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Abstract

We review a unified description of resonant and quasi-free hypernuclear production
reactions on the basis of the continuum shell-model. Both reaction mechanisms are
considered as boundary cases of the same process. We apply the model to the (K~,7)
and to the (w, K*) reaction on light target nuclei. Particular attention is given to the
consequences of the shallow hyperon-nucleus potential. Hypernuclear disintegration by

baryon emission is considered as transition from the bound to the unbound part of the
configurational space.



1 Introduction

At first glance, a hypernucleus is a strongly interacting object like an ordinary atomic nucleus,
characterized by a diameter of a few femtometer and usually surrounded by electrons, which
neutralize the positive charge of the nucleus. Only the quantum number strangeness ()
distinguishes both kinds of nuclei. In the traditional picture, baryons are the fundamental
building blocks of strongly interacting matter. While an ordinary nucleus consists of nucleons
(N), a hypernucleus contains additionally, at least one hyperon (Y). Nuclear physics tries to
explain the structure of a nucleus, including its excitation spectrum, transition probabilities
and behaviour during nuclear reactions, on the basis of the interaction between the nuclear
constituents. While ordinary nuclear physics bases on the interaction between nucleons, in
hypernuclear physics hyperons are additionally involved. Due to the various selection rules
for meson exchange, the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interaction
differ quantitatively from the nucleon-nucleon (NN) interaction. Generally, the interaction
with and between hyperons is less attractive than the nucleon-nucleon interaction is. The
AN interaction is roughly half as strong as the NN interaction, while XN and ZN interaction
seems to be still weaker. Consequently, a hypernucleus is more loosely bound than an
ordinary nucleus, and unbound states exhaust a larger fraction of the hypernuclear excitation
spectrum.

Before studying pecularities of the YN or YY interaction we have to understood the
general features of hypernuclei and the way to produce them. For that, we need both a
(nonrelativistic) nuclear structure model and a reaction model describing the conversion of a
nucleon, which is embedded in a nucleus, into a hyperon, e.g. by means of mesons. In both
models we rely on the experience of ordinary nuclear physics. As to the nuclear model we
use the nuclear shell-modell which has succesfully been applied for more than 50 years. In
this model, a nuclear many-particle state is expanded within a set of basis states composed
of single-particle states. A residual interaction mixes the various shell-model configurations
(shell-model with configurational mizing). In the traditional version of the nuclear shell-
model (harmonic oscillator model) the single-particle states are defined by the hamiltonian
of the harmonic oscillator and restricted to bound states (bound-state shell-model). Such a
model does not allow the emission of nucleons or hyperons. Concentrating on the description
of bound or quasi-bound nuclear states, this defect is unimportant. Since a hypernucleus
is generally more loosely bound than an ordinary nucleus the produced hyperon may leave
the nucleus in most cases. That is why we apply a shell-model which allows the emission of
nucleons or hyperons ( continuum shell-model) . It describes simultaneously two hypernuclear
production mechanisms which are often treated separately: the resonant (recoilless) and the
quasi-free mechanism.

In the shell-model approach, all baryons are usually assumed to be stable particles, which
are scattered on each other. In reality, the hyperon is unstable. This fact is ignored in our
calculations. This neglect is justified for A hyperons which decay only weakly. Their decay
matrix-element is by several orders of magnitude smaller than the scattering matrix-element.
All the heavier hyperons convert strongly into lighter ones if they are surrounded by nucleons.
YN — YN scatteringand YN — Y'N or YN — Y'Y convertion matrix elements are of the
same order of magnitude. In this case, scattering and conversion processes should be treated
on the same footing. The introduction of an imaginary part in the shell-model hamiltonian
might be a possible first approximation to do that. However, there is another decay process
which leads to an imaginary part in the relevant hamiltonian, since the hypernucleus itself can
disintegrate and emit nucleons, hyperons or clusters of them. Both disintegration processes
may interfere and must be considered carefully. We wanted to avoid the difficulties connected
with the use of comlex single-particle wave functions and neglected the conversion process
completely. So we had to restrict ourselves to hyperons whithout strong comversion (A
hypernuclei) and to cases which seem to be only weakly affected by the conversion (loosely
bound and scattering states of ¥ and = hypernuclei).



Hypernuclei are usually produced by bombarding ordinary nuclei with elementary pro-
jectiles, usually mesons, of a few hundred MeV. In this energy region, the projectile-nucleus
interaction consists of a succession of projectile-nucleon interactions. The whole production
cross-section can be reduced to the elementary projectile-nucleon cross-section multiplied by
an effective nucleon number (impulse approzimation (IA)). The elementary cross section is
independent of the nuclear structure and can be taken from the experiment. The effective
number contains all the nuclear and hypernuclear spectroscopic information and is our actual
matter of interest. Rescattering and absorption of the projectile inside the nucleus can be
described by a distorted wave-function (distorted wave impulse approzimation (DWIA)).

In sect. 2, we outline the basic definitions, approximations and formulae of the continuum
shell-model (CSM) and sketch the way how to determine the desired quantities numerically.
In sect. 3, the CSM representation of a hypernuclear state is used to define resonance and
quasi-free contributions to the production probability and to investigate the relation between
both mechanisms. Their quantitative relation is evaluated in dependence on the reaction
parameters. Sect. 4 is devoted to the pecularities of the shallow hyperon-nucleus potential.
Hypernuclear disintegration probabilities are considered in sect. 5. Concluding remarks are
given in sect. 6.

2 Continuum shell-model description of bound and un-
bound hypernuclear states

In the shell-model approach, a nuclear many-particle state is expanded with respect to a
single-particle basis defined by an average nuclear potential u(r). The basis states of A
identical particles are given by antisymmetrized products (Slater determinants) of nucleon
wave-functions. For hypernuclei, the set has to be extented by hyperon states. The shell-
model can be applied to any mixture of nucleons and hyperons. The formal equations given
below are independent on the number of hyperons and nucleons, respectively. Our numerical
calculations, however, are restricted to hypernuclei with a single hyperon. So we can make
use of the fact that there are (A-1) identical partiles (nucleons) and one particle (hyperon)
which is different.

In the traditional approach, the shell-model basis is restricted to bound single-particle
states vanishing asymptotically for large separations of a nucleon from the center of the
nucleus. Such a configurational space allows the description of bound and quasi-bound res-
onance states. Resonance states play an important role in many nuclear reactions including
hypernuclear production. Recoilless A hypernucleus production is dominated by resonance
excitation and has successfully been described by bound-state shell-models (e.g. [1, 2, 3]). On
the other hand, in most of the hypernuclear production reactions, the momentum transfer
is larger than the Fermi momentum of the corresponding hyperon in the nucleus. In this
case, the hyperon is produced in a scattering state and leaves the nucleus (quasi-free pro-
cess). The shallowness of the hyperon-nucleus potential increases the quasi-free contribution
additionally. Usually a hypernuclear excitation spectrum exhibits both features: a resonant
part below and around the hyperon emission threshold and a quasi-free spectrum above it.
Their relative weights depend on the momentum transfer and on the strength of the average
hyperon-nucleus potential as well.

The continuum shell-model (CSM) allows a simultanious description of resonant and
quasi-free processes on the same footing. It represents an extension of the traditional shell-
model by unbound states. Its basis functions are defined by an average baryon-nucleus
potential vanishing at large separations of the baryon from the center of the nucleus. The
corresponding single-particle spectrum consists of both a discrete and a continuous part. We
approximate the avarage baryon-nucleus potential by a real Woods-Saxon potential
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consisting of a volume term, a spin-orbit term and, for charged particles, a Coulomb term. Its
parameters are different for protons, neutrons, A, ¥ and E hyperons. To fit the decay thresh-
olds we allow the nucleon parameters to be slightly state-dependend. The radial dependence
f(r) of the volume term follows from the nuclear matter density usually parametrized by a
Fermi distribution

1) = [1+exp{“R}] B @)

with an average nuclear radius

R = r, (A=D1 (3)

in dependence of the mass number (A-1) of the residual nucleus. Radius r, and diffuseness
d are a little smaller for hyperons than for nucleons due to the shorter range of the hyperon-
nucleon interaction. The shape of the spin-orbit potential is proportional to the derivative
of the Fermi distribution (2) and Ay = A/mc is the Compton wavelength of the pion. The
Coulomb potential for a baryon with charge number Zin a nucleus with charge number Z; is
approximated by the electrostatic potential of a homogeneously charged sphere with radius
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The charge radius R, may slightly differ from the nuclear radius R. « is the Sommerfeld

fine-structure constant.
The nuclear hamiltonian is given in shell-model approach by

(4)
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where
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is the sum of the kinetic energies #; and
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the sum of the potential energies i; of all A baryons. In CSM approach, it is given by eq. (1).
The residual interaction

A
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i<k
describes formally that part of the intranuclear baryon-baryon interaction which is not taken
into account in the avarage potential. It mixes the various shell-model configurations. We
approximate the residual interaction by a zero-range force with spin-exchange term

BIES(F; = ) = ~VI% (a+ bPG) 807 — ), (9)



where Pﬁc is the spin-exchange operator between particles i and k. The zero-range force is
an essential approximation reducing the CSM equations to a manageable level. The first two
operators of the hamiltonian (5) constitute the shell-model hamiltonian

B =T4+7T (10)

and consist of a sum of single-particle operators. They determine the basis states of the
shell-model. The residual interaction (8) mixes the basis states.

There are various methods of taking both resonant and quasi-free processes of hypernu-
clear production into account [4, 5, 6, 7, 8]. We use a CSM version which allows us to identify
the contribution of a definite hypernuclear configurations to the total reaction probability.
For that aim we define a projection operator

Q@ = > |®r) (®xl, (11)
R

where |®r) is a many-particle shell-model state defined by the shell-model hamiltonian H®
(10). The sum runs over all the shell-model states with all A baryons in bound single-particle
states. The operator () projects onto a subspace (Q-space) of the total many-body space.
Q-space states may lie below (bound states) and above the disintegration threshold of the
nucleus (resonance states). The latter are embedded in a continuum of scattering states,
which starts above the first disintegration threshold. The complementary P-space is defined
by a projection operator

P =1-9q. (12)

It is made up of shell-model states with at least one baryon in the continuum of unbound
states. As a further approximation we restrict the P-components to states with exactly one
baryon in the continuum.

A hypernuclear state |U) satisfies the Schrédinger equation

[E-&] v) (13)

with the nuclear hamiltonian H (5). If the hypernucleus is in the ground state or in any
other bound state it can completely be described by a set p of discrete quantum numbers.
Such a state |¥,) has only components in the Q-subspace. Above the nuclear disintegra-
tion threshold, the excitation energy F is a continuous quantum number. Let us assume
that the hypernucleus may decay into two fragments: one baryon and a residual nucleus
with (A-1) baryons. Other decay channels are assumed to be either closed or negligible.
This approximation is in accordance with the restriction to configurations with at most one
baryon in the continuum. A state decaying into two fragments is characterized by a discrete
set f of quantum numbers and by the continuous quantum number E. An unbound state
is additionally characterized by its asymptotic behaviour. We use states ‘I’H')) with the
asymptotic of a plane wave described by quantum numbers f and gutgoing spemcal waves
in all open channels {out-asymptotic) and also states ]\I' E, f) with a plane wave in channel f
and incoming spherical waves in all open channels (in-asymptotic). An unbound state has
components in either subspaces

N 4+ -
w50 = PIOgh) + Qg (1)
Inserting the decomposition (14) into the Schrédinger equation (13) we get the representation
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where we have introduced the Greenoperator é’g‘) in the P-subspace

s _p_ L p

with the P-component Hpp = PH P of the hamiltonian and the eigenstates IEE:}) of Hpp

[E pr] €& = o | (17)
with the same asymptotics as | lIlg7 ;). Inserting egs. (12) and (11) into eq. (17) one gets
(2] 1€5) = —;«rmmg}gﬂf}ném, (18)
where we have used
Qg =0 (19)

following from eq. (17). The Green operator G'g:) generates states with asymptotically
outgoing (4) and incoming (-) sperical waves, respectively. This asymptotic behaviour is
ensured by adding a tiny imaginary part +ic to the energy (E®) = E+i¢) in the denominator
of the Greenoperator (16).

The effective Q-space hamiltonian H fo( ) describes the couphng between the various
shell-model configurations of the Q-subspace. It consists of two terms

Hef‘f(:h) HQQ + HQP G( )HPQ (20)

The first term is the nuclear hamiltonian restricted to the Q-subspace (Hgg = QHQ). It
corresponds to the hamiltonian of the traditional bound-state shell-model and describes the
configurational mixing within the Q-subspace (internal mixing). The second term causes an
additional mixing of the Q-space configurations due to the presence of the P-space (external
mixing). It produces an additional shift of the bound and resonance states and gives the
Tesonance states a finite width. The operator

fpg = PAQ = PV (21)
and the corresponding operator A, op mediate transitions from the Q- to the P-space and vice

versa. Since H° commutes with P and Q, only V7es gives a contribution to the transition
operator. Inserting representation (11) of operator ¢} into eq. (15) we get

I\Ir(*) Y+ <@RI eff(i IQRI>(¢R'HH|E )ﬂﬂﬁ (22)
RRY
with
057 = 128) + [w§) (23)
and
W) = GEH |R) = GBIV (o), (24)

i.e., the state ]wg)) fulfils the equation
{E— ﬁpp] i) = Hpgl@a). (25)

If one replaces P by means of eq. (12) and introduces eq. (11) one gets from eq. (25)
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where we have used the property
Qlwg?) = 0 (27)

following from eq. (24). According to eq. (23) the state IQ( )) differs from the basisstate |®z)
by an additional term lwl(% } describing its decay into (its generation from) the continuum
of P-space states.

Expression (22) has poles at the eigenvalues &, &) of H
via the Greenoperator G'( ) (16). If the excitation energy E is higher than the threshold of
the lowest dlsmtegra,tlon channel, G( ) is nonhermitian and thus H ef f®) i5 nonhermitian

ef &) which is energy-dependent

too. Its eigenvalues &, (£) and eigenstates {)( ) defined by

(@A B8y = £® 6, (28)

are complex. Here, the signs (X) do not refer to the asymptotic behaviour but rather
indicate that 5§+) (I ®(+) }) is eigenvalue (elgenstate) of H ef ) and & () (]@( ) }) eigenvalue
(elgenstate) of H ef ), Both |@(+)) and |<I>( )) are restncted to the Q-space and hence

vanish asymptotlcally. In the case of a hermitian hamiltonian H, the Greenoperator G’gj )

is the only nonhermitian part of A, gg #) and the eigenvalues and eigenvectors are comlex
conjugate to each other

EE = £ and |2 = |8(F). (29)

Real and imaginary part of the eigenvalues E£+) are denoted by E, and —T',/2. Because of
eq. (29) we have

EFE) = [E, FiT,/2]. (30)
The eigenstates légi)) are linear combination of the basis states |®g)

18y = > ol |®5). (31)
R

They form another complete basis in the Q-subspace, and the Q-operator can be represented
by

Q = > @)l (32)
e
The coefficients af are generally complex and fulfil

Zafaﬁ = 5991 and Z(ZR R = 6RR’° (33)
R

Below the lowest disintegration threshold, eigenvalues, eigenfunctions and coefficients aé} are
real. Using representation (32) instead of (11) one gets from eq. (15)

(i)> = M{Ei) + Z__*___l__‘_é(i)_)_ ) i)) (34)
Vs of E—-E,+iT,/2



with ,
1269) = 129) + [wf®) (35)

and

W)y = GPEIB®) = FEPVrejpl)) = ZaRxw(i’) (36)

with the same coefficients a® as in eq. (31). Equation (36) represents a decomposition of
the hypernuclear state |¥) into a component |£), which is determined by the P-space only,
and thus depends smoothly on the excitation energy E, and a number of components with
the usual resonant behaviour. It is worthwile mentioning that the resonance parameters
E,, T, and af are slightly energy-dependent due to the Greenoperator (16) in the effective
hamiltonian (20). Considering a definite resonance ¢ we use resonance parameters fixed
at £ = E,, since the significant contribution of a resonance comes from the energy region
around E,. If the energy dependence of G'p is weak and the resonance narrow, the variation
of the resonance parameters is negligible, otherwise it describes the deviation from the Breit-
Wigner shape. The occurance of single-particle resonances in the P-space is a special problem
which is to be considered separately [9].

The system of equations for the various components of the nuclear state |‘Ilg:}) can be
numerically solved. For that aim one introduces channel states

lo) = |ELSe, Lejese; ML) (37)

describing a nucleus with A baryons by the decomposition into a residual nucleus with (A-
1) baryons and excitation energy E., total spin I, strangeness S, and a single separated
baryon with angular momentum /., total spin j. and strangeness s.. The total spins I, and
Je of the two fragments are coupled to the total spin J, with projection M,. If additional
quantum numbers (e. g. isospin) are necessary to distinguish the various channels they
should be included in the definition (37). The dependence on the radial coordinate r of
the relative motion between the two fragments is treated explicitely. The channel states |c)
form a complete orthonormal basis if all possible combinations of quantum numbers ¢ are
taken into account. In practical calculations, one has to restrict oneself to a few channels.
The selection of the important channels is a delicate problem and must be considered in
dependence on the reaction parameters and on the structure model for the residual nuclei.

In channel representation, egs. (18) and (26) represent coupled sets of one-dimensional
integro-differential equations with finite kernels. As described in [9] the solutions can be
composed of auxiliary functions FJ"¥(r) satisfying homogeneous (f) and inhomogeneous (R)
sets of differential equations

EEE Bt D) - )] B85 - (38)

7‘2
- SV @ERE = {1
- : (clA|2z),

where . is the reduced mass, u.(r) the average baryon-nucleus potential (1) in channel

¢, and V7$* is the matrix element {c|V7%|¢/) assuming a zero-range force (9). The latter

ec!
is responsible for the coupling between the various channels ¢. Knowing ﬂwg}) one can

calculate the matrix M with the elements

Mpg = (BR|AG] Por) = (2r|H|8r) + (BRIV*[WE). (39)

Diagonalizing this matrix one gets the eigenvectors ]i‘é( )) and the eigenvalues E, and T'p. If
one inverts matrix M one can finally compose the total nuclear state according to eq. (22)
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Shell-model calculations with a larger number of baryons are extremely time-consuming.
The number of degrees of freedom can considerably be reduced if one introduces a modified
vacuum state defined by completely occupied proton and neutron shells up to the Fermi-
level. Nuclear excitation can then be described by particles above and holes below the Fermi-
level. Most of our calculations were performed within a particle-hole approximation with one
hyperon and one hole in the closed shells of a magic nucleus. This approach simplifies the
calculations essentially but limits the possible application to magic target nuclei. Moreover
we have to abandon a detailed description of the hypernuclear fine structure. Simultaneously,
the 1p-1h approach limits the decay channel to residual nuclei which can be described by a
one-hole (1h) configuration.

3 Resonant and quasi-free processes as boundary cases

In this section, we apply the CSM representation (34) of nuclear and hypernuclear wave
functions to the calculation of the production probability of a hypernucleus yB in a A(a,b) yB
reaction between a target nucleus A and a projectile a. Besides energy and momentum the
projectile transfers (or produces) strangeness to the target nucleus and is converted into a
different particle b. Let us assume that the reaction can be described in Born approximation
with nuclear wave functions which are independent of the projectile-target interaction. In
this case, the reaction probability is determined by the transition matrix element

Tsi = {(®Bx/T|Xa D), (40)

where initial and final states are described by products of nuclear (|®4 5)) and projec-
tile (|xa,5)) wavefunctions. The most important hypernuclear production reactions can be
treated in this manner. Using mesonic projectiles one usually applies the destorted wave im-
pulse approximation (DWIA), which is a Born approximation with mesonic wave functions
destorted by the strong projectile-nucleus interaction, while the nuclear wave functions are
assumed to be uneffected. In this approximation, the production cross-section do/d€ for a
hypernucleus in the state |®p) can be related to the elementary cross section (do/dQ)ee™,
which describes the N(a,b)Y reaction converting a free nucleon (N) into the corresponding
hyperon (Y) [10]

do do elem off
= —_ 41
o~ (dﬂ) Ny (41)
where o is a factor taking the difference between the kinematics of the A(a,b)B and the
elementary N(a,b)Y reaction into account. The nuclear influence on the reaction probability
is described by the effective nucleon number N gf f related to the a definite hypernuclear final
state |®p). It can be written as a nuclear matrix element

N = |(@siWiaa)] (42)

of a transition operator W usually approximated by [11, 12

A
W = / @7 xS Y 05 8O - 1) XD (7). (43)

i=1

The sum runs over all A nucleons of the target nucleus. The operator U ; converts the j-th
nucleon in the corresponding hyperon. In the case of a n — A convertion, U is just the U-spin
lowering operator. The sign (+) means out- and in-asymptotic as explained before formula
(14). If one has an unpolarized target and/or does not differ between spin orientations of the
hypernucleus, one has additionally to average in eq. (42) over the magnetic quantum numbers
of the initial nucleus and to summerize over these numbers in the final hypernucleus.



The meson wave functions xt(:;)(i" ) are strongly disturbed by the interaction with the
baryons inside the nucleus. We describe this distortion in eikonal approximation [10] with
- complex phases

8a(7) = exp {%’- (1-ia,) /_; g(z,y,z’)dz’} : (44)

and

5(7) = exp {% (1 - i) / e g(z,y,z”)dz”} , (45)

according to

XO(F) = eaplikai — 8} and  x7V*(F) = exp{—iky7 — 8). (46)

The eikonal phases (44) and (45) are proportional to the corresponding total meson-nucleon
cross-sections T, 5, averaged over the number of protons and nucleons in the target nucleus,
to the ratios @, of the real to the imaginary parts of the corresponding forward scattering
amplitudes, and to the effective paths of the mesons through the nucleus. The latter is
calculated along a straight line, weighted by the nuclear density o(r), from —oo to the place
7, where the conversion takes place, and from there up to +oo, respectively. In the numerical
calculations, we use experimental values of the meson-nucleon cross-section and neglect the
real part of the scattering amplitude (@, ; = 0).

If the produced hypernucleus is so highly excited that it can eject a hyperon or a nucleon,
the reaction is described by the double differential cross section

7 do - Y _di elem dNE{ff (47)
dQ dE dQ dE

with a continuous effective nucleon number d N )%j;f /dE. This number is a continuous function
of the hypernuclear excitation energy E and depends on the decay channel described by the
quantum numbers f We get it by replacing the bound hypernuclear final state |®g) in
eq. (42) by the CSM state |¥g )

dNg? 2
E ~Y i3 A
— = (VW24 (48)
According to formal scattering theory we have to chose in-asymptotic for the unbound final
state. Appart from the effective nucleon number for a particular decay channel fwe consider

the sum over all open decay channels

e eff
aNgT _ 5~ 4N (49)
dE 7 dE

The effective nucleon number determines the probability of producing a hypernucleus in a
given state |®p) (42) or at a given excitation energy E (48). It merely differs from the cross
section by an (almost) constant factor @ ~ 1 and by the cross section of the elementary
reaction, which can be taken from the experiment. That is why we consider the effective
nucleon number instead of the cross section.

If we introduce the CSM representation (34) of the hypernuclear final state into eq. (48)
we get a decomposition of the continuous effective nucleon number

dNg/ o 1 15eW,
= wid 2 ¢ 50
ik {€g 1 IW]2a) + /“27;29: E—E,+iT,/2 (50}

into a coherent sum of
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(i) a term describing the production of the hyperon in an unbound state (quasi-free pro-
duction), and

(ii) some resonance terms at the energies E, with the widths I',.

The strength of a resonance term is determined by two factors: the matrix element of the
interaction operator W describing the production of the hypernuclear resonance state {Q,)

W, = () |W]8.,) (51)
and the partial width amplitude

Yo = V2 (EG V|2 (52)

describing the decay of the resonance state |®,) into the channel f.

According to eq. (50) the quasi-free contribution interferes with resonant contributions
and the latter interfere among each other. Thus it is not possible, in general, to separate pure
quasi-free contributions and pure resonance contributions which can be added up to the total
production probability. The hypernuclear production probability does never result from one
of the mechanisms (quasi-free or resonant) alone. There are, however, energy regions where
one of the various contributions dominates, while the others can be neglected. In such a case,
the hypernuclear production probability is dominated by one of the mechanisms. There is,
for instance, an upper limit for the resonance energies E, according to the definition of the
Q-space. Above this highest resonance energy, the production probability is determined by
the quasi-free process and the effective nucleon number is given by

dNeff o )
(—aE—> = [ wien] (53)
\ q.f.

This quantity describes the production probability per energy unit for a hypernucleus with
one baryon in an unbound state. It is a continuous function of the hypernuclear excitation
energy E. Since W is a single-particle operator, it is only able to transfer a single bound
nucleon into an unbound hyperon. That is why hyperon channels are preferably feeded.
The possible emission of a nucleon is the consequence of a subsequent action of the residual
baryon-baryon interaction V"* mixing hyperon with nucleon decay channels. If both hyperon
and nucleon channels are open, hyperon channels dominate usually. However, in dependence
on the threshold energies, nucleonic decay channels may be favoured.

Now let us consider the opposite case, that one of the resonance contributions ¢ dominates
in eq. (50). If this resonance is sufficiently well isolated from other resonances and the quasi-
free contribution is negligible within the resonance region around E = E,, the production
probability in channel fis determined by a single resonance term, and we can define the
effective nucleon number for a hypernuclear resonance state |®,)

ngi.f 1
dE T o
14

It describes the production probability of a hypernucleus decaying in channel f via a definite
intermediate resonance state |®,). Again, the resonance state need not necessarily decay
into a hyperon channel. Neutron and proton channels can be feeded by the residual baryon-
baryon interaction in dependence on resonance structure and threshold energies.

Usually the contribution of a resonance state |®,) is measured by the area below the
resonance curve {54) summed over all open decay channels f

AN 17
N;ff - zf:/dE ( d;j’f )Q = frjé |W, 1% {(55)

11
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The last equation has been obtained by neglecting the weak energy dependence of the res-
onance parameters. Since the main contribution to the integral comes from the energy
around E, we have replaced the energy-dependent resonance parameters by their values
fixed at E = E,. This can be done, at least for narrow resonances. Moreover, one can show
[13] that, in the case of an isolated resonance and an hermitian hamiltonian, the sum of
the partial widths . |7f2|2 equals to the total width T', and one can ascribe the following
effective nucleon number to a definite resonance hypernuclear state |®,)

A 2 ~ ” 2
N = Wof? = |@Wes)| = |@DIWles) + @OWiaa| . (56)

The approximations leading to eq. (56) are the better fulfilled, the more narrow and isolated
the resonance is. Below the lowest hypernuclear disintegration threshold, the hypernuclear
production probability is given by eq. (42) with a bound final-state |®g). Expression (56)
coincides with (42) if one identifies |®5) with |¢(Q_) ), since the supplement |w,) vanishes and
the sign (-) has no meaning for bound states. Above the first disintegration threshold, the
effective nucleon number (56) differs from the expression (41) by the additional term

WWNRa) = (@ONVCEIWI e, (57)

which describes the production of the resonance via continuum and residual interaction.
Both resonance production mechanisms interfere, i.e. -the resonant process can be either
enforced or weakened by the presence of the nuclear continuum. In the general case of
overlapping resonances and/or a large quasi-free background, the hypernuclear production
can not be parametrized by resonance parameters sufficiently well; instead one has to evaluate
the quantity (48) as a continuous function of the hypernuclear excitation energy E. But also
in this case, the resonance parameters E,, I', and W, are usefull parameters, since they help
us to determine the energy step of a point-by-point calculation.

Comparing the CSM results with traditional bound-state shell-model calculations one
can establish the following influence of the continuous single-particle spectrum:

¢ thereis an additional (quasi-free) term in the hypernuclear production amplitude which
describes the production of a hyperon in an unbound scattering state and dominates
at large excitation energies,

¢ above the lowest hypernuclear disintegration threshold, the resonance terms have a
finite width due to the coupling between resonance and scattering states, their contri-
butions may overlap and interfere,

o the same coupling causes an additional shift of the resonance energies and modifies
resonance wave-functions, production and decay parameters relative to their values in
bound-state approximation,

* at any excitation energy, the hypernuclear production probability is a coherent sum of
quasi-free and resonant contributions.

There are two main factors governing the influence of the continuous spectrum: the
momentum transfer q and the depth Ug. of the volume term of the average baryon-nucleus
potential defined in eq. (1). The first factor determines the optimal momentum of the
produced hyperon in quasi-classic manner.

Fig. 1 illustrates the effect of the different momentum transfers in (K ~, ™) strangeness
transfer at (almost) magic kaon momentum and (a+, K*) associated strangeness produc-
tion. In the first case, the momentum transfer is low (g = 50 MeV/c) and the production
of hypernuclear states around the disintegration threshold is favoured. Preferably substitu-
tional states are populated, while the hypernuclear ground state is almost not excited. The
momentum transfer of the strangeness production is essentially larger (¢ = 300 MeV/c) and
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Fig. 1;

into account.
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Continuous effective nucleon number dN Ef f1dE for A hypernuclear pro-
duction in collinear geometry (Orx = 0°) calculated in 1p-1h CSM and DWIA
for strangeness transfer (lower part) and for associated sirangeness production
(upper part). The hypernuclear ezcitation energy is ezpressed by the negative
hyperon binding energy -By The broken lines show the quasi-free contributions
defined by eq. (53), while the full line corresponds to the coherent total sum (50).
Bound and resonance states have been spread over a 2 MeV Breit-Wigner distri-
bution. The curves show the sum over all open channels f which have been taken

the quasi-free process dominates. Its maximum is around -Ba =45 MeV. Below the threshold,
the ground state is well pronounced, while the resonance structures above the threshold
vanish in the quasi-free background. The absolute scales on the vertical axis indicate that
strangeness transfer is more probably than production.
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Fig. 2:  The same as in fig. 1 for the 2C(K~,x~) strangeness transfer at
different scattering angles ©.. The contributions of bound and resonance states
have additionally been spread by a 3 MeV Breit-Wigner distribution.

We use the following parameters of the average A-nucleus potential and of the A-nucleon
residual interaction with the notation of egs. (1) to (4) and (9), respectively

U, = 28 MeV UL, = 2MeV (58)
T, = 1.1 fm d=06fm. (59)

The average potential is compatible with a residual AN contact interaction with the
‘parameters

"/01’63 — 300M€me3 a = 1.05 b = -0.1. (60)

The parameters of the average nucleon-nucleus potential are determined by the experimental
values of the corresponding single-particle thresholds.

The dependence of the production probability on the angle © between the projectile beam
axis and the direction of mesured meson (afterwards denoted as “scattering angle”) is illus-
trated in Fig. 2. Here one sees the continous transformation from the dominating “recoilles”
production of substitutional states at ©, = 0° with small background and ground-state ex-
citation to a dominating quasi-free process at ©, = 20°. Fig. 3 shows the contributions of
individual hypernuclear bound and resonance states and of particular decay chanmels fto the
assiciated hypernuclear production on 288i. Due to the 1p-1h approach the decay modes are
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restricted to 1h states of 275i. At larger excitation energies, the contributions of the various
decay channels correspond to their statistical weight determined by the spin of the residual

nucleus.
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Fig. 8:  The same as in fig. 1 for the 28i(n+, Kt) associated strangeness
production. Additionally to the continuous effective nucleon number the contribu-
tions N&'¥ (56 ) of individual hypernuclear bound and resonance states with 1p-1h
structure (I;)A(1;)7; J are indicated by arrows above the resonance peaks. The
notations are used as ds for 1ds;, etc. The contributions of bound and resonance
states to the solid curve have additionally been spread by a 3 MeV Breit- Wigner
distribution. The broken lines give the partial contributions of the indicated decay
channles. Their thresholds are marked by the small arrows at the — By -azis.

4 Consequences of the shallow hyperon-nucleus potential

In the course of our investigations of A and ¥ hypernuclei we noticed a crucial dependence
of the hypernuclear production process on the strength of the average hyperon-nucleus po-
tential. Hyperons are generally more weakly bound in nuclei than nucleons. For A hyperons
a value Upe = 28+2MeV has been established. The situation for & hyperons continues to
be unclear. A value around or below 20 MeV seems to be favoured. A depth of 12MeV
was deduced from a presumable §He ground state. Analysing corresponding decay processes
the average depth for cascade particles = in nuclei was determined to be between 21 and
24MeV, The small depth of the average potential has several important consequences for
the hypernuclear spectrum and production probability. Since, in a shallower potential, the
number of bound hyperon single-particle shells is smaller, there are less bound and resonance
states in the hypernuclear excitation sprectra. The importance of the quasi-free mechanism
increases correspondingly. In comparison to a nuclear excitation reaction (e. g. {e,e’)) at the
same momentum transfer, the quasi-free contribution to a hypernuclear production reaction
is larger.

Weakly bound single-particle hyperon states play an important role. Fig. 4 displays the
single-particle energy for a ¥ hyperon in a A=15 nucleus for a large variety of potential par-
ameters. One sees that it is very likely to find single-particle levels in the close neigbourhood
of the threshold at By = 0, in particular for negatively charged hyperons. The energy of
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Fig. 4:  Single-particle spectra of £, X° and X1 in A=16, Z=6 hypernuclei for
varying potential depths Upe and U, (1). (full curves: 1pss, and 1pyjs; dashed
curves: 1sy/o; dashdotted curves: 1ds,; dotted curves: 1f7/3).

Negative binding energies are defined by the scattering phase 6;; = 7/2.

such states is not proportional to the strength of the spin-orbit potential as assumed in
the oscillator model. It is almost independent on it. Weakly bound states distinguish
themselfes by a large mean square radius. Their radial wave functions deviate clearly from
the corresponding harmonic oscillator wave functions. They are essentially different from
the deeper bound nucleon wave functions with the same quantum numbers. The difference
between proton and ¥~ radial wave functions is illustrated in fig. 5. The crucial parameter is
the ratio £x /e, of the hyperon to proton binding energy. The difference between the hyperon
and nucleon wave functions is quantified by the deviation of the overlap integral

2

R= (61)

/ drpy () on(r)
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from unity. Fig. 6 shows the dependence of R on the hyperon binding-energy, while the
nucleon has kept fixed and deeply bound. A remarkable deviation from unity appears for
hyperons which are more loosely bound than 2 MeV.
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Fig. 5:  Comparison between ra- Fig. 6: Overlap integral R =
dial functions of deeply bound pro- | fdr os(r) pp(r)|? between a weakly
tons and weakly bound T~ hyperons bound hyperon and a deeply bound
for three values of the ¥~ to proton proton radial wave funclion as a
binding energies. function of the L~ binding energy

Bs.

The integral (61) determines the recoilless production probability of substitutional hypernu-
clear states in plane wave approximation. According to fig. 6 the production of hyperons in
weakly bound states is obstructed. It tends to zero if the hyperon state approaches to the
threshold at By = 0. In particular the population of Coulomb assisted hypernuclear states
is affected. Meson distortion and a small momentum transfer moderate this effect only a
little.

The consequences of this effect are illustrated in fig. 7, where we tried to reproduce a
Y hypernuclear excitation spectrum with a double hump structure seemingly observed in
the experiment [14]. To reproduce two peaks corresponding to p;;; and pss; substitutional
states one needs a spin-orbit splitting of p-shell ¥ hyperons of 12 MeV. Such a huge splitting
is incompatible with an avarage potential shallower than Ug. =~ 25 MeV (see fig. 4). To get a
12MeV splitting with a sufficiently well bound, and thus well populated p;; shell, one needs
at least Ur.=30MeV and U,,.=20MeV (upper part of fig. 7). The bump resulting from the
P12 P1_/12 substitutional state is then still enlarged by a broad sy/; 31‘;2 substitutional and a
ds/2 p:;/lz non-substitutional state almost at the same energy. However, a potential depth of

30 MeV is not in agreement with the {He ground-state energy.
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Fig. 7:  Continuous effective nucleon number dN ;Jf ! 1dE for (K=,x%) T hyper-
nuclear production at px = 450 MeV/c in collinear geometry (0, = 0°) calculated
in 1p-1h CSM and DWIA for two sets of the average hyperon-nucleus potential.
The hypernuclear excitation energy is expressed by the negative hyperon binding
energy -By The broken lines show the quasi-free contributions defined by eq. (53),
while the full line corresponds to the coherent total sum (50). Bound and res-
onance states have been spread over a 3 MeV Breit-Wigner distribution. The
curves show the sum over all open channels f which have been taken into account.
The L~ single-particle levels are displayed in the inserts. The arrows above the
curves indicate the positions of resonance peaks with a definite 1p-1h structure.
The lengths of the arrows correspond to the strengths of the resonances defined
by ezpression (56).

Further decreasing the potential depth Ug, the py;; shell comes inescapably closer to the
threshold and its population probability tends to vanish. Moreover, the p;jg pl‘/12 peak is

shifted towards the ps/; py, /12 peak, even if the depth of the spin-orbit potential would be kept
constant. There is already no second substitutional bump at Uge=20 MeV and V, .. =12 MeV
(lower part of fig. 7). The ds/2 shell is unbound and gives rise to a very small bump only.
Altogether we were unable to find a parameter set with Ug, ~ 20 MeV or shallower which
would reproduce two distinct resonance peaks. On the other hand we noticed that the
quasi-free contribution gets a resonance-like structure when decreasing the potential depth
(compare the broken lines in both part of fig. 7). We investigated this effect in fig. 8 in
detail, where we have further decreased the potential depth.
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Fig. 8:  The same as in fig. 7 for 3 shallower potentials and vanishing spin-orbit
coupling. The arrows at the — By -azis indicate the thresholds for ¥~ emission
with a residal nucleus described by a pl'/lz, 2 /12 and s /12 1h state, respectively.

We observed a transformation of the calculated hypernuclear production probability ex-
pressed by the continuous effective nucleon number. While, for potentials deeper than
15MeV, resonance states with a definite 1p-1h structure dominate the spectrum, thresh-
old effects determine the energy dependence for shallower potentials. A resonance-like peak
occurs approximately 3 MeV above the emission thresholds for hyperons. The distance bet-
ween these peaks is determined by the excitation energies of the corresponding residual
nuclei. In the case of fig. 8, the distance between the two main peaks is given by the energy
of the 1°N excited 3/2~ state lying 6.2 MeV above the ground state. This distance is a
property of the residual nucleus which consists of nucleons only. Hence the bump distance
is unsuitable for extracting any information about the hyperon-nucleus or hyperon-nucleon
interaction. Hypernuclear resonance states, which might yield such informations are too
weakly populated and buried under the steep threshold behaviour. So we have to conclude
that it is very difficult to deduce hyperon interaction parameters from a hypernuclear exci-
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tation spectrum if the hyperon-nucleus potential is weaker than = 15...20MeV, even in the
case of an optimal chosen momentum transfer.

A potential depth of 17 MeV, as deduced in [7], is already incompatible with a strong spin-
orbit splitting. In ref. [15], we considered the effective nucleon number for the 12C(K—,7+)
and 8Q(K~,n*) strangeness and charge transfer reactions at pg=450 MeV/c. We showed
that the energy dependence is clearly determinated by the threshold behaviour of the quasi-
free process, if the average hyperon-nucleus potential is 15MeV deep. In this case, it is
almost independent of the strength of the spin-orbit potential and not sensitive to a further
decrease of the potential Ug.. The p,/, hyperon in 160 does not produce a noticable bump,
since it is too loosely bound.

The appearance of threshold effects gives an alternative explanation of the observed
double-hump structure in the (K ~,#z%) spectrum on 0. Moreover the threshold effects are
generated by ¥ hyperons leaving the nucleus within a time which is comparable with the
strong interaction time. Hence they should be less influenced by the strong X~p — X°n and
¥~p — AA conversion processes, which has not been taken into account in our calculations.
Long-living ¥ hypernuclear resonance states however should get an additional large width
due to the conversion process in contrast to the experimental observation.

5 Baryonic decay channels of A hypernuclei

Most of the hypernuclei produced in strangeness-transfer or production reactions are highly
excited and can decay by emitting a hyperon, a nucleon or a cluster of baryons. This decay
is a property of the (excited) hypernuclear many-body system and is caused by the strong
interaction with the assistance of the electrostatic force. It is aquivalent to the usual nuclear
decay by neutron, proton and « cluster emission or fission and must not be confused with
the weak decay of the hyperon itself. Forecasts of branching ratios between various strong
disintegration or electromagnetic deexcitation channels are desired since it got possible to
trace experimentally not only the mere production of a hypernucleus, but to detect 7 quanta
emitted from excited hypernuclei and even vy quanta accompanying baryon emission. The
latter allows us to select definite decay channels. The description of the decay of hypernuclei
encompasses details of the structure of the parent and daughter hypernuclei (or nuclei)
and thus, many theoretical assumptions may be sensitively verified in hypernuclear decays.
Moreover, the production of a hypernuclear resonance state and its subsequent decay onto
a daughter level by nucleon emission may yield hypernuclear states which would not be
obtained otherwise.

Analysis of hypernuclear resonance decays in the framework of the bound shell-model
with oscillator basis in combination with the R-matrix theory appeared to be a reasonable
description of many-body aspects, such as symmetries of the wave functions [16]. In some
cases, decay channels are appreciably suppressed for symmetry reasons, which are otherwise
energetically open. In such a way, the appearence of v deexcitation quanta of several MeV
energy may be explained. R-matrix theory, however, is an approximation and not applicable
to broad resonances with a lifetime in the order of the strong interaction time. Moreover, the
oscillator basis does not take the importance of weakly bound hyperon states into account.

The emission of a baryon from a quasi-bound hypernucleus state can easily be under-
stood and described by the CSM frame developed in sections 2 and 3. Sufficiently narrow
resonances are described by the parameters E,, T', (28,30) and W, (51) calculated at the
energy E=E,. Partial widths 'y, of a resonance g for the decay into channel f are given by

Lo = brsel® (62)
The relation between different decay channel is described by the relative partial decay width
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(63)

For broader resonances, the energy dependence of these parameters gets important. They
should rather be described by the continuous function ng’;f /dE (48). The population of
the various 1h channels in the 2Si(z+ K+)28Si reaction followed by A emission has already
been investigated in fig. 3. Due to the large momentum transfer, the A channels dominate
and we could neglect other decay modes. ,

If one want to compare hyperon and nucleon decay channels one has to go beyond the
1p-1h approximation. To tackle such problems we coupled a bound-state shell-model with
oscillator basis for the description of complicated residual nuclei to our continuum shell-
model. (The emission of more than one baryon remains beyond the scope of our model.)
We used the weak coupling basis with a single particle (hyperon or nucleon) coupled to a
residual nucleus |t.), which consists of (A-1) baryons. The selected baryon may be either
in the discrete or in the continuous part of the spectrum. Instead of a simple hole the
residual nucleus is described by a complicated shell-model wave function calculated within a
translationally invariant bound-state shell-model [17]. Restricting to p-shell nuclei we used
the central nucleon-nucleon residual interaction of Boyarkina [18]. The AN interaction was
approximated by a contact force (9) with the parameters (60). The use of the harmonic oscil-
lator basis for the description of the residual nuclei is a certain inconsistency in our approach,
but it simplifies the model considerably and allows us to apply techniques particularly devel-
oped for that basis, e. g. a method for excluding center-of-mass motion. Usually details of
the hypernuclear and nuclear structure are more important for the properties of bound and
quasi-bound states than a consistent description of the coupling with the scattering states.
That is why we prefered a more sophisticated structure model for the description of resonant
processes, while we used simple 1p-1h and 1h structures for the quasi-free process.

Figs. 9 and 10 show two decay schemas of hypernuclear resonance states. We have dis-
played only those states which are preferentially populated in a strangeness transfer reaction
at small momentum transfer. The proton rich hypernucleus *N is an example of a favoured
nucleon emission. The uppermost state with a dominating pg/z ® %_ configuration is the
most probably populated state. It exhausts 53% of the total hypernuclear production prob-
ability and decays mainly via A emission to the ground state of 13N, Nonetheless 20% go
via proton emission to excited low lying states of }3C. They are de-excited by a secondary ¥
emission in turn.

The state with the dominating p9/2® %— component, which is not very much populated by
the recoilless strangeness transfer, can decay exclusively to the daughter hypernucleus }3C,
preferably to its ground state. The excited pg/,_, ® %_ state (still more weakly excited) feeds
mainly the excited *C hypernuclear states. The comparison with a pure bound-state shell-
model calculation [19] shows that the excitation strengths of the important hypernuclear
Tesonance states are practically unchanged by the inclusion of the continuum. In CSM, the
branching ratios for proton emission are slightly increased as opposed to hyperon ones.

Investigating the decay modes of }*C (fig. 10) we included a strongly populated state with
isospin T=3/2 and dominating p§/2 ® (37, 2) structure [20]. Although allowed energetically,
the A emission is strongly suppressed by isospin conservation. Hypernuclear doublets of *B
and 13C are feeded instead.
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Fig. 9:  Decay schema with calculated branching ratios R¢, (in percent) of
those 1t resonances of }*N which are predominantly ezcited in YAN(K~,7~)
strangeness transfer at vanishing momentum transfer. The resonance stales are
characterized by their main component in the particle ® core coupling schema.
Only T=1/2 core states have been taken into account.

Decay considerations may serve as a reasonable basis for the preparation of new experi-
ments. Especially a purposeful decay population of excited hypernuclear doublets and their
subsequent v de-excitation (here %+ and %+) is worthwile and may be used in distinguishing
various models of hyperon-nucleon interactions.
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6 Conclusions

It has been the aim of this paper to sketch the merits of an unified description of resonant
and quasi-free processes of hypernuclear production which are otherwise treated separately.
In numerical calculations, we have demonstrated the relation between both mechanisms in
dependence on the kinematic parameters and on the binding energy of the hyperon in the
produced hypernucleus. It has turned out that, due to the shallow hyperon-nucleus potential,
a simultaneous consideration of bound and unbound hyperon states is essential in most cases
of hypernuclear production.

We have offered an alternative interpretation of the bump structure observed in the ¥
hypernuclear production cross-section. According to that it is practically impossible to deter-
mine the parameters of the hyperon-nucleon interaction by means of a measured production
cross-section if the average hyperon-nucleus potential turns out to be weaker than 20 MeV.
Considering disintegration processes of long-lived A hypernuclear states we have established
agreement with calculations within a bound-state shell-model in principle.
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