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Abstract

The properties of the atomic nucleus are investigated from the
point of view of selforganization. The nucleus is described as an open
quantum mechanical many-body system embedded in the continuum
of decay channels. The transition from low to high level density is
traced as a function of the coupling strength between the discrete
nuclear states and the environment of decay channels. A redistribution
inside the nucleus takes place in a small region around some critical
value of the coupling strength. As a result of the redistribution, the
effective number of degrees of freedom is reduced. The analogy of
the results obtained numerically for the nuclear system to the laws of
synergetics is investigated. The slaving principle is shown to hold in
the open quantum system,
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1 Introduction

As it is well known, the discrete states of the atomic nucleus at low level
density are described well by wavefunctions containing all nucleons in bound
single-particle states [1]. As a matter of fact, most excited states have, how-
ever, a finite lifetime, i.e. they are embedded in the continuum of decay
channels and decay with a certain probability.

In an exact theory, the coupling to the continuum of decay channels has to
be taken into account, therefore, from the very beginning. The Schrédinger
equation (H — E)¥ = 0 must be solved with an ansatz for ¥ containing not
only the discrete states but also the scattering states [2]. The spectroscopic
properties are then described in a subspace of the whole function space. In
such a formalism, the asymptotic part of the wavefunctions as well as the
lifetimes of the states follow immediately from the coupling of the (discrete)
states to the environment of decay channels [3]. ‘

The equations describing the spectroscopic properties of discrete states
are linear as long as we restrict ourselves to the function space of bound
states which then we consider as the full Hilbert space. As soon as we con-
sider a function space spanned by bound and scattering states, the equations
become non-linear because in such a case the function space of discrete states
is a subspace of the whole function space.

Systems described by non-linear equations are expected to be selforga-
nized. Their properties are determined by the interplay between internal
stability and interaction with the environment. This fact, well known from
complicated, e.g. biological systems, has been observed also in the open
quantum mechanical nuclear system [3].

The evolution of a system can be traced best by investigating its be-
haviour near instability points in dependence of some control parameter
[4]. Here, a selforganizing system which is described by classical methods
is shown to form stable modes together with a few unstable modes. The
unstable modes determine the behaviour of the system while the stable ones
are suppressed ("slaving principle”). By that, the complexity of the system
is reduced. Further, the information entropy increases, in this case, up to a
certain maximal value as a function of the increasing control parameter in
full analogy to the second law of thermodynamics for closed systems ("max-
imal information entropy principle”) [4].

In an open quanturmn mechanical nuclear system, one can also differentiate
between stable and unstable modes [3], although the mathematical formalism



is completely different. At a critical value of the coupling strength between
system and environment, a redistribution of the spectroscopic values takes
place. Most states of the system become long-lived (trapped) while a few
of them are distinguished by large widths. They are the relevant modes at
strong coupling [5]. The number of these states, the widths of which are
large as a result of the redistribution taking place in the nucleus, is exactly
equal to the number of open decay channels [6]. In other words, the envi-
ronment imprints its properties into the system. The original spectroscopic
information is lost. Such a redistribution is observed and investigated by
different methods in different quantum systems at high level density [3,5-14].
A similar problem is discussed in quantum chemistry [15].

Our aim is to trace, in this paper, the redistribution in the nucleus taking
place at high level density, and to compare the results in detail with those
obtained in synergetics {4]. The basic set of wavefunctions is the set of Slater
determinants for which the single-particle quantum numbers j and [ as well
as the total spin J are good quantum numbers. The number of levels is much
higher than the number of open decay channels. We focus mainly on the dif-
ferences in the wavefunctions of trapped and broad modes which occur, in
any case, by selforganization at high level density.

In Sect. 2, the model used for the numerical calculations is sketched.
The underlying equations are shown to be non-linear due to the fact that
the spectroscopic properties of an open system are considered. In Sect. 3, the
results are given and in Sect. 4, they are discussed. Conclusions are drawn
in the last section.

2 Model

The model used in the present calculations is the continuum shell model [3].

The Schrédinger equation
(H-E)YY =0 (1)

is solved with the ansatz
v=3ael + 3 [apd (2)

Here, H = Hy+V is the Hamiltonian of the system with the residual interac-
tion V), the Q‘)Em are wavefunctions (Slater determinants) of the unperturbed



discrete states with all A particles in bound states, while the xZ are unper-
turbed channel wavefunctions with A — 1 particles in discrete many-particle
states and 1 particle in a scattering state.

The spectroscopic values are the widths I'g and positions Eg of the res-
onance states. They follow from

(HG — €r) ®r =0 (3)

where the & are the complex energy dependent eigenfunctions and

~ - 1~
Er=FEr— -2—FR (4)
are the complex energy dependent eigenvalues of the effective Hamiltonian
HY =QH (Q+G PHQ) (3)
in the subspace of bound states. Then, the equations
Er = Eg(E=Epg) (6)
I'r = TI'r(E = ER) (M

have to be solved in order to determine the spectroscopic values.

In (5), G§,+) is the Green function for the motion of the particle in the
continuum. Further, Q projects onto the subspace of bound states,

Q=) lez¥ >< a3V, (8)
R

and P onto the environment (subspace of decay channels) with the complete-
ness relation

P+Q=1. (9)

The bound states @M are identified with the solutions of the standard shell
model problem, i.e. the () operator projects onto the shell model function
space. In the full Hilbert space P + @, the shell model equation reads

(H — E5MyoiM = PHQ oM
= (1-Q) HQ o3V . (10)

With the total Hamiltonian H, eq. (3) reads
(H—gn) bp=X dp (11)
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where ,
X = {1 — QHP (E+-PHP)™ }PHQ
= {1-QuO-Q) (B -(1-QH1-) "} (1 - QHQ .(12)

Eqgs. (10), (11) and ( 12) show clearly that a system being in a subspace
of the whole function space is described, in any case, by a Schrédinger equa-
tion which is nonlinear with respect to the wavefunctions: Only for @ =1,
i.e. for a closed system, eqs. (10) and (11) turn into linear (identical) equa-
tions. The unitarity condition is fulfilled due to (9).

The wavefunctions ®3¥ contain the internal mixing
Wiry =< 8Q|v"16) > (13)
of two states while the wavefunctions ®g contain additionally the external
mixing

er | ¢C 1 C eT
Wi = / dE' < &M |yes|gelh) o 5 < £Dve|o8M > (14)

of the two states R and R’ via the continuum of decay channels. Here,
Vi = o .V and V* = o - V where the parameters o' and a*® are
introduced in order to vary the internal and external mixing independently
of each other. The £ are solutions of the coupled channels equations

(H— EM)eg?) = QHP 687 (15)

The channels ¢ are the so-called physical channels, i.e. the unperturbed
channel wavefunctions x§ denote the wavefunction of a nucleon in relative
motion to the residual nucleus which is in a definite (discrete) state with
definite quantum numbers.

The wavefunction of a resonance state is

Or = (Q+GY) HQ) dr
= dp+ar. (16)

Here, &g describes the tail of the wavefunction due to the coupling of the
state to the continuum. It is

< QplVixg >=< 2R |VIeE > (a7
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where

Qr = (Q+G) HQ) oM (18)
in analogy to eq. (16), and
< Qr|VIxg >=< ®r|VI€5 > . (19)

The < Qg|V|xg > are the amplitudes of the partial widths 4% while the
< ®fM|V |z > are the coupling matrix elements between discrete and scat-
tering states. The values < QRlVIXE > may differ strongly from each
other even for states with the same total quantum numbers whereas the
< M|V |5 > are of the same order of magnitude for different states R.

It is
Zf‘R(ngy) = const (20)
R .

at every energy E of the system and constant diagonal matrix elements Wg5,
Such a case occurs, e.g., if the level density is enlarged, in the numerical cal-
culations, by reducing the level distances [7]. Eq. (20) is nothing but the
fact that the sum of the eigenvalues of a matrix is equal to the sum of the
diagonal matrix elements [3]. It expresses the condition under which the
external mixing W§gp, of the resonance states of the system takes place.

If one considers the behaviour of the system as a function of the cou-
pling strength V' = V** in (14), then the right-hand side of eq. (20) is a
monotonously increasing function of V| since the N diagonal matrix ele-
ments Wg% depend monotonously on V¢*. Nevertheless, a redistribution can
be achieved, also in this case, by the N(N —1) nondiagonal matrix elements

WRRI

In any case, the redistribution taking place at high level density occurs
in accordance with the unitarity of the S-matrix. The resonance part of the
S-matrix reads [3]

~1/2 ~1/2
5(2) - Z YRet 7Rc (21)
“ E—-Er+ I‘R

Let us consider an ensemble of V resonances which lie densely in an energy
region AFE comparable to the uncertainty of energy of the system (£ =~ F; =
... = En). Due to external mixing, they interfere strongly and one gets
for estimation
~1/2 ~1/2
S® x JYre'_ VRe (22)
o
— TIr



In the one-channel case, it is

SO~2 > TRye (23)
R 'YRfc

where the Ry denote the relevant fast modes and the relation
Tr= Z |9Re| (24)

for these modes has been used (see Fig. 4 and the corresponding discussion).
According to the unitarity of the S-matrix, |S£§)| < 2. Therefore, the number
R of relevant fast modes cannot be larger than 1 in the case with one open
decay channel. An analogous conclusion can be drawn in the many-channel
case: The number of fast relevant modes is exactly equal to the number K
of open decay channels.

As a result, the widths of K states increase up to their maximal possible
value at the cost of the widths of the remaining N — K ones where N is the
number of states and K the number of open decay channels,

K N
ST TR(W=) & Y Tr(W™) (25)
R=1 R=1
and
N
> Ta(W=)=0. (26)
R=K+1

The N — K states with small widths, according to (26 ), are called trapped
modes [3].

It could be shown analytically {2, 16] that at high level density where the

resonance states overlap, the relation (24 ) between total widths and partial
widths does no longer hold. Instead, it is proven

Tr < ®rl®r>= ) [rl, (27)

1.e.

[ 5 2

Fr <) 1kl (28)
at high level density. The relation (28) holds also for the one-channel case
when the states are mixed via one continuum. Eq. (24) holds only for iso-
lated resonance states.



3 Calculations and Results

The calculations are performed for 70 states with J™ = 1~ in %0 with (1p-
1h) and (2p-2h) excitations. The configurational space is (1p)~*(2s, 1ds/2)" ,
(1s)"1(1p)~*(2s, 1ds/2)*. The parameters of the Woods-Saxon potential are
similar to those used in realistic calculations, see e.g. [17]. The residual
interaction is a zero-range force

V(l, 2) = —a%(a -+ bPlaé)(().(I‘]_ —_ 1‘2) y (29)

where Pf, is the spin exchange operator and « is a parameter which controls
the coupling strength between bound (a = a™) as well as between bound
and unbound (a = a®®) states.

In our calculations, we use Vp = 500M eV - fm3, a = 0.73, b = 0.27 which
are realistic values for *0O (see [17], where V; = 650MeV - fm?®). The en-
ergy of the system (energy of the projectile) was fixed mostly at E.,, = 34.7
MeV. Calculations at other energies are performed, but not shown in the
present paper, because they lead qualitatively to the same results. Most of
the 70 states lie in an energy region of ., between about 25 MeV to 45 MeV.

The number of channels taken into account in our calculations is two.
They correspond to >N + p with ®* N in its ground and first excited state at
6.3 MeV with negative parity (1h-structure).

The calculations are performed as a function of the ”control” (coupling)
parameter «®® which controls the value of the coupling matrix elements be-
tween bound and scattering states {external coupling parameter o in (14)).
It is varied independently from the parameter o in the matrix elements be-
tween bound states (internal coupling parameter o'® in (13 )) which is fixed
in our calculations to '™ = 1. It should be underlined that the parameter o
appears linearly in the internal mixing W**, (13), while the relation between
a®® and W* is more complicated: Additionally to the explicit quadratic de-
pendence on a®, the W** depend on a** via the coupled channel wavefunc-
tions £, eq. (15).

In order to illustrate the trapping effect, the imaginary parts %fR of the

complex eigenvalues of the effective Hamiltonian Hgg are calculated as a
function of the coupling strength V% in the case of two open decay channels
and shown in Fig. I. As long as a®® is small, the widths of all modes in-
crease with increasing coupling strength V** between bound and continuous
states. Beyond some critical value o, the widths of most trapped modes

decrease with increasing coupling strength while in some cases they increase
very slowly. In contrast to this, the widths of the broad modes increase very



quickly with increasing coupling strength V* from the very beginning. As a
result, the widths of the trapped modes are much smaller than those of the
two fast modes for a > a,.

The growing-up of the two short-lived modes is shown in Fig. 2. Here,
the widths of the resonances are drawn for different coupling parameters o®®
reaching from 1 to 9. The resonances are sorted along the z-axis according
to the value of their width: the first resonance has the largest width I'; while
the 70th resonance has the smallest width I'7g. In Fig. 2, the widths of the
first 20 resonances are shown. The separation of the two broad resonances
occurs at off = 2.5 to 3.

According to relation (27), the total width I'g of a state differs from
the sum of the partial widths |73| by the factor < ®r|®r >. In Fig. 3,
<® Rlé) R > is given for all 70 resonances and different a®*. As one can see
from the figure, < 0 R|<i> Rr > stays always below 3 with the exception of a few
comparably narrow regions of a°® where further redistributions in the system
take place. The total widths ['n of the broad and trapped modes differ, on
the average, by several orders of magnitude at a large coupling strength o**.
As a consequence, the partial widths of the broad and trapped modes differ
strongly, too.

In Fig. 4, the dependence of < i) Rl(i r > on «°* is shown for the two fast
(f) modes (Fig. 4a) as well as for some slow (s) modes (Fig. 4b,c). For the
fast (broad) modes, the scalar product increases up to 6 in the critical region
where the redistribution in the nucleus occurs. For larger a®®, it decreases
again. Below and beyond the critical region, < éé}é;{ >= 1, i.e. the reso-
nances R; behave like usual resonances in the sense of relation (24 ). This
result corresponds to the conclusion drawn e.g. in [5], that the fast modes are
relevant. Further, the estimation ( 23 ), where ( 24 ) has been used, is justified.

The wavefunctions i’;i. of the other modes show a different behaviour (Fig.
4). For most of them, < ®%|®% > remains larger 1 for large a**. The "gaps”
in Figs. 4b, c arise because the ordering of the resonances according to the
value of their widths changes with o**.

In Fig. 5, the widths I'r are shown as a function of the energy E.n of
the system for a®® = 2 and 6. The position of the inelastic threshold 1s at
E., = 6.3 MeV (Fig. 5a,b) and shifted to 30.0 MeV (Fig. 5c,d). The rs
depend smoothly on energy with the exception of threshold effects. The m-
fluence of the inelastic threshold on the widths can be seen at all o*® (Fig.
5c,d). The pictures show clearly the appearance of one broad mode below
the inelastic threshold at large o, while there are two broad modes as soon
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as two channels are open. It is interesting to see that the one broad mode
below the inelastic threshold is not among the two broad modes above the
threshold. This result illustrates very nicely that the original spectroscopic
information of a state is not decisive for the question whether a mode be-
comes trapped or relevant.

The average degree of overlapping I'/ D of the resonances as a function of
the coupling parameter a® is shown in Fig. 6. The degree of overlapping of
the two broad modes increases strongly in the region of the instability point
and decreases at larger a®® where the two resonances repel each other. The
degree of overlapping of the trapped modes is almost constant or decreases in
the region of the instability point while it increases weakly for higher values
o even if the four broadest trapped modes are excluded (?64s”).

The complex eigenvalues Fr — %fR of the Hamiltonian Hgg (egs. (3)
and (5)) are shown in Figs. 7 and & as a function of the coupling parameter
a®. Starting from the value o, = 0.05, the parameter o®* is changed in
steps of 0.05 up to a2 =1 (Fig. 8a), 2 (Fig. 8b), .... , 8 (Fig. 8¢) and
9.8 (Fig. 7). At off = 2.6, two broad modes are formed. After leaving the
energy region where the narrow 68 resonance states remain, new generations
of "broad” modes appear: At a®® = 4.5, 6.5 and 9, relatively broad modes at
both the lower-energy and the higher-energy parts of the spectrum are grow-
ing on. The corresponding redistributions in the nuclear system can be seen
in Fig. 3. It is interesting to observe that the widths of some trapped modes
decrease for relatively small o®® but increase again for larger . This shows
once more that the original spectroscopic information contained in the shell
model wavefunctions ®3¥ of the discrete states is lost and is not decisive for

the lifetime of a special state after the redistribution has taken place.

4 Discussion of the results

The results obtained for the open nuclear quantum system as a function of
the control parameter a® are represented in Figs. I to 8. It exists a critical
value aff of the coupling parameter at which a redistribution inside the nu-
cleus takes place. The two corresponding scenarios a®® < a2, corresponding
to a low level density, and a®® > off, corresponding to a high level density,
are very well known in nuclear physics. For their description, phenomenolog-
ical models have been worked out: At low level density, the discrete states
where all nucleons occupy bound single-particle states are relevant, while
at higher level density the coupled channels are relevant (”unified theory of

nuclear reactions” [18]). This picture corresponds exactly to the results ob-
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tained by us. The transition we observe at the critical coupling parameter
aSF occurs from a scenario with N relevant discrete states to another one in
which the K open decay channels are relevant [3].

Furthermore, the results obtained numerically in this paper, agree fully
with the behaviour of selforganizing systems studied on the basis of clas-
sical methods by Haken et al. [4] although the system investigated by us
is described as an open quantum system. At the transition, a few unsta-
ble (short-lived) states are formed, in both cases, together with many stable
(long-lived) states. The unstable modes are relevant (see for illustration [5]
where the S-matrix is studied for a quantum system as a function of the level
density). Thus, the trapping process reduces the effective number of degrees
of freedom and the complexity of the system, respectively, as expected for a
selforganizing system. The number of different decay possibilities decreases
with increasing coupling strength.

- The analogy of our results with those obtained by Haken [4] consists in
the following.

The behaviour of the system is investigated in both cases in dependence
on a control parameter. In the nuclear system, this parameter is a®® which
characterizes the coupling strength between system and environment of de-
cay channels.

Most interesting is the behaviour of the system near to an instability
point since here a rearrangement takes place inside the system which is very
sensitive to the control parameter. The instability point in the nuclear sys-
tem corresponds to af*, where the resonances start to overlap, more exactly
where the average distance D between the resonances is equal to their av-
erage width T. Here, the nuclear system has the possibility to form a few
short-lived modes together with trapped modes most of which decouple prac-

tically from the environment.

The behaviour of resonances at the instability point I'/D has been inves-
tigated in an earlier paper [14] on the basis of the statistical theory of nuclear
reactions in which not only the internal mixing of the resonance states is not
taken into account but also the energy dependence of the coupling matrix

‘elements between discrete and continuous states is neglected. In these inves-
tigations, the widths of all trapped modes decrease with increasing coupling
strength a®®. There are no broad modes of the second and third generation in
contrast to the results obtained in the present investigations. Furthermore,
the energy shifts of the trapped modes in the calculations of the statistical
model are of such a type that the energy region covered by the whole group of
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resonances is reduced. In the present more realistic calculations, the results
are much more multiform. A nice example for the great variety of the results
in a more realistic model is the appearance of a new fast mode at the energy
where a new decay channel opens (Fig. 5). In an analogous manner, local
broad modes of the second or third generation appear as soon as the two fast
modes are shifted to an energy outside the main interference region (Fig. 8).

In the strong-coupling regime, the trapped modes are almost decoupled
from the environment of decay channels: The coupling matrix elements (17)
are large but the matrix elements (19 ), which correspond to the amplitudes
of the partial widths, are extremenly small (see Figs. 1, 2, 5, 7 and 8). This
result corresponds fully to the definition of the compound nucleus given by N.
Bohr more than 50 years ago [19]. He claimed: ”In the atom and in the nu-
cleus we have indeed to do with two extreme cases of mechanical many-body
problems for which a procedure of approximation resting on a combination
of one-body problems, so effective in the former case, loses any validity in the
latter where we, from the very beginning, have to do with essential collective
aspects of the interplay between the constituent particles.”

The ”order parameters” [4] may be identified with the wavefunctions of
the broad modes. It follows from eq. (16)

- - , 1 ”
Gn=br+ 3 [ dB 1o < lVIg > (30)

and further by using eq. (27),
O~ dp +im e £, TY? < p|dp >1/2 (31)
in the one-channel case. From (31), it follows
< &10% > (I‘f ) (32)
<&l >  \I7
by using the numerical results shown in Fig. & As a result, the wavefunctions

of the broad modes overlap strongly with the channel Wavefunctlons due to

the large contribution w{z in Q The wavefunctions of the trapped modes,

on the contrary, are described well by the ) R,
05~ @3, (33)

Further, the fast modes behave like isolated resonances (see below) although
they do overlap (Fig. 6). This result is surely connected with the fact that
the channel wavefunctions {{3} for different channels ¢ are orthogonal to
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each other. Therefore, the large overlapping integrals < é%]ﬁlf{ > suggest
< Q{QIQ{W > dpp.

Thus, it is justified to identify the trapped modes with the stable enslaved
modes and the broad modes with the enslaving unstable modes. The slaving
principle is illustrated directly in Fig. 4: The unstable modes behave like
isolated resonances with the exception of the region around af®, at which
the rearrangement inside the nucleus takes place (Fig. {a) and where their
wavefunctions are complex. At higher coupling strength, the two resonances
repel each other. That means, they are described quite well by neglecting
the trapped modes altogether.

The trapped modes are almost stable. Near to the instability point, their
average degree /D of overlapping is almost constant or decreases due to
their small widths (Fig. 6). For larger o, it increases slowly with increas-
ing coupling strength what is connected with the appearance of broad modes
of the second and third generation (compare Figs. 7, §). The trapped modes
do not behave like isolated resonances neither in the region where I'/D is
almost constant, as can be seen from Fig. 4b,c, nor in the region where the
"broad” modes of the second and third generation appear. All of them are
"enslaved” by the two fast modes by which they are overlapped. By this,
the influence of the unstable modes on the stable ones is expressed ("slaving
principle”).

In [14], it is shown, basing on results obtained in the statistical model,
that trapping of resonance states and enveloping them by broad modes occurs
as soon as the local level density is high enough so that some resonance states
overlap due to local fluctuations in the level density. The trapping appears
for a small localized group of resonances, in those calculations, in the same
manner as for large extended groups. That means, the trapping mechanism
proceeds in a hierarchical way. In the present calculations, we observe also
a hierarchical mechanism of trapping (Figs. 7, 8§). The wavefunctions of the
local broad modes, however, differ from the fast modes of the system since
they do not behave like isolated resonances (Fig. {). They are, on the one
hand, slaved by the modes of the higher hierarchies and, on the other hand,
slave locally trapped states.

The picture obtained from the present realistic calculations is richer
the sense that a second and a third "generation” of broad modes at higher
a®® appear (Figs. 7, 8). These resonances do not behave like isolated reso-
nances (see Fig. 4b). Inspite of their increasing widths as a function of the
coupling parameter o®, they do not have the order properties of the two
first broad modes appearing at o®® a2 2.6. They are of local importance and

or
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create local "bumps” among the finestructure resonances.

The relevance of the unstable modes at time and energy scales character-
istic of the system is discussed in earlier papers (e.g. [3, 5]). By means of
these modes, the system finds its own structure. The stable (trapped) modes
can be identified in the cross section only at the long-time scale which is not
typical for the system considered. The properties of the trapped modes are

generic, see e.g. [11].

The physical meaning of this result is the following: the rearrangement
inside the nucleus, taking place at the critical coupling strength V%, oc-
curs in such a manner that the complezity of the system is reduced. Due to
trapping, many degrees of freedom become irrelevant. In other words: By
reducing the number of relevant degrees of freedom, the system finds its own

structure with an energy and time scale characteristic of it.

It should be underlined here, that the results discussed in the present
paper are obtained for an open quantum system described by a nonlinear
Schrédinger equation. The mathematical formalism used here coincides fully
with the standard methods worked out for the description of the nucleus
in the two limiting cases at low and at high level density. In these limiting
cases, the nonlinearity of the Schrédinger equation can be neglected since one
restricts oneself, in the standard methods, to the description of the relevant
modes.

In spite of the difference in the mathematical formalism used in this paper
and in other investigations of selforganizing systems, the results obtained by
us coincide with those from synergetics. In any case, the system redistributes
at a certain critical value of the control parameter in such a manner that the
effective number of degrees of freedom is reduced.

5 Summary

In the present paper, the rearrangement is investigated in detail which takes
place in the nuclear system if the level density is so large that the distance
between the resonances is comparable with their widths, on the average. The
rearrangement proceeds in such a manner that the spectroscopic information
on the resonance states which is relevant at low level density is lost at high
level density. Instead, a few unstable modes become relevant the number
of which is exactly equal to the number of open decay channels. These two
scenarios are very well known in nuclear physics. For the description of their
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respective relevant parts, phenomenological methods have been worked out.

The transition between the two scenarios is traced by us as a function
of a control parameter which describes the coupling of the discrete states of
the system to the environment of decay channels. The model used is the
continuum shell model which describes the nucleus as an open quantum me-
chanical system. It is a realistic model for light nuclei.

As a result, the transition takes place in full analogy to transitions in
other selforganizing systems which are described by classical methods. By
means of numerical results, the slaving principle of synergetics is shown to
hold also for the nuclear system.

The experimental observation of structures in the nuclear reaction cross
sections even at high level density was always surprisingly in the history of
nuclear physics studies. According to the numerical results obtained by us,
they are caused by unstable modes formed locally at high level density. These
states slave some trapped modes ("fine structure resonances”).

In spite of their small widths, the trapped modes do not behave like
isolated resonances which are independent from each other. They are cor-
related due to the existence of the broad unstable modes by which they are
overlapped. It is worth-while to mention that such a result follows not only
from the numerical calculations given in this paper but is very well known
from experimental nuclear physics studies, e.g. from the isobaric analogue
resonances. Phenomenological models have been worked out for their de-
scription [2]. Furthermore, correlations are found recently between neutron
resonances [20, 21, 22]: The parity violation measured in resonant neutron
reactions shows strong sign correlations which are not a feature of the conven-
tional statistical model of parity mixing between compound nucleus states.

Summarizing, we have shown in this paper by means of numerical results,
that the slaving principle of synergetics holds also in the open quantum me-
chanical nuclear system. In a forthcoming paper, the principle of maximum
information entropy will be studied for the nuclear system in the framework
of the same model.
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Figure 1

The imaginary part of the complex eigenvalues £g = ER - ’Ef Rr versus o®”.
The calculations are performed at E = 34.7 MeV for o*® = 1, N = 70 reso-
nance states and K = 2 open decay channels.

Figure 2

The imaginary part I'g of the complex eigenvalues c‘:'R, multiplied by two, fqr
a®® =1, 2, ... ,9 versus the 20 resonance states with the largest widths (o™
= 1, E=34.7 MeV, N=70, K=2).

Figure 3

The < ‘i’Rﬂ‘i’R > as a function of o (o™ = 1, E=34.7 MeV, N=T70, K=2).

Figure 4

The <« (fDRi(f)R > as a function of o for the two fast modes _(48), the four
broadest trapped modes (4b) and other trapped modes (4c) (@™ = 1, E=34.7
MeV, N=70, K=2).

17



Figure 5

The imaginary part -;—f‘R of the complex eigenvalues £ versus the center-of-
mass energy E of the system (Ep = E + 12.1MeV) for o = 2 (5a,c) and
6 (5b,d). The second channel opens at 6.3 MeV (5a,b) and at 30.0 MeV
(5¢,d), respectively (o™ = 1, E=34.7 MeV, N=70, K=2).

Figure 6

T'/D versus a*® for the two broad modes (f) and the 68 trapped modes with
(68s) and without (64s) the 4 broadest ones (o™ = 1, E=34.7 MeV, N=T70,
K=2).

Figure 7

The complex eigenvalues Er = Er — Q- %f‘R for a** varied from 0.05 up
to 9.8 in steps of 0.05. ) = 12.1 MeV is the energy of the elastic threshold
(Q-value). The results are shown in a logarithmic ordinate scale (o™ = 1,

E=34.7 MeV, N=70, K=2).

Figure 8

The complex eigenvalues € = Fp — Q — %f‘R for different «®*. In each
picture, a®® is varied from 0.05 to 1 (8a), 2 (8b), 3 (8¢), 4 (8d), 5 (8e), 6
(8f), 7 (8g), and 8 (8h) in steps of 0.05. Q = 12.1 MeV is the energy of the
elastic threshold (Q-value). The results are shown in a linear ordinate scale

(o™ = 1, E=34.7 MeV, N=70, K=2).
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Eigenvalues of the effective Hamiltonian
for ex :0.05 — 2, m_@mw oom

‘_.w ______-_~_________~____j___~___ | N N A O Y M A A AR A A O R A

- : ; ;

-

——f
——
—d

0.0 ] l m / I ,_L_ L _________ q_ 1 — Al Z d I .__‘_.__ _:

05 76 70, 24 "y 4

Hm :<H®<M



_r_T:.__.>_®_m_________v_m_:_ ! ________O_N____,_r_NN®_.®
™ .._’ VRN f:..: ___ B
L Voo “ : =
mm@/
. } 0
. H %
s e g ke ey

URTUO][ITWRH SAI108]]9 9] JO SON[BAUSFIY



Eigenvalues of the effective Hamiltonian
for (lex :0.05 — 4, step 0.05
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Figenvalues of the effective Hamiltonian
for (lex :0.05 6, step 0.05
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