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Abstract

We consider a two-flavor Nambu & Jona-Lasinio model in Hartree approxima-
tion involving scalar-isoscalar and pseudoscalar-isovector quark-quark interactions.
Average meson fields are defined by minimizing the effective Euklidean action. The
fermionic part of the action is regularized within Schwinger’s proper-time scheme.
The meson fields are restricted to the chiral circle and to hedgehog configurations.
The only parameter of the model is the constituent quark mass M which simulta-
neously controls the regularization.

We evaluate meson and quark fields self-consistently in dependence on the con-
stituent quark mass. It is shown that the self-consistent fields do practically not
depend on the constituent quark mass. This allows us to define a properly parame-
terized reference field which for physically relevant constituent masses can be used
as a good approximation to the exactly calculated one. The reference field is chosen
to have correct behaviour for small and large radii.

To test the agreement between self-consistent and reference fields we calculate
several observables like nucleon energy, mean square radius; axial-vector constant
and delta-nucleon mass splitting in dependence on the constituent quark mass. The
agreement is found to be fairly well.
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1 Introduction

The model of Nambu & Jona-Lasinio (NJL) [1] has been used quite successfully as effective
chiral theory for low and medium energy hadronic phenomena. First it has been applied to
vacuum and meson properties as well as medium effects (for reviews c. f. [2, 3, 4]). Later on
it turned out that also baryonic systems (nucleons and hyperons) can be described within
this model (for a review c. f. [5]). Starting from a semi-bosonized version [6] with scalar-
isoscalar and pseudoscalar-isovector interaction and treating the meson fields classically
various authors have shown that for constituent quark masses M < 350 MeV it is possible
to get self-consistent solitonic solutions with baryon number B=1 consisting of 3 valence
quarks in addition to the polarized Dirac sea [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Because
of the non-renormalizability of the Nambu & Jona-Lasinio model the sea contribution
diverges and has to be regularized. The parameters of the model can be fixed to the
physics of the meson and vacuum sector, mainly to the weak pion decay constant f, and
the pion mass m,. In doing so only one free parameter remains open for the baryonic
sector for which we take the constituent quark mass M.

‘The self-consistent determination of the meson fields is a time-consuming numerical
procedure. Changing the parameters of the model or the regularization scheme the pro-
cedure has to be repeated. So it might be helpful to look for an analytic parametrization
of the selfconsistent profile function O(r) of the solitonic solution which approximates the
exact O(r) as well as possible. Within the restrictions to hedgehog configurations [17]
and to the chiral circle the meson fields are uniquely described by the profile function
O(r). In the course of our calculations we noticed to a very large extent an independence
of this profile function on the constituent quark mass M. It is the aim of this paper to
investigate this dependence quantitatively and to look for a general function which may
approximate the profile function, if possible independently of M.

In section 2 we review the main ideas of the semi-bosonized and regularized Nambu
& Jona-Lasinio model for two flavors and introduce observables characterizing the quark
and meson configuration. The procedure of getting self-consistent meson and quark fields
is explained and illustrated in sect. 3. We investigate the dependendence of the self-
consistent meson profiles @(r) on the constituent quark mass M within a wide range
(350 MeV < M < 1000 MeV) and compare them with a reference profile ©F=/{R;r)
obtained from an asymptotic expansion of the equation of motion at r — 0 and r — oo.
In sect. 4 we calculate several observables like nucleon mass, mean-square radius, axial-
vector coupling constant and delta-nucleon mass splitting using both the self-consistently
determined profiles and the standard profiles. The comparison of both values illustrates
the quality of the reference profile.

2 The regularized and bosonized Nambu & Jona-
Lasinio model and its observables
The details of the following section can be found in ref. [18, 15, 5, 16]. Here we shortly

review these parts of the formalism which make this paper self-contained.
We consider a two-flavor NJL lagrangian

| ) Gt sy
Lo (Ga) = glip—~mlg+ 5 [(q)* + (@rsta)’] (1)
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for the quark fields ¢(z) (u and d quarks of N. = 3 colours). Here 7 is the vector of
Pauli-matrices and m is the average current mass of the light quarks m = (m, + maq)/2.
The chiral invariant combination of a scalar-isoscalar and a pseudoscalar-isovector quark-
quark interaction with a constant strength G is assumed to describe effectively the quark
interaction at low energy mediated by gluons. High-energy interaction processes will be
excluded by a regularization procedure.

The theory with only quark degrees of freedom is converted into an effective quark-
meson theory by means of standard path-integral bosonization [18]. We introduce an
isoscalar field m g

o= ; BBYEL] (2)

and an isotriplet of fields

=

g _. .
= Tz P17 (3)
The parameters A and g are related to G via

g K

The resulting semi-bosonized theory is described by an effective (Euklidean) action

Aestloy 7] (1) = A'lo,7] () + A™ [0, 7] | (5
which consists of a quark part
Al[o,#] (n) = —Log /D:qu e-—j’d4xE‘q‘(EE—uﬁ)q —
= —Log Det (P — puB) = —Sp Log (Bg — pup) (6)

with the Euklidean Dirac operator
5 :
Vg =B85 +h | (7)
and the quark hamiltonian

h = &5 +gB (0 +insth), (8)

and of a meson part

A™ [0, 7] = —)‘2—2/41“:31; K —-’g’i)z+7*r2] = Ti\;/dsr Ka—-’;l)zwr?} (9)

with the Euklidean space-time vector 2% = (7,7) and its volume element d%zg = dr d®r.
Here we have assumed the meson fields to be time-independent and classical fields, i. e. o
and 7 are ordinary functions of the space vector " and the integral in eq. (9) is proportional
to the Euklidean time intervall . The chemical potential u for quarks has been introduced
in order to adjust the baryon number to a definite value. The symbol Sp indicates
functional and matrix (spin, isospin, colour) trace

SpO = Nir, tr, / &z (25| O |ox) . (10)
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In the limit 7' — oo (zero temperature) the quark action (6) for time-independent and
classical meson fields can be written
dw : N.
SpLog Dz — uB) = T N, /'2‘;21309(““" +ex—p) = TE— > lea — pf + const
| (i1)

with the real eigenvalues ¢, of the hamiltonian (8) defined by

h®o(F) = eoBalF) (12)

and normalized as
/ Br! O (7B (F') = baar- (13)

The difference between the quark action (6) and its vacuum value AY, calculated at
constant o field (o(7) = ov), vanishing 7 field and chemical potential z = 0 is then given
by a sum of single-particle contributions

R . N
Ao, i) = Alo, 7)) = Ay = ~T523 [lea— ul = |eX], (14)
where € are the eigenvalues of the vacuum hamiltonian

hy = a@ap+gpfov. (15)
We split the total quark action (14) into a valence and a sea-quark contribution
Ao, 7] (1) = ALu(ps) + Ao (16)

where the valence contribution is defined as the difference between the action for a finite
value of the chemical potential and the action for vanishing chemical potential

. . N,
Aai(s) = Alo, 7] (p) — Aloy#(p = 0) = —T"3 llea —pl = leall.  (17)
The remaining part

Ay = Ao, 7] (1) = Aly(p) = Ao, &](n = 0) — Ay = —T%Z [leal — 1] (18)

[+4

does not depend on the chemical potential p and is called sea contribution. The sea
contribution diverges and must be regularized. For stationary meson fields the imaginary
part of Sp Log I, vanishes and we have

1
SpLog Py = ESpLog E};EE (19)

Since ETEEE is an hermitian operator we can apply Schwinger’s proper-time regularization
scheme [19] by replacing

. i ~ T ds st
SpLog PPy — SpLogPybyl, = Sp / & g-wims, (20)
1/A2



where A is the regularization parameter. Applying rule (20) on the sea contribution (18)
we get the regularized sea contribution

1 T ds N,
AL = 58p / —s"e"s%% = -T2 [Re(ear A)leal — Rp(e2, A)lekl]  (21)
1/A2 &
with the regularization function

1 T 2 1 1 ¢?

Rz(e,A) = -— dtt 32" = P2 2.

sle.4) Varle|, /{2 ’ Var 2%
0 (e2 > A?) )

—
1— ﬁ (e? < A?) (

and the incomplete Gammafunction I'(z,a) = [;°dtt**e~*. The total regularized quark
action is then given by

AR 3] () = ALy () + AT (23)

val sea

with the valence contribution (17) and the regularized sea contribution (21).

The expectation value K(u) of an observable [d®r §(z%;) K ¢(2;) with an operator K,
which does not act on the time coordinate 7, calculated for finite chemical potential y is
given by

K(p)

{[e&r q(xaE)ch(ij»“ = 5 ([ é(xb)nq(z'E)>#

JDgDq e~ J#=sa(Bae8)a. pgapt ot Vi g(2)
T' [DgDge” Jdtopa(Pp—uB)a

1 d -1
i = "‘]T,SP [(E_'-l-h—ﬂ) ,BIC] .

In analogy to eq. (11) we get for zero temperature, static meson fields and hermitian

(24)

; .ﬂ
= mSPLOQ (Pg — 1B — £K)

operators K

N, .
K(u) = 5 > sign(eq — p) Ky (25)
with
Ky = / Br Bo(7') K Ba(7) (26)

and the eigenvalues ¢, and eigenfunctions @,(7) of the hamiltonian (8) defined in egs. (14,
15).

A functional integration over the meson fields does not occur in eq, (24) in accordance
with the classical approximation for these fields. Like the effective quark action (14) the
expectation value (25) consists of a sum of single-particle contributions as a consequence
of the mean-field approximation. Again we seperate a valence and a sea contribution

K(p) = Kyu(p) + Ksea (27)
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with

Kou(p) = K(p) —K(p=0) = N, Y K, ‘ (28)
0<eap
and o N
Koo = K(p=0)—Ky = —-é-c- > [sz’gn(sa) K, — sign(e?) KZ] , (29)

where we have subtracted the vacuum value Ky calculated according to egs. (24-26) with
the eigenvalues €7 and the eigenstates ® of the the vacuum hamiltonian (15).

The sea contribution (29) may diverge. In this case we apply the scheme (19, 20) on
the operator (P; — kK) and get a regularized sea contribution

I{ﬁzg = __];E Z [Rm(eo{a A)I{a - R"n(ez’ A)I{;’] (30)

to the expectation value with the regularization function

1 1 &2
-2t sign(e) (1
i1 e | T T —

8

R.(e,A) =

{ 0 (&> A?)

| sign(e) (2 < A?%) ° (31)

Now let us apply the scheme displayed in eqs. (24-31) on several observables which char-
acterize a quark configuration. The baryon density

i) = 3 {d(Fa)), | c

can be obtained by means of eqs. (27-29) with the operator K = 4o 6°(F—7')/N, and the
matrix elements

K.(7) = —<1>* L) B (7). (33)

In this case, the expectation values (27—29) and the matrix elements (26) depend on the

parameter 7. The size of the density distribution is characterized by the mean square
radius

R = /(R?) = [/dsrrzp(F;p)]llz. (34)

Taking into account the normalization condition (13) we get the total baryon number

0<Lexlp

B(p) = /d3'r p(Fsp) = ( 3 1) - 52 [sz'gn(sa) —sign(e}:)] . (35)

The dependence of the baryon number on g is used to fix the value of the chemical
potential. The valence contribution (first term) to the baryon number equals to the
number of levels in the energy region 0 < e, < g (not taking into account the degeneration
N, with respect to the colour quantum number). The sea contribution (second term)
counts the number of levels passing from positive to negative energy when switching on
the o and # fields. A configuration with baryon number 1 can be realized in two different
manners. First the meson fields may be strong enough to lower the energy of one of
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the positive-energy levels so strongly that it gets negative. In this case, an additional
level populates the Dirac sea and gives the baryon number 1. The valence-energy region
0 < £, < p must be empty (¢ = 0). If the meson fields are not strong enough to produce
an additional state with negative energy, the sea contribution to the baryon number
vanishes and the chemical potential must be chosen such that there is just one level in
the valence-energy range. Usually we consider expectation values for configurations with
a definite baryon number. In this case we denote expectation values (24) by K instead of
K () and assume the chemical potential to be properly chosen.

Another quantity characterizing a quark configuration is the isoscalar electric form

factor GE=°(Q?). It is related to the baryon density (32) via [15]

GEO(Q) = [ dre o), (36)

where Q? = —¢? = |¢?| is the negative squared four-momentum transfer in the Breit

frame.
The axial density A,(7) can be written

A7) = () “22a(7)) (37)

and is obtained via egs. (27-30) with

OoTo

2

ToTo

SEF—7")  and K (F) = &l (F) 5

K = % B, (7). (38)

Since the sea contribution (29) diverges it has to be replaced by the regularized expression
(30). The axial density determines the axial-vector coupling constant of the proton

0s = =2 [ & A7), | (39)

" where an additional factor (—1/3) is incorporated which results from the projection onto
the isospin quantum number T' = 1/2 of the proton [26].
For a self-consistent determination of quark and meson fields we need the expectation

values
5(7) = (q(F) ¢(7)) (40)
and X
P(F) = (q(7) inst ¢(7)) (41)
of the meson field operators (2, 3), which can be obtained by means of eq. (27) with the
regularized sea contribution (30) and with

K = 6%(7 — 7' Ko(7) = 8a(7) 0u(F), (42)

and

K =iyt 8(F — 7') K (7) = ®u(F) 1757 @u(F), - (43)

respectively.

In the limit of classical meson fields the effective Euklidean action (5) agrees with
the grand kanonical potential, where the Euklidean time interval T is the inverse of the
~ temperature 7. This allows us to calculate the energy of the quark-meson system. At
zero temperature (I' — co) the static meson and sea-quark energies differ from the grand
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kanonical potential and hence from the corresponding regularized effective action only
by a factor T. An additional contribution to the energy results from the valence quarks
which depends on the chemical potential y [27]. The total energy E of a quark-meson
configuration is given by

E(p) = El () + ELE + EM + ECSB (44)

with the valence-quark energy

1 0 A? ()
B = 1 [1- g ) = 244 NP = N 5 ca (a9

0<ealn
and the regularized sea-quark energy

%—Z [R(eas A) leal — Ru(el, A) |eX]] - (46)

q,Reg __ q,Reg _. __
Eséa - 'As;a. -

The meson energy (A™[o, %] — Ap}) /T, where we have subtracted the meson energy of
the vacuum field, is split into two parts

g = /d3 [0%(7) + #%(7) — 03] , (47)

which vanishes on the chiral circle (6*(7) + #%(7)) = const = 0¥, and
32
ECSB = m—; /dsr [O'V - 0'(7—")] . (48)

While EM is independent of the current quark mass m, EC52 results from the chiral-
symmetry-breaking term in the original lagrangian (1) and is proportional to m.

Finally let us consider the parameters of the model. Except the constituent quark
mass M we fix them by the properties of the vacuum state and the meson sector. We
assume a vacuum with broken chiral symmetry characterized by a finite expectation value
ov(r) = ov of the o field. As shown in [15] the vacuum expectation value of the #
field must vanish. The corresponding hamiltonian (15) discribes free quarks with a mass
(constituent quark mass)

M = goy. (49)

Its eigenstates are plane waves @E(F ) labeled by the continuous momentum vector k and
normalized to a 3-dimensional § function. The stationary phase condition for the vacuum

fields 6 Acz5/60(r)| = 0 gives

Oy fr,m(r)=0

2
M = goy = m+GN/d3kRm(sk,A) BY (7) BY (7) = NM ( 1, %-) (50)

Here we have converted the sum over the eigenstates into an integral over all momenta k
and applied the proper-time regularization. Eq. (50) establishes a relation between cut-off

parameter A, interaction strength G, current quark mass m and constituent quark mass
M.



Another relation between the parameters is obtained via the weak pion-decay. Con-
sidering fluctuations of the # field up to second order within proper-time regularization

one gets the relation [18]

NM?_ ([ M?

Applying the PCAC hypothesis to the NJL-lagrangian (1) we get a relation between the
current quark mass m and the pion rest mass m, [18, 15]

2 12 2 02 £2
m = Gmﬂ‘f‘lr — g_m'lrfﬂ.
M A2 M

(52)

Finally we identify the second variation of the effective action (5) with respect to the 7
field with —m2 and get by means of egs. (50, 52)

gy = f7r- (53)

Using N, = 3 and the experimental values for fr and m, the 6 relations (4, 49-53) allows
us to determine 6 of the 7 unknown parameters M, g, m, oy, A, G and A. We use the
constituent quark mass M as the independent parameter and express the other by M.

3 Self-consistent quark and meson fields in mean-
' field approximation

In classical approximation the meson fields are restricted to those which minimize the
effective action (6). Hence they have to fulfil the stationary phase conditions

6 Acslo, 7]
bo(7)

6'Aef f [U’ ﬁ-]

= 0‘ and 57 (7) = (. (54)

O=0cl, T=figy T=0 oy =ity

With the effective action (5) one gets the following equations of motion for the classical
meson fields m g
7()a = (o) = 7= 335() (55)

and

#()la = (7) = —35P(F) (56)

with the expectation values S(7) and P(7) defined in eq. (40) and (41), respectively.
Quark wave-functions @4(7) and meson fields are mutually coupled via Dirac equation
(12) and egs. of motion (55, 56). In practice, self-consistent solutions can only be obtained
. after some additional approximations. A reduction of the degrees of freedom is achieved by
restricting the classical meson fields (the index ¢l will be neglected from now) to spherical
hedgehog configurations, which can be shown to be a self-consistent symmetry,

o) =o(r) and #(F) = #(r)? (57)
with 7 = 7/|7|, and to the chiral circle
o*(r) +7*(r) = fr. (58)
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The latter constraint turned out to be essential because otherwise no finite solitonic
solution exists and the system collapses to a configuration with zero size and energy {20,
21]. Actually condition (58) can be justified from an extended NJL model implementing
the trace anomaly of QCD [22, 23, 24].

With the restrictions (57) and (58) the hamiltonians (8) and (15) read

h = ap+ gBlo(r) + in(r)ys?7] . (59)
and
by = ap+ 9B fx, (60)
respectively. The mesonic fields are uniquely determined by the profile function

w(r)
= ") (61)

O(r) = arctan

according to
o(r) = frcosO(r) and  7(r) = frsnO(r)s. (62)

Minimizing the effective action (5) with respect to ©(r) one gets the following equation
of motion (r)
T

O(r) = arctanz——"5— 63

() = aretan g (63

where S(r) and P(r) are angular-averaged expectation values

5r) = o [d @) aF)) = 1= [35) (64)
and
PG) = = [d @@)inst o)) = o= [ P(F). (65)

The equation of motion (63) can be solved iteratively. Starting from a reasonable
profile function ©°(r) we determine eigenfunctions ®° and eigenvalues &2, by diagonalizing
the hamiltonian (59) within an appropriate basis (see below). By means of egs. (63-65)
we get an improved profile function ©!(r). Continuing this procedure to convergence one
gets self-consistent meson and quark fields (see fig. 1).

Let us look for spatially restricted fields configurations, i. e. for configurations which
differ from the vacuum fields within a finite region characterized by a size parameter R.
Then we can introduce a discrete set of basis states by putting the system into a box with
radius D and infinitely high walls. The condition D 3> R (in practice D = (3 — 5)R)
ensures that the artificial wall does not influence the field configuration. A suitable set
ka Isjt; G"M) was introduced in ref. [25]. It is characterized by the angular momentum
l =0,1,2,..., the spin s = 1/2, the total angular momentum j = ! £ s, the isospin
t = 1/2, the grandspin G = j +¢ = [,] + 1, the parity II = 1, and by an additional
discrete quantum number (node number) kS (n = 1,2,3,...), which results from the
introduction of the finite box and depends on the grandspin G. Since the regularization
proceduce limits the excitation energy of the quark states taken into account we can
restrict the node number to a maximal value k,me=. Considering cut-off parameters in
the region 600 MeV < A < 800 MeV, which correspond to constituent quark masses
350 MeV < M < 1000 MeV, we found n™** = 40 to be sufficient. For larger values of
the grandspin ™% can be reduced.



In the general case (# # 0), the hamiltonian (8) does not commute with the operators
of I, s, j and ¢t. Only II, G and M are good quantum numbers and characterize the
eigenstates @, which are superpositions of basis states ka Isjt; GMM)

|@.) = |0%up) = D a (kflj; GHV) lkflsjt; G"M) . (66)

kGl

There are altogther four combinations ! = G,G £ 1 and j = [ £ 1/2 which contribute to
the sum (66). For G = 0 the number of combinations is reduced to 2. The coefficients
a (kf ly; GHVE) have numerically to be determined by diagonalizing the hamiltonian (59)
within the subspace with definite values of parity and grandspin. The size of the subspace
is 4(2) xn™**. The dependence on the projection M is trivial since we describe spherically
. symmetric objects. The index v distinguishes the various eigenstates within the subspace.
The maximal grandspin G™** which has to be taken into account depends on the size of
the field. Using a maximal grandspin G™** = 80 we got a satifactory description in all
cases up to such radii, where the asymptic formula for the meson fields [15] could be
applied. '

Fig. (1) illustrates the development of the iteration procedure for M = 400 MeV
starting from a linear profile function ©(r < 2R) = —7(1 — r/2R) and O(r > 2R) = 0
with R = M~! = 0.49 fm. The constituent quark mass corresponds to A = 1.592 M =
636.7 MeV, g = 4.30, G = 6.33 M2 = 39.58 GeV~? and m = 0.0413 M = 16.54 MeV
according to egs. (49-53). A box with the radius D = 15 M~ = 7.5 fm was large enough
not to affected the iteration.

As we can see most effort is necessary to produce the correct asymptotic behavior for
r — oo (exponential), while the correct behaviour at small distances (linear) has been
obtained after a few interations already. The lower part of fig. (1) illustrates the changes
of the various energies during the iteration up to their finite value for self-consistent fields.
One notices that the total energy E converges much faster than its partial contributions.
The part ECSB of the meson energy is the most sensitive quantity and we use it to control
the iteration procedure.

In order to accelerate the convergence we start the procedure with a reference profile
equipped with the correct asymptotic behaviour, which can analytically be determined
by means of an asymptotic expansion of the field equation [15]. The reference profile

(67)

interpolates beween the correct asymptotic behaviour at r — 0 and r — co. Ris a param-
eter which characterizes the size of the field and can be chosen freely. The matching point
R, and the amplitude b are uniquely determined by the condition that expression (67) is
smooth at r = R,,. If R < 1/m, ~ 1.4 fm one gets Ry, < 4R/3 and b= (7 /3)R2, e™Fm,

10



0 PEEECECS
-30
-60
‘é’ -90 ]
120 | - Flg. 1:
‘ 1 Upper part: Profile
-150 1 ,, function during the itera-
180 . N : tlon.' '
0.0 0.5 1.0 1.5 2.0 Straight full line: start-
ing profile.
r(fm) Broken lines:  profile
functions of different ite-
ration steps.
Full line: finite profile
10.0 — - . . ; (after 30 iterations)
~ E Lower part: Relative de-
5.0 N/ \\\"a' 1 viations 8 E of the various
. S energies E, EI,, EuRe
X NE o~ and E®SF from their fi-
w 0.0 \ _,_,./—-—-—‘—':—_T_ P nite values in dependence
*° V7 i ’ on the number N of iter-
50 H LE// Rog o ations.
I' sea ’/’ Ecss
!
-10.0 - it :
0 5 10 15 20 25 30
N

In fig. 2 we compare the self-consistently determined profile functions O(r) calculated
for M = 350, 365,400,450, 465, 500, 600, 700, 730, 800, 900, 930 and 1000 MeV among each
other and with a reference profile (67) with the fixed radius R = 0.42 fm. First we rec-
ognize that the actual form of the self-consistent profile is nearly independent of the
constituent mass M and hence of the regularization parameter A. Moreover the reference

profile with the empirically determined size parameter R = 0.42 fm approximates all the
calculated profiles quite well.
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Before testing the quality of the approximation of the self-consistent profiles by the
reference profile we show the radial dependence of the (scalar) baryon density (32) and
of the axial density (37). Figs. 3 and 4 illustrate their behaviour.in two different re-
gions. At M = 400 MeV the main contribution to both quantities stems from the valence
quarks confirming their dominating role within our model for constituent quark masses
M < 600 MeV. However, there are details, like the asymptotic behaviour of the axial
density at large radii, which are determined by the sea quarks. At 800 MeV the 0% va-
lence level has joined the Dirac sea and does not give a seperate valence contribution.
Nevertheless it continues to give the dominating contribution to the observables. The
sum of valence and sea contribution depends smoothly on the valence energy. The value
sign(€) of the regularization function (31) guarenties a smooth behaviour of the sum at
e=0. :
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Fig. 3:

Radial distribution of the
baryon density 4712 p(7) for
M = 400 M eV (upper part)
and M = 800 MeV (lower
part) calculated for self-
consistently determined me-

son fields.

Broken line:
Valence contribution.

Dash-dotted line:
Sea contribution.

Full lines: Sum of valence
and sea contributions.

Fig. 4:

Radial distribution of the
axial density r? A,(7) for
M = 400 MeV (upper part)
and M = 800 MeV (lower
part) calculated for self-
consistently determined me-
son fields.

Broken line:
Valence contribution.

Dash-dotted line:
Sea contribution.

Fall Lines:
Sum of valence and sea con-
tributions.



4 Testing the reference profile on nucleon observab-

les

As shown in the last section the self-consistently determined meson profiles agree visually
quite well with the reference profile defined in eq. (67) with R = 0.42 fm. In order to
test the quality of the approximation of the self-consistent profiles by the reference profile
we calculate several nucleon observables. Fig. 5 shows the total energy (44) and their
components (45, 46, 48), the mean square radii 34) of the baryon density, including their
valence and sea-quark contribution, and the axial-vector coupling constant (39) calculated
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Fig. 5:

Nucleon observables in de-
pendence on the constituent
quark mass M calculated
with self-consistently deter-
mined profiles (full lines) in
comparison to the reference
profile ©F¢f(R; r) defined in
eq. (67) with R = 0.42 fm.
(broken lines)

Upper part:
Energy E and its compo-

nents E,1, ER% and E€SB,

Central part;

mean square radius R and
its valence (Rual) and sea
contribution (R,e,)-

Lower part:
axial-vector coupling con-
stant g4 (total value only).

Here and in the following
figures signs like o ¢ A+ in-
dicate the points, were the
calcultations have actually
been performed. The lines
interpolate between these
points.



with either profile. The kink in the valence and sea contributions results from the defini-
tion of the valence-energy region (0 < & < p). At the critical mass M,,;; = 750 MeV the
valence level leaves this region and joins the Diract sea. The behaviour of the regulariza-
tion functions (22, 31) at € — 0 guarantees that the sum of valence and regularized sea
contributions is a smooth function of the constituent quark mass M. Fig. 5 illustrates
that nicely.

The only noticeable difference between the values for self-consistent and reference
profile appears in the valence and sea contributions in the vicinity of M.,;;. For the self-
consistent profiles, the valence level dips into the Dirac sea at M =~ 750 MeV. This point
is shifted to M =~ 725 using the reference profile. This deviation is another evidence for
the more sensitive dependence of valence and sea contributions on details of the profile
function, while their sum is quite insensitive to them. Omne should note, however, that
the physically relevant region for the constituent mass is around M = 400 MeV, where
nucleon observables get reproduced by the reference profile.

The calculated nucleon observables are in sufficient agreement with similar calculations
[15, 26, 16]. The too small value of the axial-vector coupling constant (g4 = 0.6 ~ 0.8)
in comparison to the experimental value (g7 % 1.25) is a lack shared by many chiral
models of the nucleon. However it is rather the aim of this paper to compare between
two theoretical approaches than to reproduce the experimental values.

To complete our check of the reference profile we evaluate energy corrections to the
static hedgehog configuration. They have been introduced to equip the static hedgehog
with a definite value of spin and isospin and to make its center-of-mass momentum vanish.
Applying the pushing approach to the center-of-mass motion one gets the correction [28]

(P
T

AEps_, = (68)

where (P?) is the expectation value of the square of the total quark momentum, which
can be calculated and regularized by means of egs. (27, 28, 30) with

g 3o (7). (69)

£=—nV? and K =- [0 5

E is total static hedgehog energy (44). The cranking approach [29, 30, 31] applied to
the iso-rotational degrees of freedom of the static hedgehog configuration gives an energy
correction

_T(T+1)-3%
o 2I

for the restoration of isospin T'. The term —% results from the isospin T' = % of the 3 single
valence quarks. Due to the restriction to hedgehog configurations with grandspin G =0,
spin and isospin are equal and eq. (70) describes the energy correction for a semidagsiﬁaﬂy
quantized hedgehog with isospin 7 and spin § = T'. According to eq. (70) the difference
between the total energy (vest mass) of the A isobar (§ = T = 3/2) and the nucleon
(S =T =1/2) is given by

AEr (70)

3
Es-Ey = 33, (1)

where I is the (isoirotational moment of inertia. It can be calculated by adding a roti;a-
tional energy —@7/2 to the Euklidean action (5) and expanding the regularized sum with
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respect to the imaginary rotational frequency &. Applying the proper-time scheme one
gets [31]

I= Ly + Isea i (72)
with the valence contribution
1, = N D> (@] 73|25) (Pp|73|Pa) (73)
2 0<Lealp gtea ’ € — €a
and the regularized sea contribution
Nc ’ o o
Isea = = Z RI(&'a, &g A) (Q |T3 |®ﬂ) ((Pﬁl 73 l@ ) . (74)
2 af £~ Eu L

The regularization function is given by

Ri(ea, e A) = (75)
-1-—1— = dss !
2 /47 J1/a2 €+ €a

- s () oo () R

}
i

[e’“?* — e+ (e — €a) (sae—“?" + age'“%)]

. { 0 (62 > A?)
1 [sign(es) — sign(ea)] (2 < A?).

In the limit A — oo one gets the well-known Inglis formula [32] for the moment of inertia.
The incomplete error-function is given by erfe(z) = % et et dt.

There is almost no difference between energy corrections calculated for self-consistent
and reference profiles up to masses M = 600, in particular for the physically relevant
mass M = 400 MeV (fig. 6). At larger mass parameters the correction reaches half the
total energy E. Such a large correction is in conflict with the perturbation expansion of
the effective action and the observed deviations are not very relevant.
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Fig. 6:

Energy corrections to the
static hedgehog energy
calculated  with self-
consistently determined
profiles (full lines) and with
the reference profile (broken
lines) in dependence on the
constituent quark mass M.

Upper part:
Center-of-mass energy (68).

Central part:

(Iso)rotational moment of
inertia I (72) and its va-
lence and sea contributions
Lo (73) and Lo (74).

Lower part: ’
Delta-nucleon mass split-
ting (71).

We have self-consistently calculated average meson fields for the SU(2) Nambu & Jona-
Lasinio model with scalar-isoscalar and pseudoscalar-isovector couplings in Hartree ap-
proximation. The fields are restricted to the chiral circle and to hedgehog configurations.
Infinite quark contributions are regularized within Schwinger’s poper-time scheme.

The numerically determined self-consistent profile functions turn out to be nearly
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independent of the constituent quark mass. The profile function, which describesthe
meson fields, can be approximated by a reference profile with a simple analytic form,
which interpolates smoothly between the correct asymptotic behaviour for small and
large radii. The reference profile does not only approximate the self-consistent profiles
but also reproduces the relevant observables of the quark and meson configuration quite
well.

We conclude that many of the properties of the Nambu & Jona-Lasinio Lagrangian
can be studied using the reference profile instead of applying the time-consuming deter-
mination of the self-consistent profile. Changing the constituent quark mass M mainly
the strength g of the quark-meson coupling is changed, while the meson fields are appro-
ximately independent of M. If an accurate determination of the self-consistent profile
turns out to be necessary, the reference profile may serve as a suitable starting profile for
an iteration procedure.

The reference profile plays a similar role as the harmonic oscillator or Woods-Saxon
potential in the description of the average nuclear field. Most of the nuclear properties are
sufficiently well described by these potentials which rather distinguish themself by their
formal simplicity than by their confirmation in a Hartree or Hartree-Fock procedure.

The author is indebted to H. Reinhard, K. Goeke, Th. Meifiner and F. Griimmer for
many stimulating discussions and suggestions. He thanks for repeated hospitality of the
University of Bochum. The work has partially been supported by the Bundesministerium
fir Forschung und Technologie, Bonn (contract 06 DR 107) and the COSY-Projekt of the
KFA Jilich.

References
[1] J. Nambu, G. Jona-Lasinio Phys. Rev. 122 (1961) 345; 124 (1961) 246
[2] U. Vogl, W. Weise Prog. Part. and Nucl. Phys. 27 (1991) 195
[3] S. Klevansky Rev. Mod. Phys. 64 (1992) 649
[4] T. Hatsuda, T. Kunihiro Phys. Rep. (1993) to be published

[5] Th. Meifiner, A. Blotz, E. Ruiz Arriola, K. Goeke Rep. Prog. Phys. (1993) to
be published

[6] T. Eguchi Phys. Rev. D14 (1976) 2755
[7] D. Dyakonov, V. Petrov, P. Pobylitsa Nucl.Phys. B306 (1988) 809

[8] Th. Meifiner, E. Ruiz Arriola, F. Griimmer, K. Goeke, H. Mavromatis
Phys. Lett. B214 (1988) 312

[9] H. Reinhardt, R. Wiinsch Phys. Lett. B215 (1988) 577; B230 (1989) 93
[10] Th. Meifiner, F. Griimmer, K. Goeke Phys. Lett. B227 (1989) 296

18



[11] D. Dyakonov, V. Petrov, P. V. Pobylitsa, M. Praszalowicz Nucl. Phys. B323
(1989) 53

[12] M. Praszalowicz Phys. Rev. D42 (1990) 216

[13] R. Alkofer Phys. Leit. B236 (1990) 310

[14] Th. MeiBner, F. Grimmer, K. Goeke Ann. Phys. 202 (1990) 297
[15] Th. MeiBner and K. Goeke Nucl. Phys. A524 (1991) 719

[16] M. Wakamatsu and H. Yoshiki Nucl. Phys. A524 (1991) 561
[17] A. Chodos, B. Thorn Phys. Rev. D12 (1975) 2733

[18] D. Ebert, H. Reinhard Nucl. Phys. B271 (1936) 188

[19] J. Schwinger Phys. Rev. 82 (1951) 664

[20] P. Sieber, Th. Meifiner, F. Frimmer and K. Goeke Nucl. Phys. A547 (1992)
459

[21] Watabe and H. Toki Prog. Theor. Phys. 87 (1992) 651
[22] G. Ripka and M. Jaminon Ann. Phys. (NY) 218 (1992) 51

[23] Th. Meifiner, G. Ripka, R. Wiinsch, P. Sieber, F. Grimmer and K. Goeke
Phys. Lett. B299 (1993) 183

[24] C. Weiss, R. Alkhofer and H. Weigel Mod. Phys. Lett. A8 (1993) 79

[25] S. Kahana, G. Ripka Nucl. Phys. A419 (1984) 462

[26] Th. MeiBner, K. Goeke Z. Phys. A339 (1991) 513

[27] Chr. V. Christov, E. Ruiz Arriola and K. Goeke Nucl. Phys. A510 (1990) 689

[28] P. V. Pobylitsa, E. Ruiz Arriola, Th. MeiBiner, F. Grimmer, K. Goeke, W. Bro-
- niowski J. Phys. G18 (1992) 1455

[29] G.S. Adkins, C. R. Nappi, E. Witten Nucl. Phys. B228 (1983) 552
[30] T. D. Cohen, W. Broniowski Phys.Rev. D34 (1986) 3472

[31] H. Reinhardt NuclPhys. A503 (1989) 825

[32] D. R. Inglis Phys. Rev. 96 (1954) 1059

19



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	FZR_1993_18_T.pdf
	Seite 1 


