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Abstract

The two-body correlation function is decomposed into two channel correlation func-
tions for the pp- and the ph-channel. The associated coupled equations describe the
evolution in the respective channels as well as their mixing. Integration of the ph-
channel in terms of vibrational RPA-states yields a closed equation for the correlati-
ons in the pp-channel comprising phonon-particle coupling and a memory term.In the
stationary limit the equation for a generalised effective interaction is derived which ite-
rates both the G-matrix (ladders) and the polarisation matrix (loops), thus accounting
nonperturbatively for the mixing of ladders and loops.

1 Introduction

A still outstanding problem in two-body dynamics concerns the simultaneous nonperturba-
tive consideration of pp- (hh-) and ph-interactions, i.e. the consistent integration of both
the pp- and the ph-channel. As numerically tested in [1] within the concept of correlati-
on dynamics [2]-[4] the short-range part of the two-body interaction produces correlations
mainly in the pp-channel, while the long-range part favours the ph-channel. These results
are in agreement with earlier discussions by Abrikosov et. al. [5] for infinite matter and
by Migdal [6] for finite nuclei which show that the sum of ladder diagrams should be es-
sential at large momentum transfer whereas one expects loop diagrams to be dominant at
small momentum transfer. In this sense, the simultaneous consideration of both channels
corresponds to a consistent treatment of short- and long-range correlations (including their
mixing), and therefore of collisional and collective aspects in nuclear dynamics.

Because a numerical solution of the equation for the two-body correlations is available at
most for light nuclei and in a restricted single-particle basis it is of current interest to ma-
ke the iterative structure of this equation more transparent, in particular with respect to
the mutual influence of short- and long-range correlations. This should help for a better
understanding of the interplay between collisions and vibrations during the evolution. For-
mally, this mutual influence shows up in mixed diagrams combining ladders and loops. The
importance of this mixing for the evaluation of occupation number distributions and of

damping widths for single-particle and collective excitations is demonstrated in [1] within a
mode] appropriate for light nuclei.



2 Channel correlations and the retarded two-body
equation

The nuclear many-body problem on the two-body level can be formulated in terms of coupled
equations of motion for the one-body density p and the two-body correlation function C[3],
which read in short-hand notation

Zp = [h,p] +tr(2)[v,C] . (1)
iC = [h(1)+h(2),Cl+ [v=, p20 + C] + AL + PP C. (2)

Here we have used the bare mean field B = £ + trv®p, where i is the kinetic energy ope-
rator, and superscript ¢ means antisymmetrisation. Further, pyo = App is the uncor-
related two-body density, and A and P denote the antisymmetrisation and permutati-
on operator, respectively. The in-medium interactions v= = Qv and v' = Q'v° are
density-dependent via the blocking operators which read in an arbitrary single-particle ba-
sis Qapapr = SaarOpp — aarppsr — 8pprPact 20d Qupargr = baprPpar — Sparpapr (cL[7]). In a
basis that diagonalises p one verifies that Q= projects on pp- and hh- states in the HF-limit
while @+ projects on ph- and hp- states.

If we subdivide the correlation function C into channel correlatlons according to

C=C"+C* (3)
the channel correlations follow the coupled set of equations

iC= = [H5,C7|+[v=,C™ + C* + pao] | (4)

iCt = (1 +PP)HLC +

+A( + PP (CL + C7) | (5)

or, in an arbitrary single-particle basis,

C ﬁa'ﬁ’ = (o, B|[Hy,C7]le, ,) + (@, B|[v=,C7 + C*t + paolled, B') (6)
wparg = (1 PagPaisr) 3 HomparnCoppop +
¥
+Aaﬁ(1 + paﬁlpalﬂl) Z ‘v;',y,a,,y(CbL,yﬁ,,yl + CE’Yﬁ"Y’)' (7)
¥y

Observing that the mean-field contributions in (6) and (7) with

(aﬁIHzlﬂf’Yl) = ha75ﬁ1’ + 5&—7hﬁ'y‘ : (8)
Hg == ha'757’ez’ — 6a7h,y:al (9)

oty

may be written either in “horizontal”or “vertical” form one easily proves that the sum of
(6) and (7) reproduces the original equation (2} for C,pup . Egs. (6) and (7) describe the
evolution of correlations in the pp- and ph-channel, respectively. Their mutual coupling
is accounted for by the inhomogeneous terms which comprise C* in the pp- and C= in
the ph-channel. To facilitate the following discussion, we adopt a single-particle basis with
hay = Oavea and pay = 84yn,. Further we assume the occupation numbers n, to be
time-independent which means a decoupling from (1), and neglect the exchange term in the
ph-channel dropping A.g in (7). Within these assumptions (7) reads in short-hand notation

L= (14 PPYHMCH + (1 + PP O™, | (10)
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with the RPA-hamiltonian H* = Hy + v! and its matrix elements in the adopted smgle—
particle basis
H&L,,I,a,,y = (Ea - eal)éaqé‘aiwl -+ (na/ - na)vg,y,a,,y. (11)

For an integration of (10) it suggests itself to transform this equation into the RPA-basis.
The RPA-eigenstates x* and x** are given by the secular equations

ZH&L’YIQ"/X:‘Y' = Q”Xgal ' ’ (12)

Zx“*rﬂ R (13)

The matrix elements of the hermitean conjugate operator H L1 are related to those of H*
by

J.'I’ -
Hipap = —Hpypey: (14)
Making use of the orthogonality and completeness relation(c.f.[8])
ZX'Z:HXQQ’ = 5[.LVN[£ . (15)
ZNﬂXI;a’XZ;’ = ‘50fﬁ5°l'ﬁ'(na' - na)a (16)
u

the relations between matrix elements in the single-particle- and the RPA-basis read

C&Lﬂarﬂ/ = ZN NUXaa'Xﬁ,@’C'#V (17)
CI“’ = Z )EZZ’&pﬁ' afo’f'y (18)
aa'Bp!

with N, = 1(-1) for g > 0(< 0) and X%, = (ner —na) x4 The equation for C,, follows
from (18) using (10)

ic.’p.u = (Qy. - Qy)cuu + Z I{ )(7’/\’ 'Yl\’}")\} (19)
AN
Kixpn = Xoabhn + X5m05%, (20)
where we have introduced the phonon-particle vertices (Q_, = —Q,)
0# y Zv'm' ’axaa' = (Qﬂ — & + E'Vi)ﬁf;’l' (21)
' Al = ZXﬁﬁlvAlﬁAﬁl = (Q-—y — €3 + 6,\')}:’1{‘\1- (22)
B8y

These relations may be proved using the RPA-equations (12) and {13). After integration of
{19} the resulting solution C,, (1) is transformed back into the single-particle basis yielding
(qu = Q.u - Qv)

C&Lﬁa’ﬁ’(i}’ = Z NN V-Xga'xjég'edﬂwzauw(@) +
ny

t ,
+1/ i ‘/%) dt'ZN ﬁN vam'X;E'e&;gpvﬂwg) z Ky, A*y”,k’ smzv(‘ﬁ])- {23}
‘ py

gt R



The first term is a superposition of oscillations around the initial values C,,(0) and repres-
ents a solution of the homogeneous equation that follows when dropping the term with C=
in (10). The second term comprises the coupling with the pp-channel.

Insertion of (23) into (6) leads to a retarded two-body equation in the pp-channel,

iC’fﬁa,ﬁ, = < af|[H=,CT)'B > + < aB][vT, p2o + CHO)d/B > +
t AV —
+ [at S <MV (- t)B > Chpnlt), (24)

with H= = Hy + v=, the memory-kernel

M,y/\,_/:)‘/ (t _ t,) - Z N“N,,I{f;:\’,y//\/[v:, 1/7:Xu o Xu*e-iﬂpu(t_.t’)L (25)

uv

and the initial correlations

C* =3 " N.N,C,.(0)x* o x* e . (26)
uny

Here, we used the notations [A, B] = AB — Bl Al and (Ao B)123s = Ay3B34. The coupling
with the ph-channel produces two contributions in the pp-channel: (1) A source term ori-
ginating from the initial correlations C,.,(0) in the ph-channel, and (2) a retardation term
comprising memory effects due to phonon-particle coupling. The non-locality in time of
the memory-kernel — characterised by a memory-time 7* — is controlled by the number of
collective states contributing to the sum }°,, in (21). On the other hand, the change in time
of C=(t') - characterised by a relaxation time 7, — is determined by the strength of the
interaction. Only for 7% < 7,¢ one can replace t’ by t in C=(#) and extend the integration
to infinity (Markov-limit). «
The channel-mixing is described by the retardation term in (24). In order to allow for
a separate treatment of this mixing we introduce a corresponding mixing correlator AC by
C= =& 4+ AC, with
i = [H=, ¢+ [v™, pao + C2°]. (27)

Without C*°(t) eq.(27) accounts for a resummation of ladders as known from time-dependent
G-matrix theory [9]. The additional driving term [v=, C+°] modifies this by coupling with
oscillations due to the initial correlations in the ph-channel. Now, from (24) we obtain for
the correlations due to a mixing of ladders and loops

. ‘ t o
iNC = [H=,AC] + /0 di' 3 MV~ ) ACH) + #))parar (28)
YAy N

In order to study the iterative structure it is more convenient to use the equivalent integral
equation

i 3 11
AC(t) = Ac=(t) + / dt' > W (¢t — 1) ACi(t), (29)
O go1m '
with .
Ac(t) = / dt' Y W () (). (30)
0 ot

The integral kernel W (¢ — '} may be cast into the form
oy 3 Foyd tﬁt’ L & - Fnl PEF= '
W) =i [ dre Ty ) (31)
b ‘
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It is of first order in the phonon-particle vertices (c.f.(25)),but of infinite order in the
blocked interaction v=. In deriving (30) and (31) we have used the identity ffdt’ [ di” =
Jdt" [5 dt'. Applying this relation repeatedly we may arrange the solution of (29) in powers
of W,

ACoparp(t) = Acqgup(t) + / a S W(t—1)

12172/
-l-/ dT1W(t - Tl)W(Tl — t’) +/ dT1 /Tl de
t! +
Wt = m)W(rs = )W (13 = ¥) + - T2 Ay (£). (32)
Products of W are formed according to
(WW)ihaie = 2 WapuipWiisar- (33)

343'4/
The solution (32) makes the iterative structure transparent: the resummation of ladders
together with a coupling to vibrations contained in each W is followed by a resummation of
W and thus of phonon-particle vertices.
Combining all relations with the solution of (27) we are able within our approximations
to trace back the total two-body correlations C' to the uncorrelated two-body density p2o
and the initial (vibrational) correlations C*° in the ph-channel.

3 Stationary limit and effective interactions

In the stationary limit C = 0, two-body dynamics can be traced back to integral equations
for frequency-dependent effective interactions. We meet the stationary limit imposing C= =
0 and C* = 0 in (6) and (7), respectively. Strictly speaking, due to the exchange term
equation (7) splits up into two equations for the ph-channels (a,¢’) and (o, ). Since,
however, the equation for channel (o, ') does not provide new aspects with respect to
channel mixing it is neglected in the following by dropping Aag in (7). The price for this
simplification is the loss of antisymmetry with respect to the labels (¢, ) and (¢/#') in
the ph-channel. Considerations with three coupled equations are made e.g. in [10] using
Green-function techniques.

Equations (6) and (7) are solved in the stationary limit by the correla.tlons C=° and C10
which can be determined from the two coupled equations

(W™ — e — 8)Cipup = <afPp=(C™0+CH0+ ph)e'B > (34)
(L‘)-L — €x + Ea’)C&Lga'ﬁ' = Z vt;!r-’y’a’*y(clo + Czo)’Yﬁ”i'ﬁ" (35)
¥y

where pqg 1s the stationary uncorrelated two-body-density. This can be seen by subtracting
from (34) and (35) the respective hermitean conjugate equation. By introducing effective
interactions G(w™) and II(w') by the definitions

< afp(CT+ C™ + ph)|o/f' > = < aB|G(C™" N pao)lel B’ > (36)
Z”:"r’a"y(cm + C=0)“b6“i’ﬁ' = an’a’v 'rﬁ'r'ﬁ' (37)
¥y

and insertion of (36) and (37) into (34) and (35), respectwely, we obtain integral equations
for the G-matrix and the polarisation matrix II {c.f. also [1})

Gupartr = Vaparp+ < afo(w=H — HE)Q=Clo/'F > (38)
na}?a’ﬂ' = vzﬂa'ﬁ' + Z[va(wl(“!-) - HbL)ﬂlql}a_yyawH,w,},:ﬁ:, (39)
ked



with w®) = w + ing,n — 00). Assuming again p° and A(p°) to be diagonal, the matrix
elements of the blocking operators simplify to Q% = Oxnbyy(1 =1y —ny) and Q3y, =
SxyBamy(nar — 1y), and the mean-field two-body propagators gPP(w™) = [w=t) — HZ]~! and
gP* (W) = [wt ) — H ]! reduce to

Py = barbale™® — ¢y — ] o)
gz}éa'ﬁ’ = 6aﬁ'5ﬁa’[wl(+) —€a+6a']~1- (41)

A representation of (38) and (39) in terms of diagrams is given in fig.1 and fig.2, respectively.
The iterative structure makes explicit that G accounts for a resummation of ladders, while
II accounts for a resurnmation of loops.

Equations (38) and (39) describe the stationary limit in the absence of channel mixing,
i.e. when dropping C*° in (34) and C=?in (35). In order to account for the mutual influence
of both channels it is tempting to construct a total G-matrix G**(w™,w') in terms of G(w™)
and TI(w). This can be achieved by the definition

Gt"tpgo = G(Cm + Pgo)> ‘ (42)

which yields , together with (36) and (34), a relation between C=° and G®*. Furthermore,
insertion of (37) into (35) allows to express C*° in terms of II and C=°. Finally, combining
all relations with (42) one arrives at an equation for G** which may be cast into the form

1 —n,—mn,

tot

afalf = Gaﬁa'ﬁ' + Z I‘(w )aﬁn’a 'RA ___(+) — e
Arr!

Gftof\tn'ﬂ/ . (43)

The frequency-dependent 6- label interaction I'(w ’L) is a combination of G’ II and a ph-
propagator,
Ngt — Ny

Wity — €+ €xr

D(wh)aprarnr = 3 Gapyr ywrarn. (44)
Y

Eq.(43) is not an usual Bethe-Goldstone equation because not two but three labels of Gt

are involved in the summation on the r.h.s.. Its iterative structure is displayed in fig.3. The

successive iteration proceeds in powers of I' connected by a respective pp-propagator. A

diagram of second order in I is shown in fig.4.

Equation (43) describes nonperturbatively the channel mixing in the stationary limit of
two-body dynamics. For transparency p® was assumed to be diagonal. This assumption can
easily be dropped replacing 1 — n,. — ny in (43) and ny — n, in (44) by the non-diagonal
expressions for Q= and Q*, respectively. For a complete description of a stationary system
the equations for the effective interactions must be completed by the stationary one-body
equation .
0 = [, p°] + trafv, py + C°). | (45)

Here, # is the kinetic energy operator, and tr, means the trace over the second particle.
With C° = C*® 4 C=° and the definitions (36) and (42) we obtain

0 = [, p°) + tra[G™*, p3g]. | (46)

This equation for p° together with the equations for G** (7 and II represent a closed set of
equations for the stationary limit of the system. This may be viewed as basis for a more
sophisticated treatment of the true (correlated) ground state in the sense that channel mixing

and hence the mutual influence of long- and short-range correlations is nonperturbatlvely
included.



4 In-medium scattering approach

Short-range correlations are associated with multiple pp-(or hh-) collisions mediated by the
in-medium interaction v=. The in-medium scattering approach is based on the assumption
that this collisions happen on a time-scale which is short as compared with the time in
between the collisions. Neglecting, for a moment, long-range correlations and approximating
the “collision-free” evolution on the long time-scale by the uncorrelated two-body density,

ip20 = [Hy , paols - (47)

we obtain for the short-range correlations

C= = —po + UE) U E)T, (48)

where the two-body Moeller operator §2(E) depends on the total energy of the “scattering-
system” and follows the equation

O(B) = 1+ [E* — Ho)"'v=0(E). (49)

This has been shown in [3,9] by an approximate integration of the two-body equation.
Equation (49) is equivalent to (38) when defining the G-matrix by G(E) = vQ(E).
Within this concept of two different time-scales long-range-correlations are included assu-
ming that they are operative essentially on the long time-scale, i.e. in between the collisions.
This allows to apply the same integration procedure from {3,9] to eq.(4), which yields

]

C= mpag — O + Qpao + C"L)QT. (50)
The Moeller—opera,tor‘s may be expressed in terms of G,
UE) =1+ g(E)Q"G(E), (51)

with g(E) = [E*—Hg]™. Insertion of (50) into (10) provides an equation for the long-range
correlations

i€t = (1+PP)HCH +(1+ PP ([gQ=G,CHy +
9Q=GC*G1Q=g") + D(pao). (52)
We observe that channel mixing produces a driving term
Di(pan) = (1 + PP (@22l — pao) (53)

as well as an additional interaction term of mixed structure (second term on the r.h.s.): C*
is horizontally connected with G but the resulting expression is vertically connected with
vt. Both terms are non-hermitean due to the propagator g{ E).

Equation (52) holds for an arbitrary single-particle basis. Together with {1) and {49) it
represents a closed set of equations for the long-range correlations C'*, the G-matrix G and
the one-body density p. The one-body equation reads, with (3) and (50),

ip = [, ] = Laa(p) + tr2[G, O] + tra[GCHGT, @741, (54)
with the on-shell collision term from time-dependent G-matrix theory
Lo = itry([Im G, paols — [GpanGl, Q= Imgls) {85)
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and the renormalized mean field & = { + trReG®p. Equation (54) was used in [11] to study
nuclear damping without channel mixing, i.e. with approximate long-range corralations
which follow from (10) when dropping the term with C=.

Due to the non-hermitean character of (52) we expect that the mixing with the pp-
channel leads to damped vibrations in the ph-channel. To make this more transparent we
assume — similar as in chapter 2 -that the one-body density appearing in the interaction
terms of (52) is diagonal and time-independent. This allows for a transformation into the
RPA-basis defined in (12,13). The result is

zC,,,, =0,,Cu + Z K it V'Cu’V’ + DuU(P20)7 (56)

[re%

with the complex coupling matrix

K, © = NuNy Z K141 234 (57)
1234
T1234 = < 12|(Qx“, o X"I*QT — X“I 0 X"’*)|34 > (58)
and the driving term
D, (p20) = Z Kis < IQI(QP%QT - ,020)]34 >, 0 (59)
1234

The contributions to the sums in (57) and (59) factorize into a term Kjs, which is, ac-
cording to (20), a linear combination of phonon -particle vertices, multiplied by a term
which comprises the short-range correlations in form of Moeller operators Q(E). In the
limit = 1, i.e. without collisions, both coupling matrix and driving term vanish. The
source for damping is the imaginary part of the coupling matrix. Using (51) we obtain

ImK" = —N.N, 3 K%, <12(1+R)x* o xsT -
1234 ' .
—Sx* ox"*(1+RN34 >, (60)
with
R = —ImgQ~ImG V (61)
S = ImgQ~ ReG. (62)

Here we have adopted the on-shell approximation g(E) = iImg(E) = —in6(E—h(1)—h(2)).
A further evaluation of (56) is achieved by solving the non-hermitean eigenvalue -problem

wpl? = AE” (63)
§”wa; = ¢t ot (64)

with Ay = (Qp — 0, )6uebie + K27 . The eigenstates {7, fﬁi form a biorthogonal system
which follows the orthogonality relatlon

S5t = b | )

An expansion C.(t) = 32, Cp(t)¢], yields, together with (56), an equation for the compon-
ents Cy(t), the solution of which reads

Co(t) = e™™* C(0) + 1/2 / di'e **wn&f—*’)ZEUTD,,,,(pgo(t')). (66)



A transformation back into the single-particle basis provides for the long-range correlations

. T
Cliwr = 3 Flompre ' Co0) + 1/i /0 i 3
n

71,1234
P2 Kaaae™ 1 (Qpag ()02 — paol)rzas (67)
with
flon = S NuNodsich - (69)
Kioa = L& Kt | (69)

Expression (67) is our central result. The long-range correlations are superpositions of
vibrational modes which are damped due to the coupling with short-range correlations. This
collisional damping is accounted for in a way which is non-perturbative (i) with respect to the
phonon-particle vertices due to the diagonalisation of A (63,64) and (ii) with respect to the
two-body collisions due to the G-matrix appearing in (60). Furthermore, after insertion of
(67) into (54), we observe that channel mixing produces retardation effects in the one-body
equation.

5 Summary

In this paper a reformulation of two-body dynamics is presented in which the equation
for the two-body correlation function as obtained from the time-dependent density matrix
hierarchy is replaced by two coupled equations for correlations in the pp-and the ph-channel.
These correlations are identified with short- and long-range correlations and associated
with in-medium collisions and vibrational motion, respectively. Their mutual influence
(termed channel-mixing) is analised by means of an integral equation for the corresponding
mixing correlations which exhibits the iterative structure of two-body dynamics: After a
resummation of ladders accounting for in-medium collisions a resummation of loops in terms
of vibrational RPA-modes is performed which accounts for particle-phonon coupling. This
way the complete two-body correlation function is traced back to the uncorrelated two-
body density and the initial vibrations in the ph-channel. We stress that our approach, at
variance to other theories, is non-perturbative also with respect to mixed diagrams, that
double-counting is avoided and that no linearisation has been implemented (large-amplitude
motion).

In the stationary limit, channel-mixing can be traced back to an effective interaction
which combines the usual G-matrix with the polarisation matrix. The corresponding integral
equation differs from the Bethe-Goldstone equation because three labels instead of two are
involved in the summation.

Assuming that short- and long-range correlations evolve on two different time-scales the
short-range correlations can be integrated in terms of the G-matrix. In this in-medium
scattering approach (termed time-dependent G-matrix theory when neglecting long-range
correlations) channel-mixing shows up in the damping of the vibrational modes which con-
stitute the long-range correlations. In the one-body equation in-medium collisions care
for both a renormalisation of the mean field and a collision term, whereas channel-mixing
produces retardation effects.
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Figure captions

Fig.1
Integral equation for the G-matrix

.G >< "
Fig.2

Integral equation for the polarisation matrix
/’

o X
Fig.3

Integral equation for G**; the operators G and 7 in the second diagram on the r.h.s. are
connected dy one line forming the 6-label operator I'.

®. . G 't:Ot
/

Fig.4
Second-order contribution in T.
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