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Theoretical results for the magnetization dynamics of surface-modulated magnonic crystals
(SMMCs) are presented. For such systems, the role of the periodic dipolar field induced by the
geometrical modulation is addressed by using the plane-wave method. The results unveil that under
the increasing of the etched depth, zones with magnetizing and demagnetizing fields act on the
system, in such a way that magnonic band gaps are observed in both Damon-Eshbach (DE) and
backward volume (BV) geometries. Particularly, in BV configuration, high frequency band gaps
and low frequency nearly flat modes are obtained. By controlling the geometry of the etched zones,
the frequency modes, spatial profiles and forbidden frequency gaps of spin waves (SWs) can be
manipulated. To test the validity of the model, the theoretical results of this work are confirmed
by micromagnetic simulations, where a good agreement between both methods is achieved. It is
demonstrated that the spin-wave dynamics of a surface modulated magnonic crystal contrasts to
bi-component magnonic crystals or periodic arrays of wires, for instance, since the SMMCs allow
enhancing the magnetizing character in some regions of the film, promoting thus the confinement of
the SWs. The theoretical model allows for a detailed understanding of the physics underlying these
kind of systems, thereby providing an outlook to potential applications on magnonic devices.

I. INTRODUCTION

Spin waves at microwave frequencies are of current
potential interest for wireless communication technolo-
gies, since they can transport and handle information
in a unique way.1,2 Such waves are able to carry pure
spin currents (currents without charge transport that
can be converted into measurable charge currents), even
in magnetic insulators.3 One of the potential aspects
of SW-based technologies is that both the amplitude
and the phase of spin waves may encode information.4,5

Besides, SWs have further been proposed as building
blocks for computational architectures allowing to per-
form logic operations.6–8 The manipulation of SW prop-
agation by means of periodic modulation of magnetic
or geometrical properties can be regarded as an impor-
tant research field in magnetism.9–17 Such research area
is currently named magnonics or magnon-spintronics,
and it is based on the control of SWs in periodic mag-
netic structures called magnonic crystals (MCs).1,2,18

The possibility of such system to act as a SW fil-
ter with a pronounced discretization of the frequency
turns out to be key for applications in signal process-
ing and storage-recovery mechanisms.15,19 In this con-
text, MCs have been extensively studied, since they
exhibit adjustable frequency band gaps (BGs), which
can be optimized by modulating the magnetic param-
eters or changing the geometry and arrangement of peri-
odic scattering centers.9–17,19–34 The design of the MCs

can be realized by artificial modulation of the mag-
netic properties, either in the form of dipolarly cou-
pled nanowires23, bi-component magnonic crystals,12–14

width-modulated waveguides,32,33 antidot lattices,35,36

modulated thickness nanowires,37–40 or by means of ion-
implantation.41–43 Also, reconfigurable magnonic crys-
tals with periodically induction of perpendicular mag-
netic anisotropy have been designed.44

A large variety of studies based on Brillouin light scat-
tering have been carried out on MCs,11–14 where the
presence of frequency band gaps has been confirmed
in full accordance with theoretical results. Moreover,
bi-component MCs have been widely studied,12–14,45–47

where periodic properties originate from a different sat-
uration magnetization Ms, anisotropy K, or exchange
constant A. Thus, modification of these parameters al-
lows for controlling the BG position and the localiza-
tion of SWs. For instance, increasing the contrast of
Ms of a bi-component MC can lead to a broadening of
the BG frequency range and enable the concentration
of a spin-wave excitation within the zone of lower or
higher saturation magnetization. However, experimen-
tally defining material parameters such as magnetization
or exchange length with laterally well-defined periodici-
ties often is not straightforward and suffering from limi-
tations of the range in which variations are possible for
a given material. A periodic surface modulation of a
ferromagnetic (FM) thin film is an interesting alterna-
tive for creating magnonic structures and devices, where
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the periodic properties are attributed to the size of the
modulation. A surface-modulated magnonic crystal ex-
hibits zones with demagnetizing and magnetizing char-
acters. The demagnetizing field is acting in the thicker
parts of the SMMC, which reduces the total internal field.
On the other side, the magnetizing character of the field
dominates in the trenches, in such a way that the dy-
namics of the SWs can be notoriously different, since
such a magnetizing field increases the internal field that
drives the motion of the spin waves. In a fully etched
MC, there is no magnetizing field acting in the magnetic
material. On the other side, in bi-component MCs the
magnetizing/demagnetizing fields are competing so that
both magnetic material create magnetic charges at the in-
terfaces and hence, such fields are reduced in comparison
to SMMCs. In this paper, including the dipolar fields
created by the trenches, the role of the demagnetizing
and magnetizing fields in the SMMC is theoretically dis-
cussed. It is shown that the periodic dipolar fields open
frequency band gaps in both DE and BV configurations.
Particularly, in BV geometry the strong contrast between
the demagnetizing and magnetizing fields induces a high
localization degree of the SW, which is almost indepen-
dent of the wave vector, in such a way that nearly flat
modes are obtained. By controlling the geometry of the
etched zones, the mode frequencies, spatial profiles and
forbidden frequency gaps of spin waves can be manipu-
lated.

II. THEORETICAL DESCRIPTION

In bi-component magnonic crystals, the periodic prop-
erties originate from the contrast between different ferro-
magnetic materials with different magnetic parameters,
for instance the saturation magnetization Ms or exchange
constant A. Nevertheless in surface-modulated magnonic
crystals the periodic properties arise from the magnetic
charges created at the edges of the etched zones, as
shown Fig. 1(b) for a one-dimensional surface-modulated
magnonic crystal.

The temporal evolution of the system can be described
using the Landau-Lifshitz (LL) equation Ṁ(r; t) =
−γM(r; t) × He(r; t). Here, γ is the absolute value of
the gyromagnetic ratio, M(r; t) is the magnetization and
He(r; t) is the effective field. For small deviations around
the equilibrium, both the magnetization and the effec-
tive field are written as M(r; t) = MsẐ + m(r; t) and

He(r; t) = He0(r) + he(r; t), respectively. Note that Ẑ
points along the equilibrium orientation of the magneti-
zation, which lies in-plane and he(r; t) is proportional to
the dynamic magnetization m(r; t). Thus, in the linear
regime, the LL equation reads

iΩmX(r) = −mY (r)He0
Z (r) +Msh

e
Y (r) (1a)

iΩmY (r) = mX(r)He0
Z (r)−Msh

e
X(r) (1b)
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dipolar field and H(0) is the static field induced by the
static periodic magnetic charges. According to Fig. 1,
the periodic distribution of the stripes over the ferro-
magnetic thin film induces a periodic stray field that is
interacting with the nominal film, in such a way that, ac-
cording to Bloch’s theorem, the dynamic components of
the magnetization can be expanded into Fourier series as
m(z) =

P
m m(Gm)ei(Gm+k)z, where Gm = (2⇡/a)m de-

notes a reciprocal lattice vector of the periodic structure
and m is an integer number. Thus, the dynamic compo-
nents of the dipolar field averaged over the thickness d
are

hd
Y (z) = �4⇡

X

m

mY (Gm)⇣(Gm)ei(Gm+k)z (2)

and

hd
X(z) = 4⇡

X

m

mX(Gm) sin2 ' [⇣(Gm) � 1] ei(Gm+k)z,

(3)
where

⇣(Gm) =
2 sinh[|Gm + k|d/2]e�|Gm+k|d/2

|Gm + k|d . (4)

In previous works, the dynamic dipolar fields (2) and
(3) are evaluated to the middle of the thickness (y =
d/2)20–22, in such a case ⇣(Gm) = e�|Gm+k|d/2. Never-
theless, under this simply assumption, not perfect match
is reached between theory and experiment, which will be
discussed below, and then Eq. (4) will be used in what
follows. Likewise, the exchange dynamic fields are

hex
X,Y (z) = �Dex

Ms

X

m

(Gm + k)2mX,Y (Gm)ei(Gm+k)z.

(5)
On the other hand, in order to obtain the periodic

static field H(0), it’s noted that the static magnetization
components can be written as

Mz = Ms cos'
X

q

C̃q(y) exp [iG · r]

Mx = Ms sin'
X

q

C̃q(y) exp [iG · r] .

Then, following Ref. 19, the magnetostatic potential is
given by

�(r) = �iMs cos'
X

q

GqI
q,

where

Iq =

Z
C̃q(y

0)
eiG·r0

|r � r0|d
3r0.

Notice that C̃q(y
0) = 0 for y0 > d + h and y0 < d, while

C̃q(y
0) = Cq at d + h > y0 > d (see Fig. 1). Therefore,

an analytical expression can be derived for the magneto-
static potential, which is

�(r) = �i2⇡Ms cos'⇥
X

q

CqGq


e|G|(y�d�h)(e|G|h � 1)

|G|2
�

eiG·r

Now, the in-plane component along Z is

H
(0)
Z = �2⇡Ms cos2 '

X

q

Cq⌘(Gq)e
iGqz, (6)

where,

⌘(Gq) =
e�|Gq|(d+h)

|Gq|d
(e|Gq|d � 1)(e|Gq|h � 1).

In expression (6), an average over the thickness of the
sample has been performed. Also, it has assumed that
G·r = Gqz, since the one-dimensional case is taken into
account in the present system, nevertheless an extension
to 2-dimensional periodic systems can be addressed eas-
ily.

Now, inserting Eqs. (2), (3), (5) and (6) into Eq. (1),
the following eigenvalue problem is obtained:

M̃ mT
G = i⌦ mT

G (7)

where mT
G = [mX(G1), ..., mX(GN ), mY (G1), ..., mY (GN )]

is the eigenvector and M̃ is given by

M̃ =

✓
M̃XX M̃XY

M̃Y X M̃Y Y

◆
, (8)

where, after a very tedious task, the submatrices in Eq.
(8) are given by

MXX
nm = MY Y

nm = 0 (9a)

MXY
nm = �

⇥
Dex(Gm + k)2 + 4⇡Ms⇣(Gm) + H cos('H � ')

⇤
�n,m + 2⇡MsCq⌘(Gn � Gm) cos2 ', (9b)

MY X
nm =

⇥
Dex(Gm + k)2 + 4⇡Ms[1 � ⇣(Gm)] sin2 ' + H cos('H � ')

⇤
�n,m � 2⇡MsCq⌘(Gn � Gm) cos2 ' (9c)

By using standard numerical methods and a convergence test to check the reliability of the results, the eigenvalues
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FIG. 1. In (a) the top view of the surface-modulated MC is
shown, where two coordinate systems are depicted. The co-
ordinates (x,y,z) are defined by the geometry periodic struc-
ture’s geometry, while (X,Y ,Z) is defined according to the
equilibrium orientation of the magnetization, which points
along Z, with X lying in the film’s plane. In (b) the cross sec-
tion is shown, where d denotes the thickness of the nominal
film, δ is the thickness of the etched zones, az is the lattice
parameter along z-direction and wz is the width of the thicker
part of the film. The red curve in figure (c) shows the peri-
odic dipolar field [see Eqs. (7) and (8)] created by the static
magnetic charges at the edges of the etched zones for δ = 2
nm and ϕ = 0. Additional magnetic parameters are given in
section III.

wherein it has been assumed he(r; t) = he(r)eiωt, and
then m(r; t) = m(r)eiωt, and it is also defined Ω = ω/γ.
Moreover, note that He0

η (heη) is the η-component of the
static (dynamic) effective magnetic field. The effective
field is defined as He(r) = H + Hex(r) + Hd(r) + HI(r),
where H is the external field, Hex(r) = 4πλ2ex∇2M(r) is
the exchange field with λex(r) = 2A/4πMs, wherein A is
the exchange stiffness constant. Furthermore, Hd(r) is
the dipolar field of the flat film and HI(r) is the dipolar
field induced by the periodic magnetic charges that re-
side at the edges of the etched zones d < y < d+δ, where
d is the thickness of the nominal film and δ is the etched
depth (see Fig. 1). According to Fig. 1, the periodic dis-
tribution of the etched regions of thickness δ over the top
surface of the ferromagnetic film induces a periodic stray
field that interacts with the magnetization of the nominal
film. In this way, according to Bloch’s theorem, the dy-
namic components of the magnetization can be expanded
into Fourier series as m(r) =

∑
G m(G)ei(G+k)·r, where

G = Gqx̂+Gnẑ denotes a reciprocal lattice vector, with
Gq = (2π/ax)q, Gn = (2π/az)n and both n and q are
integer numbers. The above picture considers a general
two-dimensional periodic modulation of the etched zones,
which can be easily adapted to one-dimensional periodic
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structures by setting Gq = 0, as depicted in Fig. 1. Thus,
the dynamic components of the dipolar field averaged
over the film’s thickness are

hdY (r) = −4π
∑

G

mY (G)ζ(G + k, d)ei(G+k)·r (2)

and

hdX(r) = 4π
∑

G

mX(G)ξ(G,k)2
ζ(G + k, d)− 1

|G + k|2 ei(G+k)·r,

(3)
where

ζ(Q, d) =
2 sinh[|Q|d/2]e−|Q|d/2

|Q|d (4)

and

ξ(G,k) = (Gn + kz) sinϕ− (Gq + kx) cosϕ. (5)

Likewise, the exchange dynamic field components are

hexX,Y (r) = −4πλ2ex
∑

G

(G + k)2mX,Y (G)ei(G+k)·r. (6)

The Z-component of the static dipolar field created by
the edges of the etches zones can be written as HI0

Z (r) =
HI0

1Z(r) +HI0
2Z(r), with HI0

1Z(r) [HI0
2Z(r)] being the static

field inside the zone d > y > 0 (d + δ > y > d). These
components are (see details in appendix A)

HI0
1Z(r) = −2πMs

∑

G

CGχ(G)2
η(G)d

|G|2(d+ δ)
eiG·r (7)

and

HI0
2Z(r) = 4πMs

∑

G

CGχ(G)2δ
ζ(G, δ)− 1

|G|2(d+ δ)
eiG·r. (8)

where,

η(G) =
e−|G|(d+δ)

|G|d (e|G|d − 1)(e|G|δ − 1). (9)

Also, the dynamic components of the magnetization
are

hIY (r) = 2π
∑

G,G′

CG′ei(G+G′+k)·r {mY (G)η(G + G′ + k)

− imX(G)ξ(G + G′,k)
η(G + G′ + k)

|G + G′ + k|

}
, (10)

and

hIX(r) = −2π
∑

G,G′

CG′ei(G+G′+k)·r ×
{
mX(G)ξ(G + G′,k)2

η(G + G′ + k)

|G + G′ + k|2

+ imY (G)ξ(G + G′,k)
η(G + G′ + k)

|G + G′ + k|

}
.(11)

In Eqs. (7), (8), (10) and (11) the coefficients CG ac-
counts the geometry of the periodic structure, which may
be in the form of stripes, circular dots, squares, etc.43 In
general, the static field component HI0

Z (r) and the dy-
namic one hIX,Y enter directly in the dynamics of the

system through Eq. (1), while the HI0
X (r) and HI0

Y (r)
components only affect the static properties of the sys-
tem. Now, inserting all field contributions into Eq. (1),
the following eigenvalue problem is obtained:

Ã mT
G = iΩ mT

G (12)

where mT
G = [mX(G1), ...,mX(GN ),mY (G1), ...,mY (GN )]

is the eigenvector and Ã is given by

Ã =

(
ÃXX ÃXY

ÃY X ÃY Y

)
. (13)

Explicit expressions of matrix elements of Eq. (13) can
be find in App. B. Now, by using standard numerical
methods and a convergence test to check the reliability
of the results, the eigenvalues and eigenvectors of Eq.
(12) can be obtained.

Additionally, to get insight into both the frequency-
dependence of the modes and the SW profiles in the long
wavelength limit, micromagnetic simulations have been
carried out using the MuMax3 code.48 Here, a magnetic
film was built up in the (64; y; 4096) cells with the total
dimensions of (256 nm; Yc; 5.3 µm) with a mesh size of
(4.0 nm; Yc; 3.74 nm). Next, a 140 nm wide wire with
thicknesses of (1 - 5 nm) was centrally put on top of the
film, forming the intact film part. The wire was repeated
51 times with a spacing of az = 300 nm. To consider
the reality of an extended surface modulated film, peri-
odic boundary conditions were chosen along the x- and
z-directions. The number of y-cells and the correspond-
ing cell size Yc was chosen according to the ratio of the
wire thickness and the film thickness. The external field
was applied in the z-direction, whereas the excitation
field was chosen in y-direction. Two different kinds of
simulations were carried out using the system described
above. First, the spin wave dispersion relation was cal-
culated similarly to the approach presented in Ref. 49,
but the homogeneous excitation field was replaced by a
localized rf field of approx. 140 nm width. The spin-
wave dispersion was extracted using a spatial fast Fourier
transform (FFT) approach along the z-direction. Fur-
thermore, FMR simulations based on the approach given
in Ref. 50 were carried out. The dynamic magnetization
m(r, ω) was extracted by employing a FFT in time for
all cells. To obtain the SW profiles for a given frequency
f0 the transformed amplitude and phase was filtered and
than transformed back into real space. Especially in the
backward volume geometry this approach is very useful in
the here presented system due to the more or less disper-
sionless spin wave branches. In Fig. 2(a) it is clearly vis-
ible that the main intensity is located in this dispersion-
less branches, making the analysis of higher order spin
waves complicated. In the FMR approach this issue is
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FIG. 2. (a), (b) and (c) show the dispersion relation in the DE geometry for H = 1.5 kOe and δ = 0, 2 and 4 nm, respectively.
Figs. (d), (e) and (f) depict the dispersion in BV configuration. The lines correspond to the theoretical results, while the micro-
magnetic simulations are represented by the code of colors, where the lighter (darker) color means to a maximum (minimum)
of the response intensity. The modes have been labeled as Sν and Aν

s with ν = 1, 2, 3... The label Sν (Aν
s ) is defined according

to the symmetric (antisymmetric) character of the spin-wave profiles around z = 0 at kz = 0. In insets, the increasing of depth
δ is represented as a darker color in the etched zones. In Figs. (d)–(f), the micromagnetic simulations are shown in log scale
due to the dispersionless nature of the spin waves in the BV geometry, therefore a lighter background color is obtained.
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FIG. 3. In (a), the BV modes at kz = 0 are shown as a
function of δ. The lines (dots) represent the theoretical (sim-
ulated) calculations. In (b) and (c) the spin-wave profiles
calculated by the simulations and theoretical model are de-
picted, respectively. In (a)–(c), the symmetric modes S1, S2,
S3 and S4 are represented by solid, dashed, dot-dashed and
dotted lines, respectively.

solved due to the fact that only kz = 0 modes are ex-
cited. For the field–frequency dependence shown in Fig.
5 this approach was repeated for magnetic fields from 0

Oe to 2 kOe in 10 Oe steps. For this the FFT of the
average magnetization component was considered. The
magnetic parameters are the same used in the analytical
approach, with a damping constant α = 10−2.

III. RESULTS AND DISCUSSION

The theoretical model will be applied now to thin films
with one-dimensional stripe-like modulations, as shown
in Fig. 1. For such geometry, the Fourier coefficients are
given by by CGn = (wz/az)sinc[(wz/az)πn]. Also, at 50
reciprocal lattice vectors, a convergence of the numeri-
cal solutions of Eq. (12) is reached. Typical permalloy
parameters are used, namely a saturation magnetization
Ms = 797 emu/cm3, stiffness constant λex = 4.96 nm
and gyromagnetic ratio γ = 0.0185556 GHz/G. The ge-
ometrical parameters of the etched zones are d+ δ = 10
nm, az = 300 nm and wz = 140 nm. Unless otherwise
stated, the external field is H = 1.5 kOe. Note that
these parameters have been chosen in concordance with
the micromagnetic simulations.

In Fig. 2, the spin-wave dispersion relations are de-
picted in both Damon-Eshbach and backward volume ge-
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ometries, when the depth δ of the surface modulation is
varied. The color code visualizes the micromagnetic sim-
ulations, while the lines are obtained from the theoreti-
cal model. In Figs. 2(a), (b) and (c), dispersion relations
in DE geometry (ϕ = π/2) are shown for δ =0, 2 and
4 nm, respectively. Here, it is clearly visible that the
periodic stray fields created by the dynamic magnetic
charges [see Eqs. (10) and (11)] open frequency BGs,
whose strength can be controlled through the depth δ.
On the other side, in Figs. 2(d)–(f) the BV spin waves
are shown. Unlike the results of DE geometry, the SWs
present a slightly dispersive branch at δ = 0. Then, by
increasing δ low frequency dispersionless modes are ob-
served, while the high frequency ones have a clear peri-
odic dispersion. In the simulations, the modes Sν , which
have symmetric character at kz = 0, have strong inten-
sities [see Figs. 3(b) and 3(c)], which can be modified by
means of the external pulse included in the micromag-
netic simulations. Due to the dispersionless property of
the low frequency branches, the localization degree of the
modes is practically independent of the wave vector. This
is an important characteristic, because for conventional
FMR measurements, most of the time, the detection is
restricted on the symmetric modes only. Thus, this dy-
namic behavior of the spin waves in the BV geometry
supports the usage of FMR techniques in periodic struc-
tures, like the ones created by ion irradiation.41,43 Note
that for δ > 4 nm in Fig. 2(f) some deviations between
simulations and calculations can be noticed. These devi-
ations are attributed to the non-uniform distribution of
the dynamic magnetization along the thickness. While δ
increases the pinning conditions in the etched zones be-
come important and therefore m varies along the normal
axis y. Because this modulation is not considered in the
theoretical model, some deviations between both meth-
ods are expected as δ increases. TOBIAS: Please include
a comment about the modes in the background in the
simulations in BV geometry

Fig. 3(a) shows the evolution of the first four modes
S1, S2, S3 and S4 as a function of δ at kz = 0. Here, it
is observed that the theoretical model (lines) match very
well with the numerical simulations (dots) in the range
of δ → 0 – 3 nm. For higher depths, small deviations
between theory and simulations are appreciated, as was
explained before. The simulated and calculated dynamic
magnetization profiles of mX at δ = 2 nm are illustrated
in Figs. 3(b) and 3(c), respectively. Here, there is quali-
tatively good agreement between both methods, corrob-
orating thus the approximations used in the theoretical
model. The localization features of these standing spin
waves depicted are almost independent of the wave vec-
tor, i.e., the SW profiles do not change at higher values
of the wave vector (not shown). Also, this localization is
strongly dependent of the stray field distribution, since
the periodic dipole field is acting as demagnetizing field
for the local magnetization in the thicker part. Therefore,
at a fixed applied field the internal field in the thick part
decreases the effective field, such that the mode is shifted
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FIG. 4. Figures (a) and (b) show the angular dependence of
the modes S1 and A1

s evaluated at kz = 0 and kz = π/az,
respectively. The cases δ = 2 nm and 4 nm are depicted. The
FMR mode (kz = 0) of the perfect FM film (δ = 0) is repre-
sented by filled circles. In (b) the shaded zones correspond to
band-gap widths.

to lower frequencies.40 The opposite behavior is observed
in the thin part of the film, where he periodic dipole field
is acting as a magnetizing field, and then the dipole field
in the thin part increases the effective field. Thus, band
gaps are opened by the dynamic dipole fields created by
the dynamic magnetizations in DE configuration, where
the BG width can be controlled via variation of δ, since at
higher δ the dipolar field induced by dynamic magnetic
charges becomes higher as well. On the other side, in
backward volume configuration the high frequency BGs
and the nearly flat modes are mainly induced by static
magnetic charges. Because these static magnetic charges
are induced by the static magnetization (perpendicular
to the stripe-like modulations), they have an appreciable
effect on the SW dynamics, i.e. the SWs are practically
confined to some regions of the SMMC, as shown Figs.
3(b) and 3(c).

The evolution of the SWs between DE (ϕ = 90◦) and
BV (ϕ = 0◦) configurations is shown in Fig. 4. Here, the
first band gap (frequency difference of modes S1 and A1

s

at kz = π/az) and modes at kz = 0 are explored as a
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FIG. 5. Frequency as a function of the field for δ = 2 nm and
kz = 0. The color code represent the simulated data, where
the lighter (darker) color means to a maximum (minimum) of
the response intensity. The lines correspond to the theoretical
results for the first four symmetric modes.

function of the azimuthal angle ϕ. The filled circles rep-
resent the frequency position of the FMR mode of the
perfect FM film (mode at kz = 0 and δ = 0), which is
independent of the in-plane angle ϕ. In Fig. 4(a), one
can see that near to the DE geometry (ϕ = 90◦), the
low frequency mode S1, which dominates in intensity, is
almost constant. However, when the angle ϕ is close to
zero (BV spin waves) the S1 mode moves to lower fre-
quencies. This behavior can be understood by looking
Fig. 4(b), since when the first band-gap [represented by
the shaded zones in Fig. 4(b)] is close to the FMR mode
(filled circles), this mode lies in the range of forbidden
frequencies, and therefore it avoids this state and shifts
to lower frequencies. In the FMR frequency vs. field di-
agram it is seen as a splitting of the spin-wave modes.43

Thus, this effect is predominant in BV geometry, while
in DE the gaps are opened at frequencies higher than the
FMR mode and therefore the frequency position of the
low frequency uniform mode does not change [see the low
frequency FMR mode in Figs. 2(a)–(c)]. Figure 5 shows a
comparison between theory and numerical simulations of
the FMR response, where the evolution of the modes as
a function of the field H is shown. The simulated calcu-
lations are given by the color code, whereas dashed lines
represent the theoretical results.. Here, only the first four
S1, S2, S3 and S4 modes are depicted, since from simula-
tions point of view the excitation of antisymmetric modes
requires an inhomogeneous excitation, which is not in-
cluded in the micromagnetic code. Such behavior was
previously obtained by using linear response theory and
two-magnon scattering in the limit of perturbative mod-
ulation depths,37,43 but restricted to the kz = 0 limit.

The nearly flat modes obtained in the backward vol-
ume geometry for the 300 nm periodicity, whose SW lo-
calization is practically independent of the wave vector,
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FIG. 6. (a) and (b) show the dispersion relation of the bi-
component magnonic crystal composed by alternating P/P ′

magnetic materials in DE and BV geometries, respectively.
A saturation magnetization Ms (M ′

s = 0.6Ms) is used for P
(P ′). Figures (c) and (d) represent the SW dispersion for a
SMMC.

represent a notorious impact in the SW dynamics. This
effect is attributed to the enhancement of the magnetiz-
ing character in the thinner part of the film, in such a
way that both demagnetizing and magnetizing fields in-
duce confinement of the SW modes. In a fully etched
MC (δ = d), the magnetizing field lies in zones without
magnetic material, and therefore it is not relevant for
the dynamic properties of the SWs. On the other side, in
bi-component MCs the magnetizing/demagnetizing fields
are superimposed each other, because both magnetic
materials create magnetic charges at the interfaces and
thus, such fields are reduced in comparison to SMMCs.
Figures 6(a) and (b) show the SW spectrum for a bi-
component MC (see appendix C for details), while Figs.
6(c) and (d) illustrate the spectrum for a SMMC. For
magnetic material P ′, a reduced saturation magnetiza-
tion of M ′s = 0.6(797) kA/m2 was considered, while
material P corresponds to the one previously described.
From this figure, one can see that the bi-component sys-
tem clearly presents BG widths larger than the SMMCs
in both DE and BV geometries. Nevertheless, in Figs.
6(a) and (b) it easy to see that the low-frequency mode
at kz = 0 remains in the same frequency position (around
10.5 GHz) in both BV and DE configurations. A simi-
lar behavior is observed in typical one-dimensional MCs
composed by alternating Permalloy/Cobalt stripes (not
shown). This dynamic behavior in a bi-component MC
is clearly different in the etched sample, where the low-
frequency mode at kz = 0 moves to lower frequencies in
the BV geometry (around 12.5 GHz in DE and 11 GHz in
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BV for δ = 4 nm). At the same time, the modes having
higher frequencies also mimic this behavior, namely they
move to low frequencies and become nearly flat.

All the calculations presented in Sec. II show sym-
metric dispersion under the inversion of the wave vector,
despite the fact that the elements AXX

G,G′ and AY Y
G,G′ [see

Eq. (B1a)] are dependent of the sign of the wave vector
through function ξ(G,k), defined in Eq. (5). Therefore,
two counterpropagating SWs exhibit a full frequency
reciprocity, namely f(k) = f(−k). This is not surprising,
since if AXX

G,G′ = −AY Y
G,G′ , the dispersion relation of spin

waves depends on the square of ξ(G,k). Nevertheless, if
the dynamic components of the magnetization vary along
the thickness, such as for the so-called first perpendicu-
lar standing SW mode, for instance; the SW frequency
becomes dependent on the wave vector orientation and
non-reciprocal features appear, i.e. f(k) 6= f(−k), since
the condition AXX

G,G′ = −AY Y
G,G′ is broken. This effect

has been observed in Refs. 51 and 52 for FM films with
different magnetic (or geometrical) properties on top and
bottom surfaces, where basically the symmetry is bro-
ken along the thickness by introducing different magnetic
anisotropies at the surfaces51 and by considering anti-
ferromagnetic states between the magnetization in the
etched zones (d + δ < y < d) and the underneath FM
film of thickness d.52 Note that in the one-dimensional
case ξ(G,k) = (Gn + kz) sinϕ, and therefore the non-
reciprocal properties could be enhanced in the Damon-
Eshbach geometry (ϕ = 90◦), such as the case of spin
waves propagating in FM/heavy-metal alloys, where the
Dzyaloshinskii-Moriya interaction is important.53–58

IV. CONCLUSIONS

Spin waves in surface-modulated magnonic crystals
were theoretically modeled using the plane-wave method
and micromagnetic simulations. The theory shows that
the dipolar interaction produced by surface geometrical
modulation is capable to open magnonic band gaps
either in the backward volume or Damon-Eshbach
configurations, whose magnitude can be controlled by
the etching height. An interesting evolution of the
modes is founded in the backward volume configuration,
where low frequency dispersionless modes are obtained,
whose localization is almost independent of the wave
vector. Such nearly flat magnonic bands are induced
by the notable field contrast between magnetizing and
demagnetizing regions of the SMMC. The theoretical
results show that partially-etched ferromagnetic struc-
tures can serve as a interesting magnonic device capable
of manipulating the spin wave properties, such as, band
gaps, spin-wave localization, dispersionless modes, etc.
by means of the etching depth; in contrast to the typical
existing models for bi-component magnonic crystals,
where the magnetic contrast between the constituent
magnetic materials is along the entire thickness of the
film. The approach agrees very well with numerical sim-

ulations, which allows validating the theoretical findings.
Consequently, the model applied to periodically etched
films provides further key-information about band gaps
modulation, spatial localization of the modes and the
dispersion of the spin waves. Therefore, the results
obtained in this work offer a better understanding of
such systems paving the way for further developments
on MC-based devices.
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Appendix A: Dipolar field induced by the etched
zones

In order to obtain the static periodic field HI0(r), it
is noted that the static magnetization components in the
range d < y < d+ δ, can be written as

Mz = Ms cosϕ
∑

G

CG exp [iG · r] (A1)

and

Mx = Ms sinϕ
∑

G

CG exp [iG · r] . (A2)

Then, following Ref. 43, the magnetostatic potential is
given by

φ(r) = −iMs

∑

G

χ(G)

∫
CG

eiG·r
′

|r− r′|d
3r′, (A3)

where χ(G) = Gn cosϕ + Gq sinϕ. Besides, CG is the
Fourier coefficient that is not zero for d + δ > y′ > d
and zero otherwise. Therefore, an analytical expression
can be derived for the magnetostatic potential, which is
φ(r) = φ1(r) + φ2(r), where

φ1(r) = i2πMs

∑

G

CGχ(G)
e|G|(y−d−δ)

(
1− e|G|δ

)

|G|2 eiG·r

and

φ2(r) = i4πMs

∑

G

CGχ(G)×

1− cosh [|G|(d+ δ/2− y)] e|G|δ/2

|G|2 eiG·r.

Here, function for φ1(r) is the magnetic potential in the
range 0 < y < d, while φ2(r) belongs to the range d <
y < d+δ. Thus, the Z-component of the static magnetic
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field is HI0
Z (r) = HI0

1Z(r) +HI0
2Z(r), with HI0

1Z(r) [HI0
2Z(r)]

being the static field inside the zone d > y > 0 (d+ δ >
y > d). Then, the field can be obtained from HI0

1 (r) =
−∇rφ1 and HI0

2 (r) = −∇rφ2, whose Z-components are
given in Eqs. (7) and (8)

In expressions (7) and (8), an average over the thick-
ness d + δ has been performed. Note that the mag-
netic field HI0

1Z(r) dominates when the thickness of the
etched zone is small, nevertheless when δ increases the
field HI0

2Z(r) becomes important. Thus, it is expected
to reproduce surface-modulated magnonic crystals with
significant depths. On the other hand, the dynamic mag-
netization components in the etched part can be written
as

mX,Y (r) =
∑

G,G′

mX,Y (G)CG′ei(G+G′+k)·r, (A4)

where it is assumed that this dynamic magnetization is
uniform along the thickness. This approximation is valid
for small values of depth δ, nevertheless, when δ increases
the boundary conditions may produce a modulation of
spin waves along the thickness and therefore Eq. (A4) is
not valid anymore. By using the same procedure to de-
rive Eqs. (7) and (8), the dynamic components of shown
in Eqs. (10) and (11) are obtained.

Appendix B: Matrix elements for a SMMC

The matrix elements in Eq. (13) are given by

AXX
G,G′ = −AY Y

G,G′ = −i2πMsCG−G′ξ(G,k)
η(G + k)

|G + k| , (B1a)

AXY
G,G′ = −

[
4πMsλ

2
ex(G + k)2 + 4πMsζ(G + k, d) +H

]
δG,G′ + 2πMsCG−G′F I

XY + Ψ(G′,G), (B1b)

AY X
G,G′ =

[
4πMsλ

2
ex(G + k)2 + 4πMsξ(G,k)2

1− ζ(G + k, d)

|G + k|2 +H

]
δG,G′ + 2πMsCG−G′F I

Y X −Ψ(G′,G).(B1c)

Here, it has been assumed that the external field is strong
enough to orient the magnetization parallel to it. Also,
functions F I

XY and F I
Y X come from the dipolar interac-

tion between the etched zone and the thick part and are
given by

F I
XY = η(G + k) +

χ(G−G′)

|G−G′|2
2
η(G−G′)d

d+ δ
(B2)

and

F I
Y X = ξ(G,k)2

η(G + k)

|G + k|2
− χ(G−G′)

|G−G′|2
2
η(G−G′)d

d+ δ
.

(B3)
While function ΨG′,G comes from the static stray field
HI0

2Z(r) that is interacting in the etched zone. This func-

tion is

Ψ(G′,G) =
4πMsδ

d+ δ

∑

G′′

CG′′−G′CG−G′′ ×

χ(G′′ −G′)

|G′′ −G′|2
2

[1− ζ(G′′ −G′, δ)] . (B4)

Appendix C: Matrix elements for a bi-component
MC

In the case of a bi-component magnonic crystal de-
picted in Fig. 6, both the saturation magnetization and
the exchange length are periodic functions. If the satura-
tion magnetization changes from Ms to M ′s, then it can
be written as

Ms(r) =
∑

G

Ms(G)eiG·r. (C1)

In the same way, the exchange length is

λex(r) =
∑

G

λex(G)eiG·r, (C2)

since λex(r) = 2A/4πMs. Then, the matrix elements on
Eq. (13) are given by AXX

G,G′ = AY Y
G,G′ = 0,
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AXY
G,G′ = −HδG,G′ + 4πMs(G−G′)

[
χ(G−G′)2

1− ζ(G−G′, d)

|G−G′|2
− ζ(G′ + k, d)

]

− 4π
∑

G′′

Ms(G−G′′) [(G′ + k) · (G′′ + k)− (G−G′′) · (G−G′)] [λex(G′′ −G′)]2, (C3a)

AY X
G,G′ = HδG,G′ − 4πMs(G−G′)

[
χ(G−G′)2

1− ζ(G−G′, d)

|G−G′|2
+ ξ(G′,k)2[

ζ(G′ + k, d)− 1

|G′ + k|2 ])

]

+ 4π
∑

G′′

Ms(G−G′′) [(G′ + k) · (G′′ + k)− (G−G′′) · (G−G′)] [λex(G′′ −G′)]2. (C3b)

Note that the one-dimensional case depicted in the pa-
per, the Fourier coefficient of the saturation magnetiza-
tion is

Ms(Gn) = (Ms −M ′s)
wz
az

sinc
(
Gn

wz
2

)
+M ′sδn,0. (C4)

The same structure was used for the exchange length
coefficient, i.e.

λex(Gn) = (λex − λ′ex)
wz
az

sinc
(
Gn

wz
2

)
+ λ′exδn,0, (C5)

where λ′ex(r) = 2A/4πM ′s.
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42 B. Obry, P. Pirro, T. Brächer, A. V. Chumak, J. Osten,
F. Ciubotaru, A. A. Serga, J. Fassbender, and B. Hille-
brands, Appl. Phys. Lett. 102, 202403 (2013).

43 R. A. Gallardo, A. Banholzer, K. Wagner, M. Körner,
K. Lenz, M. Farle, J. Lindner, J. Fassbender, and P. Lan-
deros, New J. Phys. 16, 023015 (2014).

44 Q. Wang, A. V. Chumak, L. Jin, H. Zhang, B. Hillebrands,
and Z. Zhong, Phys. Rev. B 95, 134433 (2017).

45 C. S. Lin, H. S. Lim, Z. K. Wang, S. C. Ng, and M. H.
Kuok, Appl. Phys. Lett. 98, 022504 (2011).

46 M. Sokolovskyy and M. Krawczyk, J. Nanopart. Res. 13,
6085 (2011).

47 M. Mruczkiewicz, M. Krawczyk, V. K. Sakharov, Y. V.
Khivintsev, Y. A. Filimonov, and S. A. Nikitov, J. Appl.
Phys. 113, 093908 (2013).

48 A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen,
F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv.
4, 107133 (2014).

49 K. Wagner, S. Stienen, and M. Farle, arXiv:1506.05292
(2015).

50 R. D. McMichael and M. D. Stiles, J. Appl. Phys. 97,
10J901 (2005).

51 O. Gladii, M. Haidar, Y. Henry, M. Kostylev, and
M. Bailleul, Phys. Rev. B 93, 054430 (2016).

52 K. Di, S. X. Feng, S. N. Piramanayagam, V. L. Zhang,
H. S. Lim, S. C. Ng, and M. H. Kuok, Sci. Rep. 5, 10153
EP (2015).

53 K. Zakeri, Y. Zhang, J. Prokop, T.-H. Chuang, N. Sakr,
W. X. Tang, and J. Kirschner, Phys. Rev. Lett. 104,
137203 (2010).

54 D. Cortés-Ortuño and P. Landeros, J. Phys.: Condens.
Matter 25, 156001 (2013).

55 K. Di, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok,
J. Yu, J. Yoon, X. Qiu, and H. Yang, Phys. Rev. Lett.
114, 047201 (2015).

56 J. Cho, N.-H. Kim, S. Lee, J.-S. Kim, R. Lavrijsen,
A. Solignac, Y. Yin, D.-S. Han, N. J. J. van Hoof, H. J. M.
Swagten, B. Koopmans, and C.-Y. You, Nat. Commun. 6
(2015).

57 H. T. Nembach, J. M. Shaw, M. Weiler, E. Jue, and T. J.
Silva, Nat. Phys. 11, 825 (2015).

58 S. Tacchi, R. E. Troncoso, M. Ahlberg, G. Gubbiotti,
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