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Abstract 

The properties of the atomic nucleus are investigated from the 
point of view of selforganization. The nucleus is described as an Open 
quantum mechanical many-body system embedded in the continuum 
of decay channels. The transition from low to  high level density is 
traced as a function of the coupling strength between the discrete 
nuclear states and the environment of decay channels. A redistribution 
inside the nucleus takes place in a small region around some critical 
value of the coupling strength. As a result of ehe redistrilbution, the 
effective number of degrees of freedom is reduced. The analogy of 
thle results obtained numerically for the nuclear system to the laws of 
synergetics is investigated. The slaving principle is shown to hold in 
thle Open quantum system. 
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]L Introduction 

As it is well known, the discrete states of the atomic nucleus at low level 
density are described well by wavefunctions containing all nucleons in bound 
single-particle states [I]. As a matter of fact, most excited states have, how- 
ever, a finite lifetime, i.e. they are embedded in the continuum of decay 
channels and decay with a certain probability. 

In an exact theory, tthe coupling to the continuum of decay channels has to 
be taken into account, therefore, from the very beginning. The Schrödinger 
equation (H - E)@ = 10 must be solved with an ansatz for @ containing not 
only the discrete states but also the scattering states [2]. The spectroscopic 
properties are then described in a subspace of the whole function space. In 
suich a formalism, the asymptotic part of the wavefunctions as well as the 
lifetimes of the states f~ollow immediately from the coupling of the (discrete) 
states t s  the environment of decay channels 131. 

The equations describing the spectroscopic properties of discrete states 
are linear as long as we restrict ourselves to the function space of bound 
states which then we clonsider as the full Hilbert space. As soon as we con- 
sider a function space spanned by bound and scattering states, the equations 
become non-linear because in such a case the function space of discrete states 
is a subspace of the whsle function space. 

Systems described by non-linear equations are expected to be selforga- 
nized. Their properties are determined by the interplay between internal 
stability and interaction with the environment. This fact, well known from 
complicated, e-g. biolsgical systems, has been observed also in the Open 
yu,anturn mechanisal nuclear system [3]. 

The evolutisn of a system can be traced best by investigating its be- 
haviour neas instability points in dependence of sorne contrd parameter 
[-I]. Here. a selforganizing systern which is described by dassical methsds 
is shown to form stable rnodes together with a few unstable modes. The 
unskable rnodes determine the behaviour sf the systern while the stable ones 
are suppressed ("sslaving principle"). By that, the complexity of the system 
is reduced. Rirther. the information entropy increases, PI] this c<ase, up to a 
eestain maximal vahe as a function of the increasing cantrol parameter in 
fd11 analogy to the secowd Baw of thesmodynamics for closed systerns (">max- 
imal infosmation eantropy ~>rinmciple") [ Ip] .  

In an open quarhtunn mechanical wucleas system, one can also differeantiate 
between stable and unstable rnodes [Sj, dthoni h tihe mathennaf ic~a.1 fosmaIisrn 



is completely different. At a critical value of the coupling strength between 
system and environment, a redistribution of the spectroscopic values takes 
place. Most states of the system become long-lived (trapped) while a few 
of them are distinguished by large widths. They are the relevant modes at 
strong coupling 151. The number of these states, the widths of which are 
large as a result of the redistribution taking place in the nucleus, is exactly 
equal to the number of Open decay channels [6]. In other words, the envi- 
ronment imprints its properties into the system. The original spectroscopic 
information is lost. Such a redistribution is observed and investigated by 
different methods in different quantum systems at high level density [3,5-141. 
A similar problem is discussed in quantum chemistry [15]. 

Our aim is to trace, in this Paper, the redistributisn in the nucleus taking 
place at high level density, and to compare the results in detail with those 
obtained in synergetics [4]. The basic set of wavefunctions is the set of Slater 
determinants for which the single-particle quantum numbess j and I as well 
as the total spin J are good quantum numbers. The number sf levels is much 
higher than the number of Open decay channels. We focus mainly on the dif- 
ferences in the wavefunctions of trapped and broad modes which occur, in 
any case, by selforganization at high level density. 

In Sect. 2, the model used fsr the numerical calcuPatisns is sketched. 
The underlying equations are shown to be non-linear due t s  the fact that 
the spectroscspis properties of an Open system are csnsidered. In Sect. 3, the 
results are given and in Sect. 4, they are discussed. Conclusions are drawn 
in the last section. 

2 Model 
The rnodel used in the presenit calculations is the continiaum shell mcpdel [3]. 

( H - E ) @ = O  

is solved with the ansatz 

Here, PI = Ho+ V is the HamiHtonnjan of the srstem with the  residual interae- 
tim V, the @'" arpl wavefurictions (Slater determiniantsl of tlic unperturbcd 



discrete states with all A particles in bound states, while the are unper- 
turbed channel wavefunctions with A - 1 particles in discrete many-particle 
states and 1 particle in a scattering state. 

The spectroscopic values are the widths rR and positions ER of the res- 
onance states. They follow from 

vwhere the 6~ are the cornplex energy dependent eigenfunctions and 

are the complex energy dependent eigenvalues of the effective Hamiltonian 

HG: = Q H  ( Q  + GF) PHQ ) (5) 

in the subspace of bound states. Then, the equations 

have to be solved in order to determine the spectroscopic values. 

In ( 5 ) ,  GY) is the Green function for the motion of the particle in the 
continuum. Further, Q projects onto the subspace of bound states, 

arid P onto the envisonment (subspace of decay channels) with the complete- 
ness relation 

The bound states @iM are i$entifie$ with the soPutions of the standard shell 
mlodel Problem, i.e. the & operator projects onto the shell model function 
space. In the fuP1 HiBbert s p s e  P + Q, the shell model equation reads 

ith the total IIamiltonian 11, eq. ( 3 )  reads 

( ~ - & ) 9 R = i x 6 R  



Eqs. ( 10 ), ( 11 ) and ( 12 ) show clearly that a system beiing in a subspace 
of the whole function space is described, in any case, by a Schrödinger equa- 
tion which is nonlinear with respect to the wavefunctions: Only for Q = 1, 
i.e. for a closed system, eqs. ( 10 ) and ( 11 ) turn into linear (identical) equa- 
tions. The unitarity condition is fulfilled due to ( 9 ). 

The wavefunctions <PRM contain the internal mixing 

of two states while the wavefunctions q > ~  contain additiondly the external 
mixing 

of the two states R and R' via the continuum of decay channels. Here, 
Vin = ain - V and V"" = cue" . V where the parameters ai" and a"" are 
introduced in order to vary the internal and external mixing independently 
of each other. The are solutions of the coupled channels equations 

The channels c are the so-called ~hysical channels, i.e. the unperturbed 
channel wavefunctions XE:  denote the wavefunction of a nucleon in relative 
motion to the residual mlcleus which is in a definite Qdiscrete) state with 
definite qeiantum nurnbers. 

T'nie wavefunction of a resonance state is 

Here, GR describes the tail of the wavefunction due to the couplin 
state to the eontininum. Bt is 



where 

an = ( Q + G ~ )  H Q )  B", (I8) 

in analogy to eq. ( 16 ), and 

The < f iRIVIX~ > are the amplitudes of the partial widths 7; while the 
< @cMIVI& > are the coupling matrix elements between discrete and scat- 
tering states. The values < R R I V I X ~  > rnay differ strongly from each 
other even for states with the Same total quantum numbers whereas the 
< <pcMI~I& > are of the same order of magnitude for different states R. 

C f'R(W&) = const 

at every energy E of the system and constant diagonal matrix elements WRR. 
Such a case occurs, e.g., if the level density is enlarged, in the numerical cal- 
culations, by reducing the level distances [7]. Eq. ( 2 0 )  is nothing but the 
fact that the sum of the eigenvalues of a matrix is equal to the sum of the 
diagonal matrix elements 131. It expresses the condition under which the 
external mixing W;& of the ressnance states of the system takes place. 

If one considers the behaviour of the system as a function of the cou- 
pling strength V = Ve" in ( 14 ), then the right-hand side of eq. ( 20 ) is a 
monotonously increasing function of Vex, since the N diagonal matrix ele- 
ments W'% depend monotonously on Ve". Nevertheless, a redistribution can 
be achieved, also in this case, by the N(iV - 1) nondiagonal matrix elements 

. 

In any case, the redistribution taking place at high level density occurs 
in accorda~nce with the unitarity of the S-matrix. The resonance part of the 
S-matrix reads [3] 

Let us consider an ensemble of :V resonances wlnich Pie densely in an energy 
region A E  comparable to the iincertainty of energy of the system (E N Ei 
&... N Ehr). Dine to external rnixing, they interfere strongly and one gets 
FOF estirr~ation 



In the one-channel case, it is 

where the Rf denote the relevant fast modes and the relation 

for these modes has been used (see Fig. 4 and the corresponding discussion). 
According to the unitarity of the S-matrix, I ~!:)l < 2. Therefore, the number 
Rf of relevant fast modes cannot be larger than 1 in the case with one Open 
decay channel. An analogous conclusion can be drawn in the many-channel 
case: The number of fast relevant modes is exactly equal to the number I< 
of Open decay channels. 

As a result, the widths of Ii states increase up to their maximal possible 
value at the cost of the widths of the remaining N - K ones where N is the 
number of states and K the number of Open decay channels, 

and 

The N - K states with small widths, according to (261, are caPled trapped 
modes [3]. 

It could be shown analytically [2, 161 that at high BeveP density where the 
resonance states overlap, the relation ( 24 ) hetween total widths and partial 
widths does no longes hold. Instead, it is proven 

at high IeveY density. The selation ( 25 ) holds also for the one-channel case 
when the states are rnixed via one continuum. Eq. ( 24 ) BioPds only fm iso- 
lated resonance states. 



3 Cal~culations and Results 
The calculations are performed for 70 states with J" = 1- in 160 with (Ip- 
lh )  and (2p-2h) excitations. The configurational space is (1p)-I (2.9, ldgI2)l , 
(1s) - l ( i~)-~(2s ,  1d512)2. The parameters of the Woods-Saxon potential are 
similar to  those used in realistic calculations, see e.g. [17]. The residual 
interaction is a zero-range force 

where PF2 is the spin exchange operator and a is a parameter which controls 
the coupling strength between bound (a = ain) as well as between bound 
and unbound (a = a"") states. 

In our calculations, we use K = 500MeV- fm3, a = 0.73, b = 0.27 which 
are realistic values for 1 6 0  (see [17], where Vo = 650MeV - f m3). The en- 
ergy of the system (energy of the projectile) was fixed mostly a t  Ecm = 34.7 
MeV. Calculations at other energies are performed, but not shown in the 
present Paper, because they lead qualitatively to the same results. Most of 
the 70 states lie in an energy region of E„ between about 25 MeV to 45 MeV. 

The number of channels taken into account in our calcula&ions is two. 
They correspond to 15N + p with 15N in its ground and first excited state at 
6.3 MeV with negative parity (I h-structure). 

The calculations are performed as a function of the "control" (coupling) 
parameter arex which controls the value of the coupling matrix elements be- 
tween bound and scattering states (external coupling parameter U."" in ( 14)). 
It is varied independently from the parameter ain in the matrix elements be- 
tween bound states (internal coupling parameter a" in ( 13 )) which is fixed 
iri our calculations to ain = 1. It should be underlined that the parameter ain 
appears linearly in the internal rnixing W'", ( 13 ), while the relation between 
aex and W"" is rnore complicated: hdditionally to the explicit q-adratic de- 
pendence on U."", the W"" depend on aex via the coupled channlel wavefunc- 
tions &, eq. (15). 

In order to illustrate the trapping effect, the irnaginary parts !f of the 
complex eigenvalues of the effective IIamiltonian HG: are calculated as a 
function of the coupling strength V"" in the case of two Open decay channels 
and shown i n  Fig. 1. As long as aex is ssmal,ln, tkie widths of all rnodes in- 
crease with Pncreasing coupling strength V"" between bound an$ continuous 
states. Beyond some critical value CY:;, the widths of most trapped rnodes 
ciecrease with incneasing coupling strength while in some cases they increase 
w r y  sbowdy. In contrast to this, the  widths of the bnoad modes inerease very 



quickly with increasing coupling strength Vex from the very beginning. As a 
result, the widths of the trapped modes are much smaller than those of the 
two fast modes for cr > a„. 

The growing-up of the two short-lived modes is shown in Fig. 2. Here, 
the widths of the resonances are drawn for different coupling parameters aex 
reaching from 1 to 9. The resonances are sorted along the X-axis according 
to the value of their width: the first resonance has the largest width rl while 
the 70th reaonance has the smallest width r70. In Fig. 2, the widths of the 
first 20 resonances are shown. The separation of the two broad resonances 
occurs at a:: z 2.5 to 3. 

According to relation (S7), the total width f ' ~  of a state differs from 
the sum of the partial widths l-jR/ by the factor < 6 ~ 1 6 ~  >. In Fig. 3, 
< 6 R ~ 6 R  > is given for all 70 resonances and different aex. As one can See 
from the figure, < 6 R ~ 6 R  > stays always below 3 with the exception of a few 
comparably narrow regions of aex where further redistributions in the system 
take place. The total widths F R  of the broad and trapped modes differ, on 
the average, by several orders of magnitude at a large coupling strength aex. 
As a consequence, the partial widths of the broad and trapped modes differ 
strongly, too. 

In Fig. 4, the dependence of < 6 ~ 1 6 ~  > on aex is shown for the two fast 
(f) modes (Fig. 4a) as well as for some slow (s) modes (Eg. 4b,c). For the 
fast (broad) modes, the scalar product increases up to 6 in the critical region 
where the redistribution in the nucleus occurs. For larger aeX, it decreases 

- f  " f  again. Below and beyond the critical region, < >z I, P.e. the reso- 
nances Rp behave like usual resonances in the sense of relation (24 ) .  This 
result corresponds to the conclusion drawn e.g. nn [ 5 ] ,  that the fast modes are 
relevant. Further, the estimation ( 23 ), where ( 24 ) has been used, is justified. 

The wavefunctions 6;lof the other modes show a different behaviour (Fig.  
4). For most of thern, < a k l 6 ~  > remains Iarger 1 for large cyeX. She "gaps" 
in Figs. 4b,  c arise becaisse the ordering of the resonances according tto the 
value of their widths changes with aex. 

In Pig. 5, the widths FR are shown as a function of the en 
the system for aex = 2 and 6. The position of the inelastic th 
E„ = 6.3 MeV (FEg. 5a,b) an$ chifted to 30. 
depend smoothly on ener y with the exception 
flue~nce of the iaielastic threshold on the widths can be Seen 
5c,d). The pictures show clearly the appeararice of one broad ~node bePow 
the inelastic tlireshoid at large a"", whnile thiere are tws broad rnodes as soon 



as two channels are open. It is interesting to see that the one broad mode 
below the inelastic threshold is not among the two broad modes above the 
threshold. This result illustrates very nicely that the original spectroscopic 
information of a state is not decisive for the question whether a mode be- 
Comes trapped or relevant. 

The average degree of overlapping F/ D of the resonances as a function of 
the coupling parameter (Y"" is shown in Fig. 6. The degree of overlapping of 
the two broad modes increases strongly in the region of the instability point 
and decreases at larger aex where the two resonances repel each other. The 
degree of overlapping of the trapped modes is almost constant or decreases in 
the region of the instability point while it increases weakly for higher values 
aex even if the four broadest trapped modes are excluded ("64s"). 

The complex eigenvalues k~ - iffn of the Hamiltonian HG: (eqs. ( 3 )  
and ( 5 ) ) are shown in Figs. 7 and 8 as a function of the coupling parameter 
aex. Starting from the value suEii, = 0.05, the parameter aex is changed in 
steps of 0.05 up to a„ = 1 (Fig. 8a), 2 (Fig. 8b) ,  .... , 8 (Fig. 89) and 
9.8 (Fig. 7). At su:; N 2.6, two broad modes are formed. After leaving the 
energy region where the narrow 68 resonance states remain, new generations 
of "broad" rnodes appear: At aex = 4.5, 6.5 and 9, relatively broad modes at 
both the lower-energy and the higher-energy parts of the spectrum are grow- 
ing sn. The corresponding redistributions in the nuclear system can be Seen 
in Fig. 3. It is interesting to observe that the widths of some trapped modes 
decrease for relatively small aex but increase again for larger aex. This shows 
once rnore that the original spectroscopic information contained in the shell 
modeP wavefunctions @gM of the discrete states is lost and is not decisive for 
the lifetime of a special state after the redistribution has taken place. 

Discussion of the results 

The results obtained for the open nuclear quanturn systern as a function of 
the control parameter aex are sepresented in Figs. 1 to  . It exists a critical 
value U.:," of the coupling parametes at which a redistribution inside the nu- 
cleus takes place. The two corresponding scenarios suez < EX:, corresponding 
to a low Pevel density, and aex > a::, eorresponding to a high level density, 
are very wePl known Pn nuclear physics. For theis descsiption, phenomenolog- 
ieal models have been worked out: At Pow level density, the discrete states 
where aP1 nucleons oecupy bound single-particle stattes are relevant? whils 
at h i g h  level density the eoinpled channe8s are relevant (""unified theory of 
niuckar seactions" "81). Thk pieture corresponids exactly to the results ob- 



tained by us. The transition we observe at the critical coupling parameter 
(Y: occurs from a scenario with N relevant discrete states to another one in 
which the I( Open decay channels are relevant [3]. 

Furthermore, the results obtained numerically in this Paper, agree fully 
with the behaviour of selforganizing systems studied on the basis of das -  
sical methods by Haken et al. [4] although the system investigated by us 
is described as an Open quantum system. At the transition, a few unsta- 
ble (short-lived) states are formed, in both cases, together with many stable 
(long-lived) states. The unstable modes are relevant (see for illustration 851 
where the S-matrix is studied for a quantum system as a function of the level 
density). Thus, the trapping process reduces the effective number of degrees 
of freedom and the complexity of the system, respectively, as expected for a 
selforganizing system. The number of different decay possibilities decreases 
with increasing coupling strength. 

The analogy of our results with those obtained by Haken [4] consists in 
the following. 

The behaviour of the system is investigated in both cases in dependence 
on a control parameter. In the nuclear system, this parameter is crex which 
characterizes the coupling strength between system and environrnent of de- 
cay channels. 

Most interesting is the behaviour of the systern near to an EnstabiEEty 
point since here a rearrangernent takes place inside the systern which is very 
sensitive to the control parameter. The instability pgsint in the nuclear sys- 
tem corresponds to C Y ~ ; ,  where the resonances start to overlap, more exactly 
where the average distance D between the resonances is e p a l  to their av- 
erage width F. Here, the mclear systern has the possibility to form ch, few 
short-lived modes together with trapped modes most of which decouple prac- 
tically from the environment. 

The behaviour sf scsonances at the instability poirit H'/D Pias been inves- 
tigated in an earlier papes [I41 ona the basis of the statistical thesry of nuclear 
reactions in which not onPy the internal mixin of the resonanee states is not 
taken into account but also the energy depe encc of the eou$in 
elements between discrete and continuoi~s states is neglected, In these inves- 
tigations, the widths of aEk trapped modes decrease with inc~easing ctdnipling 
strength ae". There are no bsoad rnodes of the second and t,hiird genieration in  
contrast to the resdts obtairied in the present Investigatians. Fiirtherrnore. 
the energy shiMs of the trapped mades i n  the calculations r ~ f  the statistical 
model are of such a type that the enesgy region covered hy the whole groiip oF 



resonances is reduced. In the present more realistic calculations, the results 
are much more multiform. A nice example for the great variety of the results 
in a more realistic model is the appearance of a new fast mode at the energy 
where a new decay channel Opens (Fig. 5). In an analogous manner, local 
broad modes of the second or third generation appear as soon as the two fast 
modes are shifted to an energy outside the main interference region (Pig. 8). 

In the strong-coupling regime, the trapped modes are almost decoupled 
from the environment of decay channels: The couplinig matrix elernents ( 17 ) 
are large but the matrix elements ( 19), which correspond to the arnplitudes 
of the partial widths, are extremenly small (see Figs. 1, 2, 5, 7 und 8). This 
result corresponds fully to the definition of the compound nucleus given by N. 
Bohr more than 50 years ago [19]. Re claimed: "In the atom and in the nu- 
cleus we have indeed to do with two extreme cases of mechanical many-bsdy 
problems for which a procedure of approximation resting on a csmbination 
of one-body problems, so effective in the former case, loses any validity in the 
latter where we, from the very beginning, have to do with essential collective 
aspects of the interplay between the constituent particles." 

The "order parumeters" [4] may be identified with the wavefunctions of 
the broad modes. It follsws from eq. ( 16 ) 

and further by using 

- 
f l R  M 

in the one-channel case. From (31 ), it follows 

by using the numerical results shown in Fig. 3. As a result, the wavefunctions 
of the brsad modes overlap stronmgly with the channel wavefunctions due to 

e contribution L¿>; in RR. The wavefunctions 01. the trapped modes, 
s n  the contrary, are described well by the <f'a, 

h t h e r ,  thie fast modes behave like isolated resonanc~es (see belowj although 
they do ow:rhp (F ig .  6).  This result is surely connected with the fact that 
the chananel wavcfunctions ( 2) for diEesent chan~n& c are orthogonal to 



each other. Therefore, the large overlapping integrals < &lfii > suggest 
" f  " f  < (RRIC2„ >E S R R ~ .  

Thus, it is justified to identify the trapped modes with the stable enslaved 
modes and the broad modes with the enslaving unstable modes. The slaving 
principle is illustrated directly in Fig. 4: The unstable modes behave like 
isolated resonances with the exception of the region around ag, at which 
the rearrangement inside the nucleus takes place (Fig. 4a) and where their 
wavefunctions are complex. At higher coupling strength, the two resonances 
repel each other. That means, they are described quite well by negllecting 
the trapped modes altogether. 

The trapped modes are almost stable. Near to the instability point, their 
average degree F / D  of overlapping is almost constant or decreases due to 
their small widths (Fig. 6). For larger ae", it increases slowly with increas- 
ing coupling strength what is connected with the appearance of broad modes 
of the second and third generation (compare Figs. 7, 8). The trapped rnodes 
do not behave like isolated resonances neither in the regisn where P / D  is 
almost constant, as can be Seen from Fig. 4b,c, nor in the region where the 
"broad" modes of the second and third generation appear. All of them are 
"enslaved" by the two fast modes by which they are overlapped. By this, 
the influence of the unstable modes on the stable ones is expressed (""saving 
principle" ). 

In [14], it is shown, basing on results obtained in the statistical model, 
that trapping of ressnance states and enveloping them by broad modes oceurs 
as soon as the local level density is high enough so that sorne ressnance states 
overlap due to local Auctuations in the level density. The trapping appears 
for a smaP1 localized group sf resonances, in those calcuhtions, in the Same 
manner as for Barge extended groups. Lhat means, the trapping mechanisrn 
proceeds in a hierarchicai way. In the present calcdations, we observe also 
a hierarchica8 mechanisrn of trapping (Figs. 7, ). The wavefunctio~ns of the 
local broad rnodes, however, differ from the fast modes of the system since 
they do not behave Bike Ssolated resonances (IPig. 4). They are, on the orne 
hand, slaved by the modes of the higher hierarchies and, on the other hand, 
sPave locally trapped states. 

The picture obtained fmrn the present, realistic ealcnallations is sicher in 
the sense that a second an$ a t&sd "'geneiration'' of bsoad modes ad higher 
U." appear (Figs. 7, 8). These resonances do not behave like isolated reso- 

. 4 b ) .  Inspite of their increasing widths as a fiinction 10f the 
c suphg  parameter aez, they do not h v e  the order properties of the two 
first broad nnsdes appearing at <r;; M 2.6. 'Phey are of BocaB irnportance an$ 



create local "bumps" among the finestructure resonances. 

The relevante of t h e  unstable modes  at time and energy scales character- 
istic of the system is discussed in earlier Papers (e.g. [3, 51). By means of 
these modes, the system finds its own structure. The stable (trapped) modes 
can be identified in the Cross section only at the long-time scale which is n o t  
typical for the system considered. The properties of the trapped modes are 
generic,  see e.g. [ll]. 

The physical meaning of this result is the following: the rearrangement 
inside the nucleus, taking place at the critical coupling strength T,", OC- 
curs in such a manner that the complexity of the system is reduced. Bue to 
trapping, many degrees of freedom become irrelevant. In other words: By 
reducing the number of relevant degrees of freedom, the system finds its own 
structure with an energy and time scale characteristic of it. 

It should be underlined here, that the results discussed in the present 
Paper are obtained for an Open q u a n t u m  system described by a nonl inear  
Schrödinger equation. The mathematical formalism used here coincides fully 
with the standard methods worked out for the description of the nucleus 
in the two limiting cases at low and at high level density. In these limiting 
caees, the nonlinearity of the Schrödinger equation can be neglected since one 
restricts oneself, in the standard methods, to the description of the relevant 
msdes. 

In spite of the differente in the rnathematical formalism used in this paper 
and in othes investigations of selforganizing systems, the results obtained by 
us coincide with tlnsse from synergetics. In any case, the system redistributes 
at a certain critical value of the control parameter in such a manner that the 
~effective number of degrees of freedom is seduced. 

5 Summary 

In ths present paper, the reairrangernernt is investi ated in detaiP which takes 
place in the nuclear system if the level density is so large that the distance 
lbetween the resonances is cornparable with their widths, on the avesage. The 
rearrangement proceeds i n  such a mannel- that the spectroscopic information 
ori the rcsoriamce states mhich Ps relevant (at 1ow level density is lost at high 
level density. Iristead, n k w  unstable modes become relevant the number 
of which is exactPy equal ta the nimmber of open deccty channels. These two 
scenaricps are very weB1 krnown in nnuckar paiysics. For the description of theis 



respective relevant parts, phenomenological methods have been worked out. 

The transition between the two scenarios is traced by us as a function 
of a control parameter which describes the coupling of the discrete states of 
the system to the environment of decay channels. The model used is the 
continuum shell model which describes the nucleus as an Open quantum me- 
chanical system. It is a realistic model for light nuclei. 

As a result, the transition takes place in full analogy ts transitions in 
other selforganizing systems which are described by classical methods. By 
means of numerical results, the slaving principle of synergetics is shswn to 
hold also for the nuclear systern. 

The experimental observation of structures in the nuclear reaction Cross 
sections even at high level density was always surprisingly in the histsry of 
nuclear physics studies. According to the numerisal results obtained by us, 
they are caused by unstable modes formed locally at high level density. These 
states slave some trapped modes ("fine structure ressnances"). 

In spite of their small widths, the trapped rnodes do not behave Pike 
isolated resonances which are independent from each sther. They are ssr- 
related due to the existente of the broad unstable msdes by wbich they are 
overlapped. It is worth-while to mentisn that such a result follows not only 
from the numerical calculations given in this paper but is very well knswn 
from experimental nuclear physics studies, e.g. fsom the issbaric analogue 
ressnances. Phenomenological models have been worked out for their de- 
scription [SI. Furthesmore, correlatisns are found recently between neutlron 
resonances 120, 21, 221: The parity violatisn measused in sesonant neutron 
reactions shows strong sign correlations which are not a feature of the conven- 
tional statistical rnodeP sf parity mixing between eompound nucleaas states. 

Summasizing, we have shown in this Paper by nieans of numerical sesults, 
that the shving principk of synergeties hol& also in the open quantum me- 
chanical nuclear systern. In a forthcoming paper, the psinciple of maximm 
idorrnation entropy will be stindked for the nuclean. syctem in tPne fsamewosk 
of the same rnodel. 
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Figure 1 

. - 
The imaginary part of the complcx eigenvalues = & - SrB versus aex. 

The calculatisns are performed at E = 34.7 MeV for crin = 1, N = 70 ress- 
nance states and I< = 2 Open decay channels. 

Figure 2 

The imaginary part f ' ~  of the complex eigenvalues &, rnultiplied by two, fm 
a"" = 1, 2, ... ,9 versus the 2Q resonance states with the lar est widths (ai" 
= 1, E=34.7 MeV, N=70, I<-2). 

Figure 3 

Figure 4 



Figure 5 

The imaginary part f f R of the complex eigenvalues versus the center-of- 
mass energy E of the system (ER = E + 12.1MeV) for aex = 2 (5a,c) and 
6 (5b,d). The second channel Opens at 6.3 MeV (5a,b) and at 30.0 MeV 
(5c,d), respectively (dn = 1, E=34.7 MeV, N=70, K=2). 

Figure 6 

T1.D versus aex for the two broad modes (f) and the 68 trapped modes with 
(68s) and without (64s) the 4 broadest ones (ain = 1, E=34.7 MeV, N=70, 
K=2). 

Figure 7 

The complex eigenvalues ER = ER - Q - f f n  for aex varied from 0.05 up 
to 9.8 in steps of 0.05. Q = 12.1 MeV is the energy of the elastic threshold 
(Q-value). The results are shown in a logarithmic ordinate scale (ain = 1, 
E=34.7 MeV, N=70, K=2). 

Figure 8 

The complex eigenvalues ER = ER - Q - f fn  for different aex. In each 
picture, aeX is varied from 0.05 to 1 (Sa), 2 (ab), 3 (8c), 4 (8d), 5 (8e), 6 
(Sf), 7 (8g) ,  and 8 (8h) in steps of 0.05. Q = 12.1 MeV is the energy of the 
elastic threshold (Q-value). The results are shown in a linear ordinate scale 
(ai" = P, E=34.7 MeV, N=70, K=2). 
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