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Abstract 
The pion self-energy and propagator in a pion gas at temperature T m, are 
calculated within Hartree approximation. The pion-pion interaction is described 
by Weinberg's Lagrangian. The modification of the pion spectrum consists in the 
replacement of the free pion mass by an eflective one which increases with growing 
temperature. The thermodynamical quantities can be described by a quasi-particle 
representation and turn out to be smaller than in a free pion gas. 
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In ultrarelativistic collisions of heavy nuclei a dense and hot hadronic system is 
formed. For large enough nuclei and high enough energies such a hadron gas might 
even achieve local equilibrium irrespectively whether it emerges from a previously 
deconfined matter state. The conjectured increase of nuclear transparency at high 
bombarding energy provides the colliding nuclei to go through each other, and a 
meson cloud is produced in the middle region between the receding nuclei. In present 
experiments at CERN-SPS already pion multiplicities of a few hundreds are reached, 
and in future lead beam experiments one expects thousands of secondaries, which 
are even more frequently produced at RHIC and LHC energies. So, due to the 
recent development of high-energy heavy-ion physics [I] one gets a possibility to 
investigate rather extended meson systems. This new opportunity stimulated a 
series of theoretical works devoted to the investigation of properties of such systems 

P, 3, 4, 5, 6, 7, 81. 
Even when assuming local equilibrium, one is faced with the complexity of the 

strongly interacting many-body system, and a careful analysis relying on known 
features of meson interactions is needed. The pion-pion scattering amplitude is 
considered in Ref. [2] within some approximation, where the pion eigenstate itself 
is assumed as unmodified by the surrounding medium. In Ref. [3], which focus on 
the phenomenology of the phase transition of the meson gas to quark-gluon plasma, 
the medium influence on the mesons is taken into account rather schematically by 
adding to the free meson spectrum a positive correction independent of the meson 
momentum and proportional to the particle density. Recently, other possible phase 
transitions are dealt with, e.g., the transition from a homogeneous pion medium 
to unisotropic states of various kinds, such as pion droplets [4], or a state with 
boson paring 151, or the formation of isotopically asymmetric matter with boson 
conidensation [6] .  The pion optical potential in medium is analyzed in Ref. [7] by 
using the forward-scattering amplitude of free pions, and the modification of the 
pion spectrum is found to be practically negligible as compared to free pions. A 
thoreiugh selfconsistent calculation of the pion propagator and the pion excitation 
spectrurn is performed in Ref. [B], where an effective pion-pion interaction is used, 
which is originally constructed in order to describe pion-pion scattering in the energy 
region around 1 GeV /9]. A sizeable decrease of the pion energy at low momentum 
is obtained in the latter calculation which is at variance with the results of Ref. [7]. 
DW to this apparent difference one ic forced to reinvestigate the excitation spectrum 
~f pion mattes in a selfconsistent way by relying on an irreducible interaction. 

Wnlike to tke mentioned work 18, 71, in our approach the considered system of 
irntesac&rmg pions is described by Weinberg% pion field Lagrangian which takes the 

f ~ r n  in the lowest order in thte coupling constant f,-,' (or with an accuracy up to 
proportional to the Square of pion momenta) (See Ref. f101) 



where X = f 2 / 4  (fTT = 93 MeV). L0 = d , ~  + Srr2m2 is the free pion La- 
grangian, and L' stands for the interaction part. We use pionic units m, = c =. 
h = 1. The prefactor of the second term in L', violating the chiral syrnmetry for 
real pions, is introduced according to Ref. [ll]. The Lagrangian (1) is well known 

to describe the nn scattering at low and medium energy [12]. Since we consider 
temperatures T mT, where the pion gas can be quite dense but the density of 
genuine heavy mesons is low, the pion energy is in a suitable range so that this 
interaction can be applied. The Lagrangian L' is understood as irreducible and 
describing pointlike pion-pion interaction, therefore, it does not suffer modifications 
in medium. (Note that the investigation in Ref. [8] employs an interaction which is 
entirely due to various heavy meson exchange and does not include the irreducible 
interaction (1). According to the use of explicit heavy meson degrees of freedom 
such an effective potential can hardly be considered as unchangeable in medium, 
because the rho meson itself might be modified substantially when including in turn 
the two-pion state.) The physical picture assumed in sur approach relies on thermal 
and chernical equilibrium, as well as on vanishing chernical potential and isospin 
symmetry. 

We carry out our investigation of an interacting pion system by using the tem- 
perature Greens functions [13] 

D([, k, T)  = (E2 - 1 - k2 - D((, k, T))-'. (2) 

Since in eq. (2) the physical pion mass enters, the self-enesgy part n[(f, k, T') is Qke 
diff erence 

W E ,  k, T) = fqE ,  k, T )  - B((? k, 0). (3) 
Thereby the infinite contributions to the pion mass operator fI(', k, 0) due to the 
vacuum pion field Auctuations are removed from PI([, k, T). 

The polarization operator of the pion I?(', k, T) jn medium at temperature T 
can be presented graphically in most general form by the set of di 

where the thick lines corr~spond to total psopagator D, so &h&t akhe exp  
is, in fact-, an equation for D (or U) [U]. The do& sepreseats t 
arnplitude X in Li (I), and the fukl eirde stands fm the toeat m- 



is determined by an equation, displayed graphically as follows 

It is too difficult to solve simultaneously the set of eqs. (2, 4, 5) for determining 
the quantities D.([, k, T) and D([, k, T). If we take into account only the first term 
111" in the pion self-energy part (4) we arrive at the Hartree approximation. Such 
an approximation is reasonable since our investigation is restricted to low temper- 
atures T < m,. In this case, all our calculations involve the pion field states with 
sufficiently small energy and momentum [, p « 1 GeV, whereas the second term in 
eq. (4) influences the pion properties only at large enough values [, p m,,g. 

We find that the lengthy calculations performed according to the Greens function 
method in Ref. [13] result, due to the very form of the interaction &'(I), in 

where y = (1 - 6Xd(T))-I and the function d(T) is determined by 

1 J" dk k2x(w(k)) 
d ( ~ )  = - ~ ( w )  = [ exp {W; ' ) -~]-~.  - 

2112 w(k)(l - 6d(T)X)' (8) 

Thus, the pion propagator has poles at 

with residues ~/2w(k). The pion spectrum in the considered approximation gets in 
medium the simple form (9), i.e., the free pion mass is re~laced by the temperature- 
dependent effective one m,(T). Qne should have in mind that the pion propagator 
in the form (7) is valid for energies W « 1 GeV only, since the Lagrangian (1) enables 
one to describe the pion interaction at low enough energy and momentum. 

Hence we see that, in framework of the Hartree approximation, the modification 
of the pion propagator mnaists in the change of its pole position and the residue 
of this pole only, while the analytical properties of D(&, k) are not changed. In 
particular, the quantity II 6, k, T) does not get an imaginary part. 

The eRective pion m a s  (9) is displayed in Fig. 1. One observes that the effective 
mass becomes larger than tbe vacuum mass at T > m,. Thus, unlike the results in 



Refs. [7, 81, we obtain for low pion momentum an enhancement of the pion energy 
in medium as compared to the free pion. Restricting ourselves to temperatures- 
T << 1 GeV, we do not need the accurate pion spectrum at larger momentum. In 
particular, the reason for neglecting the second term in eq. (4) is that it influences 
the spectrum at pion energy in the order of the p, a-meson masses. Such pion states 
make no sizeable contributions to the thermodynamic quantities at T < m,,, now 
we are going to calculate. 

A general study of the many-body thermodynamical properties is carried out 
in Refs. [14, 151, and our further calculations of the thermodynamic quantities are 
based on the results of these works. The pion polarization operator TI is real, and 
the propagator D has simple poles only. Therefore, for a spectrum w(k) of the form 
(6, 7, 9), the formulae for the particle density e, and entropy density S look like for 
the free pion gas, but with effective mass %,(T). The thermodynamical potential fl 
and the energy density E = a(R/T) / a( l /T)  can be written after some cumbersome 
algebra which exploits the stationarity condition afl/aIi = 0 (See Refs. 114, 151) 

3T 
00 

R(T) = f i ( ~ )  - A(0) = -1 dk k21n[l - ezp(-w(h)/T)] + A(T), (10) 2a2 

The first terms in eqs. (10,l l)  are the usual thermodynamical potential and energy 
density of independent quasi-particles. The additional term A(L2), standing for 
deviations of the quantities fl, E from free quasi-particle ones, turns out to be small 
(numerically, the A contributes less than 10% to R, E). Thus, the system twns 
out to be described approximately as a free quasi-particles gas, with a quasi-particle 
spectrum being determined by eqs, (8,9). Wotice the fast convergence of the integrals 
(10 - 12) at w(k) > T. Therefore, modifications of the pion spectrum at lar 
momentum k would not influence the quantities e, S, E ,  R at srnall temperature 
T < 1 GeV. The results of numerical calculations are displayed in FPg. 2. It is Seen 
that the onset of modifications of the equation of state due to the sr;r interaction 
~ ' ( 1 )  appears at T > m,. The sizeable deviations of the therniadynamical quantities 
from the ideal gas sei in at T 1.5rn, (See also Fig. 'P), i.e., in a r 
deconfinement or chiral symmetry restoration is expected. It is worth 
at T 2m,. the modification due to this mr intesactiorn Is of the scmnc order of 
magnitude as contributions of heavier mesons, however with opposite siga. 8ne 
striking outcome is the reduction of the energy denslty compared to the free pbn 
gas. Such a behavior is not found in previous wissk 13, 7, 

Relying on these results, one can estiwate the total 



N ( T )  in a pion cloud at temperature T. Assuming that the volume has a value 
of N 103 fm3, the pion number at T N 200 MeV is N N 300, while for a free 
pion gas this value would be N 420. Thus, the nn-interaction suppresses the pion 
production at given temperature. It opposes simultaneously a fast increase of the 
energy (as well as entropy and pressure), with growing temperature, because at given 
excitation energy the interacting pion system has a higher temperature than a free 
pion gas. So, we are finally left approximately with the Same particle numbers, at 
given excit ation energy, both for interacting and noninteracting pion systems. For 
instance, the number N N 400 corresponds to excitation energy density E N 250 
MeV-fm-3 for the free as well as interacting pion system. 

In Summary, we present a quasi-particle description of an interacting pion gas 
in Hartree approximation. The effective pion mass increases with growing temper- 
ature, while the thermodynamical quantities are reduced compared to a free gas. 
Collective p, a meson degrees of freedom in such a meson system may turn out to 
be important, even in spite of small genuine heavy mesons densities, providing an 
additional effective nn interaction in medium. Therefore, one has to determine self- 
consistently the n, p, a propagators in the medium, which is the goal of future work. 
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Fig. 1: The temperature dependence of the effective pion mass &(T). 

Fig. 2: The temperature dependence of the pion excitation density e (curve I), 
energy density E ( curve 21, the entropy density S ( a r v e  3) and pressure P (curve 4). 
The curves are scaled by corresponding ideal pion gan values. At higher temperatures 
the contributions of genuine heavier mesons and collective excitations need to be 
induded. At T W m, there is a small overshoot of pressure on the free pion g a  
pressure due to the contribntion of A. 
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