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Abstract

The information entropy of the atomic nucleus is calculated from .
the wavefunctions of the tesonance states. The transition from low
to high level density is traced as a function of the coupling strength
between the discrete nuclear states and the environment of decay chan-
nels. In the critical region of the coupling strength where a redistribu-
tion inside the nucleus takes place, information entropy in relation to
the discrete states of the closed system is created. Beyond the critical
value, a few relevant short-lived modes exist together with long-lived
noise. This result is in full correspondence to the maximum. informa-
tion entropy principle of synergetics formulated by Haken. The noise
is characterized by disorder expressed by a large information entropy
while the relevant modes have a high order and take, correspondingly,
a small part of the information entropy of the whole system. The
entropy excess accompanying the formation of the new order is used
inside the system for creation of noise. Further, the noise is not struc-
tureless and the corresponding information entropy is smaller than its
maximal value.
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1 Introduction

In our first paper [1] on selforganization in the nuclear system, we showed that
the transition from the regime of low to high level density in the open quan-
tum mechanical nuclear system occurs in accordance with the slaving prin-
ciple of synergetics [2]. Beyond some critical value of the coupling strength
between bound and unbound states, stable and unstable modes exist in the
system simultaneously. The unstable modes are relevant at time and energy
scales characteristic of the system. They correspond to the unstable modes
which are shown to determine the behaviour of selforganizing systems [2].
The stable ”trapped” modes, on the other hand, are suggested to correspond
to the stable "slaved” modes. They are not characteristic of the system and
are relevant only at the long-time scale.

The behaviour of an open many-particle system is governed not only by
the slaving principle, but also by the maximum information entropy principle
as has been shown by Haken [2]. This principle is shown to pass over into
the second law of thermodynamics for vanishing coupling to the environment
[2]. The validity of the principle of maximal information entropy for an open
quantum system is not investigated up to now in a microscopical quantum
mechanical approach.

The information entropy of a closed many-particle quantum system is in-
vestigated in a few papers [3 - 9] since it can easily be calculated from the
spectroscopic values. Although the wavefunctions of the states and hence the
information entropy depend on the basic set of wavefunctions and on the size
of the configurational space in, e.g., the shell model approach, it is possible
to draw some general conclusions from these values in the same manner as
from the spectroscopic values. Most interesting is the question whether the
information entropy increases as a function of a certain increasing param-
eter. Such a parameter is, e.g., the strength of the coupling between the
basic states which are supposed to have good single-particle quantum num-
bers. The physical eigenstates are mixed, usually, due to internal as well as
external coupling. In this sense, the information entropy represents a mea-
sure for the complexity of the eigenstates of the many-body system which
have definite total quantum numbers but mostly cannot be characterized
by single-particle quantum numbers. In other words, the information en-
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tropy characterizes the degree by which the original single-particle quantum
numbers of a state of the many-particle system cease to be good quantum
numbers. The connection between the .complexity.of states and quantum
chaos is discussed by Haake [8].

In an open quantum mechanical system, the spectroscopic values are com-
plex [10]. It is necessary, therefore, to find an adequate definition for the
information entropy which resembles a measure for the complexity of the
states of the system also in this case.

In the present paper, we calculate the information entropy for the open
nuclear system and check the validity of the maximum information entropy
principle. The model used is the continuum shell model described in 1, 10].
The information entropy is defined in Sect. 2. In Sect. 3, the results of
numerical calculations are given and discussed in Sect. 4. Conclusions are
drawn in the last Section. '

2 ‘.Model

The model used in the present calculations is the continuum shell model de-
scribed in [1, 10].

The spectroscopic values follow from
(Hgg —&r) B =0 ’ (1)
where the ®z are the comiplex energy dependent eigenfunctions and
EnlB) = Ba(E) - LTn(E) @
are the complex energy dependent eigenvalues of the effective Hamiltonian
= o @+ PHQ) ®)

in the subspace of bound states. In (3}, GE”} is the Green function for
the motion of the particle in the continuum. Further, ¢ projects onto the
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subspace of bound state wavefunctions,

Q=) lo3" >< @Y, (4)
R

and P onto the environment (subspace of channel wavefunctions) with the
completeness relation

P+Q=1. (5)

The bound states ®$M are identified with the solutions of the standard shell
model problem, which reads

(QHQ — EZM)33” = 0. (6)

The Hamiltonian of the system is H# = Hy + V with the residual inter-
action V™ = a™ -V ineq. (6), and V** = o* -V in PHQ, QHP and in
the Green function GY", eq. (3). The parameter o is used in the calcula-
tions as a control parameter by means of which the behaviour of the system
is investigated. o = 1 to 2 corresponds to a realistic value of the residual

interaction V.

The basic wavefunctions are the wavefunctions ‘131(0) (Slater determinants)
of the unperturbed discrete states with all A particles in bound states, as
well as the wavefunctions xZ of the unperturbed channels with A — 1 par-
ticles in bound states and 1 particle in a scattering state. In the ¢>§°), the
single-particle quantum numbers are good quantum numbers while in the
xZ, the channel quantum numbers are well defined, i.e. the single-particle
quantum numbers of the unbound particle and the total quantum numbers

of the cooresponding discrete state of the residual nucleus.

The wavefunctions &g, &M and 89 are related by

p=> Brpdi (7)
Rt



with complex coeflicients Srgr and
M =" brp o) | (8)
RI

with real coeflicients bm%:. Further, it is

Op = Z URR@ES) ' (9)
R ‘
with complex coefficients
nRRI = Z ,GRR”bR"R’ . ' (10)
Rl'

In order to characterize the mixing of the wavefunctions &5 and ®M in
relation to the set of basic wavefunctions @g)) or @M the values

N
IF == |Bal® In|Bri? (11)
2=1
and
N
IF == linl Inlipl? (12)
=1

are calculated for every state R in analogy to the value

N
== [opl® In fbpsf? (13)

i=1

of a closed system. Every I" characterizes the mixing of the wavefunction
of the corresponding state R in relation to the chosen basic set of NV wave-
functions. The coefficients Sr; and ng; are normalized to 1 by using the
definitions

Bt = 2R -
1P > 1Bail? (14)

-
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and

" 12 |77Rz|
lnRzl E lnRtP . (15)

Here, the different I have the following meaning:
IP characterizes the mixing of the discrete shell model wavefunctions ®3/
in relation to the basic set of wavefunctions given by the Slater de-
terminants (Dg’) . It is caused by the so-called internal mixing of the
shell-model states which is calculated from the residual interaction

Vin =a™.V [1].

I 5 characterizes the mixing of the resonance wavefunctions &5 in relation
to the basic set of shell model wavefunctions ®EM. 1t is caused by the
so-called external mixing of the shell model states via the continuum
which is calculated from the residual interaction V% = o -V [1].

If characterizes the mixing of the resonance wavefunctions ®g in relation

0)

to the basic set of wavefunctions given by the Slater determinants Qgg .
It is caused by both the internal and external mixing.

The sums
I= ZIR (16)

will be considered, in the following, as the information entrop1es of the sys-
tem. Here, the sum runs over all N states

Iy = Z % (17)

R=1

or is restricted to the K reclevant states (if such special states exist)

K
=3 1. | (18)

Re=1

The maximal value of I is I™** = N - InN, and K - InK, respectively.



3 Results

The calculations are performed for 70 and 190 states, respectively, J* = 1~ of
16() and the two open decay channels > N, 4+p and * N*+-p in the same man-
ner as described in [1]. Here, **N,, and > N* are the ground state J™ = 3~
and the first excited state J™ = 17, respectively, of **N. The results are
considered as a function of the parameter o of the coupling strength be-
tween bound and scattering states. We are mostly interested in the degree of
mixing I¥ of the wavefunctions ®5 which is caused by the external mixing
of the shell model states @3 via the continuum of decay channels. The
®3M are the wavefunctions of the states of a closed quantum system and
are assumed usually to contain, together with the corresponding eigenvalues
EZM . the spectroscopic information of the states R.

The dependence of widths I'r of all 70 states on the control parameter
o® is shown in Fig. 1. The widths are measurable values in contrast to the
IE. At a certain value %, a redistribution in the nucleus takes place as a
consequence of which the widths of two states (fast relevant modes) become
much larger as the widths of all the other ones (trapped modes). The picture
shows, further, that the redistribution at o ~ 2.6 is not the only one. At
higher values of a® further redistributions take place by which broad modes
of the second and third generation are created. Thus, the trapped modes are
not independent from each other, but are correlated. These results illustrate
the slaving principle holding in selforganizing systems. They are discussed
. in 1] '

In F'ig.2, the mixing { ;1; of the wavefunctions ®p of all 70 states in rela-
tion to the basic set {®3M} is shown as a function of the coupling strength
a®. The [, g of the two fast modes increase at off strongly. It is, however,
impossible to distinguish them from the other modes only on the basis of
the behaviour of 1 g' although their mixing coefficients increase stronger than
those of most of the trapped modes. '

It is necessary, therefore, to take into account additionally the informa-
tion on the lifetime of the states (Fig. 1). In Fig. 3, the < Ig > averaged
over the two fast modes and < Ij > averaged over the 68 trapped modes are
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shown. As a result, the < Ig > increase, in the region off, much stronger

than the < I >.

In Fig. 4, the information entropy [ is shown as a function of the cou-
pling strength a°®. It can be seen easily that I increases with increasing o
for all a®® if the sum runs over all 70 states or over the 68 trapped modes.
This result is in full accordance with the principle of maximal information
entropy formulated by Haken [2].

For o®® > o, the 68 trapped modes form a long-lived background
(noise). The information entropy of the relevant part of the system at en-
ergy and time scales characteristic of the system is determined by the K = 2
fast modes Ry, eq. (18). It is almost constant but much smaller than the
information entropy below the instability point (Fig. 4). This result is in
accordance with the formation of a new (short-lived) order in the system.

The calculated information entropies depend on the basic set of wavefunc-
tions. Therefore, some additional calculations are performed with changed
parameters of the Woods-Saxon-potential (Fig. 5) as well as with a larger
configuration space (Fig. 6). All the results in Figs. 5 and 6 show the same
tendency as those in Figs. 2 and 3: The mixing of the broad modes increases
in the instability region much stronger than the mixing of the narrow modes.

In Fig. 7, the [, in relation to the basic set of Slater determinants is
drawn. It is I,(a®® = 0) = I, when both calculations are performed with the
same ™. The value of I, is dominated by the internal mixing the strength
of which is constant (¢** = 1) in our calculations. In spite of the comparably
small value of o™, the spreading of the shell model states described by (8)
is large. Therefore, I, is almost constant as a function of &** for a® < of
{Fig. 7). The information entropy of the relevant part of the system at large
a®® is significantly smaller than that of the bound system (corresponding to
a® = 0). In that sense, the results show, for large o, qualitatively the
same behaviour as those in Fig. 4. '
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4 Discussion

The behaviour of the information entropy near an instability point is inves-
tigated by Haken [2] by using a classical description. According to these
results, the information entropy of the unstable modes increases at the in-
stability point much stronger than that of the stable modes. The results
obtained by us for the mixing coefficients of the eigenstates of the open nu-
clear quantum system show a similar behaviour (Figs. 2, 3, 5, 6). They
are a signature for the driving role of the fast modes in the process of re-
distribution at the instabiliy point which, by themselves, are formed under
the influence of the environment (decay channels). The trapped modes are
"slaved” in the sense that they "follow” the relevant short-lived modes [1].

Additionally, the information entropies calculated by us reflect all the
features of the reorganization process which we observed in [1]. At a®® < 1,
the widths as well as the I ? of all states are rising with increasing o°®. For
larger o but o*® < af, the widths and the Ié% of a few states increase
strongly in comparison with those of the other ones. At a® =~ o up to
a4 the mixing coefficients I, % of the two relevant modes reach their
maximal value and remain more or less constant as a function of &*. In
correspondence to this, the two broad modes behave like isolated resonances
starting from *® & 4 (Fig. 4ain [1}). At o®® = 6, a new generation of broad
modes appears (Fig. [ in the present paper and Figs. § and 4b in [1]). In
the same region, we observe a comparably strong increase of the [, ’g‘ of some

of the trapped modes (Fig. 2).

The maximal degree of mixing (or complexity) I of the Wavefunctlon iy
corresponds to an equal distribution over all basic states ®3M ie. fpp = B
for all Brm in (11). In our numerical calculations, the ma*{imal value
I, B(mas) — 4.95 for N = 70 states is not reached, neither in Fig. & nor in Fig.
5 The chfference is surely caused by the correlations between the trapped
modes (Fig. 1) which exist at all a®@ since every deviation from the statisti-

cal independence of the trapped modes leads, necessarily, to I;;z < I;;%imw).

Let us now discuss the transfer of information from a certain mlmber
of states to other states the number of which is different from the original



one. As an example, the original information contained in a certain state of
the Slater determinant, is spread over many shell model states R with the
wavefunctions 3. In this case, the information entropy rises from 0 to the
maximal value N - InN if an equal distribution is reached. In the opposite
case, if information is transferred from a certain number N > 1 states to one
state, the information entropy is reduced.

Let us define, in our case, a set of functions {{°} which carry the influence
of each original state R in relation to the channel c,

. |
(5= kadr, (19)
R=1

represented in relation to the basic set {®r} with the coefficients
575
2R Rel?

Here, |7r.|? is the partial width of the state R in relation to the channel c.

(20)

,B/%CR’2 -

In eq. (19), every state R is weighted by the degree to which it can be
observed in the channel c. Further,

Slkalf=1. (21)

R=1
For large «**, one has

K

> lkaml a1, (22)

R=1

where K is the number of open decay channels, since [1]

Y lkal~o. (23)

=K 41

10
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In analogy to (11), we define

K
r'e==>"lkal* Inlxl® . (24)
R=1

Then the information entropy of the system is

r=yre | (25)

c=1

with the maximal value I'™*® = K - InK. Comparing this value with 1™ =
N -InN, one gets ’

I/maa: << I'rn,az i . (26)

Thus, the information transfer from N different states to a smaller number
K of states is accompanied by a decrease of the information entropy. Exactly
such a situation occurs as a result of the redistribution taking place in the
system at a®® = of. The corresponding decrease of the information entropy
can be seen in Figs. 4 and 7.

In (25) and (18), only the relevant degrees of freedom are taken into
account while in (17), the sum runs over all states independently of the
question whether they are relevant or not. A restriction to the information
entropy of the relevant modes is justified in full correspondence with the
slaving principle: beyond the instability point, a few modes are relevant at
time and energy scales characteristic of the system while the slaved modes
represent long-lived noise. The situation is illustrated by means of the poles
of the S-matrix in [11].

In a channel representation of the discrete states, the relevant fast modes
have {almost) pure wavefunctions in contrast to the trapped modes the wave-
functions of which are strongly mixed also in this representation. A ”channel”
is defined here in full analogy to a decay channel: one bound particle moves
aronnd a core where the particle, the core as well as the relative motion are
described by definite quantum numbers. It is possible, therefore, to define
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single-particle quantum numbers in the relevant ordered modes. In the noise,
single-particle quantum numbers cannot be specified.

The results shown in Figs. 4 and 7 confirm eq. (26). According to the
formation of a new order in the system, the information entropy I’ of the rel-
evant modes at a® > % is reduced as compared to the information entropy
I for a®® < o where all degrees of freedom are equally important. The new
order at large o is created under the influence of the environment of decay
channels and reflects the structure of these channels [1].

Thus, the exceeding entropy is not exported into the environment if an
ordered state is formed. The reduction of the information entropy takes place
inside the system under the influence of the environment by decreasing the
effective number of degrees of freedom, i.e. by creating a long-lived noise
(background) which takes the main part of the information entropy.

The numerical results obtained by us confirm both the increase of the
information entropy as a function of increasing o®® up to a certain maximal
value due to the formation of noise, and the reduction of the information
entropy which accompanies the formation of the relevant short-lived ordered
states (eq. (18)).

5 Summary

In the present paper, we have investigated the degree of mixing of the wave-
functions @g of an open quantum mechanical system in relation to the basic
set of wavefunctions {®3M} of the corresponding closed system. The Hamil-
tonian operator of the closed system is hermitean, the eigenvalues and eigen-
functions are real, the Schridinger equation is linear [1]. The eigenfunctions

and eigenvalues are assumed, usually, to conta.m all the spectroscopm infor-
mation of the system.

As a result of our investigations, the spectroscopic properties of the open

system may differ considerably from those of the closed system. If the cou-
pling to the continuum exceeds a certain critical value, the system reorganizes
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in such a manner that the spectroscopic information of the closed system is
completely lost. In accordance with this, the wavefunctions ® g differ strongly
from the basic wavefunctions ®3¥: The degree of complexity I R of §p in
relation to the {®$M} is la.rge The information entropy Iz of the system is
increased.

The results obtained numerically by us show two points which appear
as a consequence of the redistribution taking place inside the nucleus at the
critical coupling strength o%*:

(1) The information entropy Iy of the system increases if all degrees of free-
dom are taken into account.

(ii) The information entropy I of the system decreases if one restricts oneself
to the relevant degrees of freedom.

That means, at the critical coupling strength a%, both order and disorder
are created together [10]. The order is represented by a few relevant short-
lived modes. The corresponding information entropy is small. The disorderis
represented by a long-lived noise (trapped modes). The information entropy
of this noise is large. The relations between order and disorder, respectively,
and the value of the information entropy are in accordance with the usual

accepted relations between these values.

Thus, the evolution of the open quantum mechanical system occurs in
agreement with the second law of thermodynamics. In reaching an ordered
(relevant) state far from thermal equilibrium, the exceeding entropy is, how-
ever, not directly exported into the environment but diminished inside the
system by creating (irrelevant) trapped modes (noise) near to thermal equi-
librium. The number of relevant degrees of freedom is reduced as a result of
the redistribution taking place inside the system at o2*

The relevant modes have good single-particle quantum numbers in the
sense of channel representation, i.e. one particle moves around a core where
the particle, the core as well as the relative motion are described by definite
quantum numbers. In the noise, single-particle quantum numbers cannot be
specified.

The numerical results showed further that the noise is not structureless.
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The trapped modes are correlated with each other. In further investigations,
the origin of these correlations will be investigated in detail.

Acknowledgment: The present investigations are supported by the Deut-
sche Forschungsgemeinschaft (Ro 922/1) and by the Bundesministerium fiir
Forschung und Technologie (WTZ X081.39).
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Figure 1

The imaginary part.of the complex eigenvalues. SR = Ep — —I‘R of 70 states
R versus a®®. The calculations are performed at E = 34.7 MeV for o™ =
1, N = 70 resonance states and K = 2 open decay channels. The results are
shown in a linear ordinate scale cut at I'r = 1.5MeV.

Figure 2

The mixing coefficients IR of all 70 states R in relation to the basic set of
the shell model wavefunctlons ®3M versus o (o = 1,E = 34.7 MeV,
N =70,K = 2). The I} of the two states with the 1argest widths are de-
noted by thick points.

Figure 3

The mixing coefficients < I > averaged over the two broad modes (f), all
70 modes (all) and the 68 trapped modes (s) in relation to the basic set
of the shell model wavefunctions ®§¥ versus o (/™ = 1, E = 34.7 MeV,

N =70,K =2).

Figure 4

The information entropy I for all 70 modes (all) as well as for the rele-
vant (rel) and irrelevant (irr) modes beyond the instability point, in re-
lation to the basic set of the shell model wavefunctions ®3¥ versus o*®

(" =1,E =347 MeV, N =70, K = 2).

Figure 5

The mixing coeflicients I, }} of all 70 states R in relation to the basic set of
the shell model wavefunctions @3 versus a*°. The Woods-Saxon-potential
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is deeper by 10 MeV (5 a) and 20 MeV (5 b), respectively, than in Fig. 2
(¢" =1,E = 34.7T MeV, N = 70, K = 2). The Iif of the two states with the
largest widths in each case are denoted by thick points without.regard to a
possible exchange in the sequence of the states as a function of o®. -

Figure 6

The imaginary part of the complex eigenvalues £r = Ep — %f‘ & of 190 states
R (6 a) and the mixing coefficients I} in relation to the basic set of the shell
model wavefunctions &3 (6 b) versus a®. The configurational space is
larger [(1s)7* (1p)™" (2s,1d)*] thanin Fig. 2 [((1s)™* (1p)~" (2s, 1ds/2)?]
(¢ = 1,F = 34.7 MeV, N' = 200, K = 2). The sz of the two states with
the largest widths in each case are denoted by thick points without regard
to a possible exchange in the sequence of the states as a function of a®*.

Figure 7

The information entropy I, for all 70 modes (all) as well as for the relevant
(rel) and irrelevant (irr) modes beyond the instability point, in relation to
the basic set of the Slater determinants ‘I)g) versus o (a’in = 1,F = 34.7
MeV, N =170, K = 2).
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