeV (2 × 1014 ion/cm2), respectively. After irradiation, the 
planar cladding waveguide was formed near the surface of the 
irradiated facet. 

The planar waveguide was further processed to the ridged 
waveguide by the precise diamond blade dicing. High-speed 
spinning (rotate speed 20.000 rpm and the cutting speed 0.1 
mm/s) diamond blade cut down the planar waveguide and made 
grooves onto the surface. Grooves have the width of 20 µm and 
thickness of 50 µm. Between adjacent grooves, the fragment of 
the planar waveguide constitute the ridged waveguide. Through 
controlling the separation distance of grooves, the width of 
ridged waveguides was adjusted to 40 μm. 

Fig. 1 shows the experimental setup for the laser emission in 
YbSGG waveguide. Two mirrors were adhered onto facets of 
the YbSGG waveguide as the input (M1) and output (M2) 
mirrors. The input mirror was coated for high transmission at 
940 nm and high reflectance at 1029-1100 nm. While the output 
mirror has the transmission of 60% at the wavelength of 
1029-1100 nm. A diode laser at 940 nm was used as the pump 
laser. Through a lens (focal distance of 20 mm), the pump laser 
was coupled into the YbSGG waveguide with the coupling 
efficiency of 57%. The output laser from the waveguide was 
collected by a long work microscope objective (MO, N.A. 
=0.4). 

Few-layers WS2 was transferred into the ethanol and 
drop-casted onto the surface of the YbSGG waveguide. The 
drop and drying processes are shown in Fig. 1(b) and (c). 
Through the interaction with evanescent field of the waveguide 
mode, the WS2 film (with the thickness of 30 nm) absorbed the 
light in the waveguide as the saturable absorber for the 
Q-switched waveguide laser emission. The Q-switched 
waveguide laser excitation process is similar to the one shown 
in Fig. 1(a). The input (output) mirror has high transmission at 
940 nm and 99.98% (90%) reflectance at 1029-1100 nm. The 
pumping laser is coupled into the waveguide through a lens 
(focal distance of 20 mm) with the coupling efficiency of 57%. 
 

III. RESULTS AND DISCUSSION 

A. YbSGG crystal characterization: 
Fig. 2(a) shows the RT absorption spectra of the YbSGG 

crystal measured with an excitation laser at the wavelength of 
275 nm. As displayed in Fig. 2(a), there is an absorption peak at 
the wavelength of 929.4 nm with the full-width at 
half-maximum (FWHM) amounting to 23.2 nm. The 
broadband absorption demonstrates the advantages of efficient 
pumping by high-power laser diodes. The RT emission 
cross-section of the YbSGG crystal is expressed by use of the 
reciprocity method [24]. 

 

( ) ( ) exp / .l
em abs

u ZL

Z c ch h kT
Z

s l s l
l l

  
= −     

 (1) 

 
where σabs(λ) is the absorption cross-section at wavelength λ, Zl 
and Zu are the lower and upper manifold partition functions, 
respectively. h is the Planck constant, k is the Boltzmann 
constant, c is the velocity of light, and λZL is the wavelength of 
zero phonon line. a = l or u, and di is the degeneracy of the 
energy level Ei. According to the Eq. (1), the partition functions 
Zl and Zu are calculated to be 1.375 and 1.385, respectively. 
Peak of the emission spectrum was located at 1026 nm with 
FWHM of 13 nm corresponding to the transition of 2F5/2 → 
2F7/2. Considering about the broadband emission spectrum of 
YbSGG crystal, YbSGG has the potential to be used as the gain 
medium for the wavelength tunable laser emission. 

The wavelength variation of the oscillated laser can be 
attributed to the evolution of the effective gain cross-section 

 
Fig. 1. (a) Schematic plot of the experimental setup for the laser generation in 
YbSGG waveguide. Inset is the image of the laser oscillation in YbSGG 
waveguide. Images of the YbSGG waveguide dropped by WS2 (b) and the 
dried WS2 film (c). 
  

 
Fig. 2. (a) The absorption and fluorescence (at 300K) spectra of YbSGG versus 
wavelength. (b) σg of YbSGG crystal. The inset is σg of YbSGG for β ≤ 
0.075 versus wavelength. 
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(σg(λ)) of YbSGG crystal, which is expressed as below: 
 

( ) ( ) (1 ) ( ).g em abss λ bs λ b s λ= − −     (2) 

min
( )( ) .

( ) ( )
abs

abs em

s λb λ
s λ s λ

=
+

       (3) 

 
Where β is the fraction of Yb3+ ions excited to the upper 
manifold; βmin is the minimum inversion rate; σabs(λ) is the 
absorption cross-section and the cavity loss at the wavelength 
λ; σem(λ) is the emission cross-section at the wavelength λ. 

Fig. 2(b) presents the shift of the peak position of σg(λ) along 
with βmin. With the increasing of βmin, the peak of σg(λ) has the 
blue shift. While, with the value of βmin above 0.35, the 
wavelength of the laser is fixed at 1026 nm, which are also 
observed in Yb:CaGB, Yb:CYB and Yb:YAG crystals [23]. As 
βmin demonstrate the minimum inversion rate of a laser system 
decided by the balance of σem(λ) and σabs(λ) in Eq. (3). It 
implies that the laser wavelength can be shifted by changing the 
cavity loss (σabs(λ)). 

B. YbSGG waveguide: 
Fig. 3(a) shows the microscope image of the YbSGG 

waveguide cross section. Ridged waveguides have the width of 
40 µm. The waveguide has multi-layer due to multiply carbon 
beam irradiation with different energies. The refractive index 
profile of the waveguide was displayed in Fig. 3(b) by the 
intensity profile fitting method (IPFM) [10] at the wavelength 
of 1024 nm. As one can see, the refractive index distribution 
has a ladder-like shape which constituted a cladding waveguide 
structure. Layer 1 with the maximum refractive index worked 
as the core. Layer 2 and substrate corresponded to the inner and 
outer cladding. According to the refractive index distribution in 
Fig. 3(b), the intensity distribution of the propagation mode was 

simulated and shown in Fig. 3(c), which has a good agreement 
with the measured one in Fig. 3(d). 

The cladding waveguide provides several advantages for the 
laser oscillation. First, as the light was confined in the core with 
a smaller dimension, the energy density of the propagation 
mode in the cladding waveguide was higher, which may 
decrease the laser threshold and increase the slope efficiency of 
the laser emission. Second, the evanescent field of the 
propagation mode would be strong, as the position of the peak 
intensity of the propagation mode is near the surface (Fig. 3(d)). 
Therefore, the propagation mode will have a better interaction 
with the coated saturable absorber (WS2 film) through the 
evanescent field [10].of authors which appear at the end of our 
papers. 

C. CW and Q-switched waveguide laser emission: 
Without the WS2 film, CW laser emission was observed from 

the YbSGG waveguide, under the pumping of a 940 nm laser. 
The image of the YbSGG under pumping is shown in Fig. 4(a). 
Fig. 4(b) displays the power of the output laser as a function of 
the pumping power. The maximum output power is 52.3 mW 
corresponding to the pumping power of 243.4 mW. The slope 
efficiency and the threshold are 46% and 130.5 mW, 
respectively. The inset on the right shows the laser emission 
spectrum of the output laser (solid purple line). The peak 
position is located at the wavelength of 1023.6 nm. 

Adding the WS2 onto the surface of YbSGG waveguide, the 
pulsed laser emission was obtained. The spectrum of the output 
laser is shown in the inset of Fig. 5(a), demonstrating the laser 
oscillation at 1024.8 nm. The output power has an exponential 
variation along with the pump power as displayed in Fig. 5(a) 
(fitted by the first-order decay exponential function). The laser 
threshold is 140 mW and the maximum output power 7.8 mW 
at the highest available incident pump power of 227 mW. The 
significant decreasing of the output power was induced by the 
extra-loss from WS2 film. Stable pulse laser emission was 
obtained with the pumping power above 160 mW as shown in 
Fig. 5(b). Fig. 5(d) displayed variations of the pulse duration 
and the repetition rate along with the pumping power. The pulse 
duration was slowly decreased from 175 ns to 125 ns. While, 
the repetition rate was around 360 kHz (±10 kHz). 

Please note, the wavelength of the Q-switched laser (1023.6 
nm) has the blue shift compared with the CW laser (1024.8 
nm). As the WS2 introduced extra-loss into the YbSGG, which 
decreased the value of β. According to Eq. (2), the peak 
position of the effective gain cross-section will move to shorter 
wavelength. 
 

 
Fig. 3. (a) The image of the YbSGG under pumping. (b) Output power of the 
waveguide laser as a function of the pumping power. Inset is the spectrum of 
the output laser. 
  

 
Fig. 4. (a) The image of the YbSGG under pumping. (b) Output power of the 
waveguide laser as a function of the pumping power. Inset is the spectrum of 
the output laser. 
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IV. -CONCLUSIONS 
We report on the continuous-wave and Q-switched laser 

emission from the YbSGG waveguide. The ridged waveguide 
was fabricated onto the surface of the YbSGG crystal by the 
swift ion irradiation. Under the pumping, CW laser emission 
was obtained with the slope efficiency of 46%. Adding the WS2 
onto the surface of YbSGG waveguide, the pulse laser was also 
obtained with the pulse duration of 125 ns. 
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Fig. 5. (a) Output powers of the Q-switched waveguide laser as a function of 
the absorbed power at 980 nm and the inset illustrates the pulse laser spectrum. 
The pulse train of pulse laser (b) and an individual laser pulse profile (c) with 
the pumping power of 227 mW, (d) Variation of the pulse duration and the 
repetition rate of the Q-switched pulse waveguide laser as a function of the 
pumping power. 
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