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Abstract: The shell correction method is applied to Na clusters to calculate their 
shapes and binding energies. The equlibrium shapes are calculated minimizing si- 
multanously five deformation parameters. Strong deviations from spheroidal shape 
including reflection asymmetric shapes are found. The influence of cluster deforma- 
tion on the splitting of the dipole resonance and the separation energies is studied 
and compared with the available experimental data. 

1 Introduction 

Shortly after the discovery of sharp peaks in the abundance distributions of alkali 
clusters (magic numbers and shell structure) [l, 2,3] it was realized that the detailed 
N-dependence of the abundances or the ionization potentials can be understood as 
a consequence of non-spherical cluster shapes 13, 41. Direct evidence for cluster 
deformation came fiom the splitting of the photo-absorption resonance [p:plasmon) 
[3, 5,6, 7, 8, 9,101. All these effects are considered to be due to  the quantization of 
the motion of the S-valence electrons through the whole cluster in a self-coasistent 
potential. First estimates of the magnitude of the sphexoidal shape distortions have 
been obtained by approximating the self-consistent potential by the modified har- 
monic oscillator model 14, 111. More general Kohn-Sh- calcula*ions assuming a 
spheroidal jellium ion background also predicted deformations of the light Nit clus- 
ters up to N = 20 1121. Triaxial ellipsoidal shapes have been investigated usjng both 
the oscillator model P, 61 and Kohn-Sham calculations [13]. The approach based 0x1 
the oscillator model is simple enough to allow the study of a wide range of tlustezs, 
but the estimates of the energies are only T-he %h-Sham calculatio~s 
with deformed jellium, on the other hand, are restricted to light clusters 'becwsa of 
the large numerical effort needed. So far, the studies of equi2ibsium deformati~ns 
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have been restricted to the ellipsoidal shapes1. The study of nuclear shapes strongly 
suggests deviations from the ellipsoidal deformations (cf. e.g. [14]). In the present 
paper the so-called microscopic-macroscopic shell correction method ( S C M )  [14, 151 
developed in nuclear physics for general single-particle potentials is adapted to alkali 
clusters. It is very efficient and accurate enough to calculate the shape of metallic 
clusters in a wide mass range exploring a rather large class of axial shapes, which 
describe to sufficiently good apprloximation the most general axial shapes a cluster 
can assume when treated as the quantal droplet. The SCM with approximate ana- 
lytic calculations of the "smooth" quantities, possible for the ellipsiodally deformed 
square well and oscillator potentials, was considered in refs. [ l l ,  16,171. The SCM in 
its general formulation has been introduced to cluster physics by the present authors 
[l81 who studied the family of axial shapes combining a quadrupole and a hexade- 
capole deformation using a Woods-Saxon electron potential. The SCM method was 
used in ref. 1201 to study spheroidal cluster shapes by means of a modified oscillator 
potential tuned to spherical Kohn-Sham calculations. 

The paper is composed as follows. Section 2 describes the shell correction theory 
adapted to alkali clusters. After a discussion of the physical background (2.1), 
the choice of the liquid drop energy and shape parameterization (2.2) is described. 
Then the average electron potential (2.3) and some technicalities (2.4) are presented. 
Section 3 contains the results of calculations for the five-parameter family of shapes 
in the mass range of N = 10 to 310. The physics of deformation is discussed. In 
particular, relations to the nuclear deformations are considered. The implications of 
our results for experimental quantities such as separation energies, abundances and 
the splitting of the photo-absorption resonance are discussed in section 4. 

2 Shell correction for alkali clusters 

2.1 The physical, background 

The physical concept of the SCM applied to alkali clusters is the following one: The 
cluster is considered as a quantal droplet. Its total energy is divided into a classicaI 
part and a. shell correction. The first is the energy of the classical droplet of liquid 
alkali metal, camprising the contributions of both the electrons and the ions. For 
neutral clasters, to whid  we restrict ourseIves in the present study, its deformation 
dependence is exclusivly determined by the surface tension. The parameters af the 
Piqrtid drop energy (surface tensioln and binding energy per atom) are not calcu- 
lated but taken to be the experimentd values for bulk metal. The classical drop 
prekrs %o be spherical. Deviations from the spherical shape are a consequence of the 
quantixed motion of the defacalized s-valerrce electrons. The shell correction is the 
cantribukbn to the valence-electron energy, which arises from the quantizatio~i of 
the eledron makion. 1% is cafcuIated from the energies of the valence electrons In the 
mean pstenkiar, x~hich is ge~erated by the ions together with the "ao1.r-quantized"" - 

ERfdt~~gh in the Kohn-Sham catculations the dectton density can take any shape, kbe testric- 
date t c ~  ellipsrridal jelBium does not allow for a free relaxation of the cluster shape. 



ii valence electrons. The mechanism that determines the shape is similar to the Jahn- 
Teller effect. Shapes for which the level density is small at the Fermi surface are 
energetically preferable. The actual deformation results from the competition be- 
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tween these quantal shell forces and the classical surface tension. The SCM treats 
this competition in a quantitative way permitting binding energies and deformation 
parameters to be calculated. 

To quantify this discussion, let us formulate the SCM as an approximation to a 
jellium Kohn-Sham calculation [ l l ,  16, 17, 191. Here, the total energy is given by 

W 
ii the expression 

l 
(I 

l where t ,  p and 3x are the kinetic energy, the charge density and the exchange - 
l 
W correlation energy functional of the valence electrons, respectively, whereas VI and 

EI are the Coulomb potential and the Coulomb energy of the jellium background of 
the positive ions, respectively. The valence-electron density is now divided into the 
smooth part p" and a small shell correction Sp 

l p=  /?+Sp. (21 

The precise definition of the density of the non-quantized valence electrons fi 
is given in refs. [14, 151. It may be viewed as resulting from a Thomas-Fermi like 
treatment of the functio~ial (1) (as in ref. [19]). Neglecting terms of the order O(6p2) 
the energy becomes 

I E = E + ~ E ,  (3) 

i where the expression for I!? coincides with functional (1) substituting P for its argu- 
ment p. 

1 The Strutinsky energy theorem f15] states that u~ to errors of the order O(SpZ)  
the shell correction SE is the difference between the energy of hf eliectrons in khr: 

I average potential p and the "smooth" energy of N non-quantized electrons in the 
l 
I 

same potential 

where e; are the dgenvalues of .the electron hail tonian 

i 
i = J dr ?{F '1 + PT(? l) 4- :FI~~F)].  1 l?--F" lp (61 

1 It is seen that p is generated by the ionic ba~kground and the non-quantized vaknc~ 
i elect~rans. 
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1 The smooth level density j(e) is calculated by folding the single-particle level 
density 

gsp ( e )  = C 6(e - ei) (7) 

with the smearing function f ((e - e1)/7) (c-f. refs. [14, 151) such that the level 
bunching caused by the quantization is averaged out: 

I where the function f can be expressed in terms of the Hermite polynomials Hk 

a0 = 
Z 

1, a k  = --ak-2/k 2 for k 2 2. 

We use the smearing function of the order m = 3. The choice of 7 is discussed below 
in subsection 2.4. 

The total energy is determined by .l? and h. The simplification of the SCM as 
compared with to the full Kohn - Sham problem stems from the possibility to pa- 
rameterize these two quantities, which then can be very efficiently calculated. Note, 
that there is no double counting of interaction terms as, e.g., in the unrenormal- 
ized sum of electron energies, Both physical intuition and Kohn-Sham calculations 
suggest that the non-quantized cluster should have a deformation energy 3 = ELD 
of a drop of liquid metal and the valence electrons move in potential V = U with 
a flat bottom and a thin surface region. The potential and the drop are supposed 
to have the same shape but slightly different dimensions. The details of our choice 
of this parameterization are discussed below. It Is noted that the pa~tition of the 
energy into a smooth part and a shell correction does not depend on the validity 
of the local deasity approximation of the Kohn-Sham functional. By adjusting the 
parameters of .&D (for example7 the value of the surface tension) one may correct 
for some possible deficiencies of this approximation. 

The physics pat into the parameterization of fi and p, which is basically the 
sne of the jdlium model, sets the frame of applicability of the SCM for clusters- 
It &es pnot take into account the te~ldency of the ions to arrange themselves into 
geometrical patterns af; POW temperature [2l, 221. Hence, the physics of quantal 
droplets, described by E h  SCM is particularly relevant above a certain temperature 
(about, 4ePk3 "K, which is r e t~gh1~  the melting temperatuw of bulk Waj. Below it, the 
resalts B& X scale$ which the: geonxetrical ar&ngement e~rergies can be compared to. 



Since the "freezing7; goes gradually [21] there is a whole temperature range below 
400 OK, for which one expects that the clusters behave basically like quantal droplets. 
In fact, this may even be the case for small clusters at  zero temperature. The 
arrangement of atoms into geometrical patterns is expected to be most important 
for the deformation energy of the non-quantized droplet, ELD. The shell effects are 
not expected to be modified dramatically, since the pseudopotentials of the Na ions 
are very weak [23]. 

Calculating the shell correction SE, the temperature of the valence electrons is 
assumed to be zero. This sets another limitation to the results. The thermal fluctu- 
ations will smooth the shapes we calculate for zero temperature. The temperature 
of clusters in typical experimellts is about 45 meV (500 "K) or less. The fluctua- 
tions corresponding to this temperature do not very much modify the shape of light 
clusters of mass below 100. For heavier clusters the thermal averaging will decrease 
the deformations. 

I t  is noted that the "Shell correction through the kinetic - energy term'hsed 
in ref. [l91 is identical with the above discussed general formulation of the SCM, 
which has been first applied to alkali clusters by the present authors [ls]. The 
equivalence is easily seen by comparing eq. (4) with eqs. (20-22) of ref. [l91 and 
realizing that the second term in eq. (4) is tr(h5) [14, 151. The difference between 
the two approaches is that we parametrize E determining the parameters from the 
experimental bulk properties whereas ref. [l91 calculate 2 by means of the Extended 
Thomas Fermi theory from the energy density functional. The latter is known to 
have problems to reproduce the experimental surface tension of bulk sodium. 

2-2 The liquid drop energy and the shape parameteriza- 
tion 

It was shown in the previous subsection that the total binding energy of a rneltallic 
cluster may be divided into the smooth part, ELD , describing the total energy of 
clusters whose electron motion is not quantized and the shell correction, 6 3 ,  that 
accounts for the bunching in the electron spectrum caused by the quantal nature of 
the electron motion, i.e., 

E = .ELD $ &E. (9'93 
For neutral dusters. we write ELn as the energy of a droplet consisting of N dksrns 

Here rs is the  tVigner-Seitz radins a given by the cluster voXume 

4, V = -j-g, & = r s~ ' I3 .  (W 

T.Ve use rs = 2.17 A, the value corresponding to the density of bulk at 
500 "K [24]. The first; term in q (10) 4s the volume energy t1t~,t is independf3nt -of 
the etuster sPlape. For the separation energy ob onz: atoxn fmrn balk at 500 "K 
we adopt a = 1,063 elf, which i s  tbe enthalpy sa9 evaposa,%icsn of liquid %a inb a gas 



of ~nonomers [25]. The second term is the surface energy. It depends on the cluster 
shape which is described by the set of deformation parameters a, (see below). It is 
the product of the surface energy of a sphere, So, with radius R,-, and the ratio S/So 
of the areas of the surface fixed by the set a, and a sphere of the same volume. For 
the surface tension we take a = 0.177 J/m2 = o . o I . I . ~ ~ v / A ~ ,  the value for bulk Na 
at 500 "K [24]. 

The shape of the cluster is assumed to be axially symmetric. It is described by 
a two-dimensional surface enclosing the volume V. We use the family of surfaces 
introduced in ref. [26], where one may look for details. It is based on the sequence 
of Cassinian ovaloids labelled by the deformation parameter a. The values a < 
0 , 0 , 0 < a < 1 , 1 and 1 < a correspond, respectively, to an oblate shape, a sphere, 
a prolate shape with some neck, the scission shape looking like ca and two fragments. 
To conveniently describe an arbitrary axial shape close to the above mentioned 
Cassinian ovaloids a special orthogonal coordinate system is introduced in which 
one of the families caf the coordinate lines is the Cassinian ovals. The co~lnection of 
the coordinates in this system, (R, X), which may be called Cassinian coordinates, 
to  the cylindrical coordinates, (T ,  z), is given by the following relations [26] 

with the inverse transformation 

where c is the squared distance from the focus of the Cassinian oval to the origin 
of the coordinates- h case of = 0 the Cassinian coordinates are the radius and 
cosine of the polar angle of the polar coordinate system. It is convenient to  introduce 
instead of 6 a dimensionless parameter E, 

E = ~ C C / & ) ~ .  (14) 

The radius E& has been introduced earlier and a,) is chosen in such a way that 
the volume V inside the surface S is kept constant, 

The deviation of the actual surface from the Cassinian ovaloid is represexlted by 
a sum of Legendre polynomials, P,, weighted wit11 the deformation parameters cu, 
as foBows 

& 
R(") = --P + C Q,P~(,)). 

C (1s) 
tr 

Thus the parameters a&) ~ ~ ) ~ ~ p f f ? t d y  characterize the claster shape. To describe 
very deformed shapes, tha% be encauz~ter& in fission another parameter was 
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introduced in ref. [26]. For a reflection-symmetric shape it, is defined as follows 

where z ~ ( q  is the minimum (maximum) value of z on the surface and e = rieck in'  
case of single-connected body, r,,,;, being the minimal radius of the cross-section 
of the surface in the plane perpendicular to the axis of symmetry. For two sepa- 
rated fragments, e is minus the square of half the distancle between the tips of the 
fragments. The relation between a and E can be derived from eqs. (13) and (16) 

a - l  
E = -[(l + + (I + C(-1)'aPj2] 4 

Cc Cc 

which will be used also for asymmetric shapes. We will use the set of deformation 
parameters (a, a,). 

For lal < 0.4 the ovaloids approach spheroids and the shape parameterization 
is similar to standard multipole expansion relative to a sphere 1273. In th' 1s case 
al generates essentially a shift of the body as a whole along the symmetry axis 
and a 2  is strongly correlated with 0. Thus for lcvl < 0.4 we consider only p 2 3. 
In what follows we will mainly be concer~led with this case and, somewhat loosely 
speaking, we wi'll refer to a ,  a3, Q,... as to the quadrupols, sctupole, hezadecapsle, 
... deformations. For the family of reflection-symmetric shapes generated by a: and 
aqg the ratio of the radius of the equator, RI = r,,,k, and the distance of the pole 
from the center, RI! = z ~ ,  is given by 

This expression will aiso be used for asymmetric shapes, where Bi = f (zi + zi). 

2.3 The valence-electron hamiltonian 

In expression (5) for the single-valence-electron hamiltonim we set m equal to the 
free electron mass since the eEective mass of a valence electron in bulk Ha approaches 
very closely to this value [23]. Fbr a stlfliciently large dnstar, the poltentirtl p r=: U, 
whicb is generated jointPy by the ions and the (non-quantized) electrws, is expeeked 
to be approximately constant inside and to disappear in a, thin surface layer. We 
assume the thickrress of tlse layer to be ndeper~dent of the shape of t b ~  cluster," 
describing the surface profile by means of a, Fermi fanction 

"his approxirnat-ti~n is c ~ n s i s t ~ n t  with the eexprmi~a i.~r the liquid drop energy (IQ which may 
be viewed as an expadon iats powers of R-'j3, The next tetm woald be the ebnrvatme energy 
that has its ,~tQPlerp>"art  PP a varying surface ttlni&aes. 



where l(5) measures the distance of a point 5 from the the equipotential surface 
U(1 = 0) = $7, [14,28,29]. The value of 1(5) is found numerically. The shape of this 
surface is the same as the one used to calculate  EL^. The volume inside the surface 
is kept constant and equal to V = e r 3  N with rp = 2.25 A. % account for the spill 

3 P.  
out of the electron density, the potential radius r p  is chosen to be slightly high& 
than the Wigner-Seitz radius, rs, for the density used in the calculation of ZLD. The 
parameter is adopted from ref. [30] who optimized the potential for heavy clusters. 
As a consequence, the spillout, which scales for our potential with N1I3, is ' somewhat 
underestimated for the light clusters. Adopting nuclear terminology we call U a 
deformed Woods-Saxon potential. The remaining parameters are Uh, = -6 eV and 
d = 0.74 A, which have been determined in ref. [30] by fitting a spherical Woods- 
Saxon potential to the self-consistent potentials calculated by Ekardt [2] in the 
framework of the Kohn-Sham approach. 

2.4 Numerics 

The so-called plateau condition is an important criterion for the Strutinsky renor- 
malization to be valid [15]. It states that within an energy interval approximately 
equal to the distance between two shells ..@ must not depend on the smoothing pa- 
rameter y. The quality of the plateau is very good in our calculations. It is of the - 

order of several tens of meV for heavier clusters, around N = 20 it may amount to 
0.1 eV. We choose y = 3.5N-'l3 eV as a best value for all the cases considered. 

The energies ei are calculated by diagonalizing h in the basis of a deformed 
harmonic oscillator whose frequency ratio is optimized for each deformation (CA. 
refs. [28, 291). The optimal oscillator frequency hwo, which governs the range of the 
basis wave functions, is found to be close to 3 . 5 ~ ~ ~ 1 ~  eV for heavier clusters. Thle 
value 7N-'l3 eV produces a better plateau (cf. above ) for the lighter clusters. The 
connection of Kwo to the quality of the plateau is discussed in ref. [311. We use a 

- - 
basis that cosresponds to roughly 16 oscillator shells in the spherical case. It ensures - 
very good convergence for the electron spectra up to N c 500. 

To save computing kime in case of two-dimensional minimization the diagonal- 
ization is carried out only for the base numbers NB = 35,85, 115, 155, 205 'and 281. 
The energy leveIs for clusters lying in between are obtained by scaling the basis 
spectmm according to N-dependence of the harmonic oscillator E321 

ei(N) = e; (NB)(NB/N)~'~, W ) 
This interpolation procedure has also been used irr our two dimensional minimiza- 
tians repoxted i a  ref. [l8]. For the five-dimensional minimization there is no need - - - 

for any scaling because in this case each cluster is calculated in its own potential, 
i-e, NB = N' 

3Tlfe plateau is more stable than for the nuchar Woods-Saxon potentials. The reason is that 
for awt.hd clusters the Eenni Ievef lies deeper itl the potential well than for nuclei (at ss and 
$kra , r~pecbivt?f;y)~ Th5s has as a consequence eh& the continuum ofpositive energies deteriorates 
the ?pPateat~ muefi less in clustets thaa ixr stllclei, , 



3 Cluster shapes in the mass range of 10 to  310 

When displaying the potential energy surface (PES) we always locate the zero point 
of the energy at the liquid drop energy for spherical shape, i.e. we plot the quantity 

ESH(a, ap) = E(a,  ap) + .hr- = E(a ,  C Y ~ )  - (-1.063N + 0 . 6 5 4 ~ ~ ' ~ )  eV: 

(22) 
We call it EsH (SH for shell), since the deviations of the energy from the spherical 
liquid drop value are a consequence of the valence electron shell structure. 

Fig. 1 shows the valence electron levels for N = 35 as functions of the quadrupole 
deformation D. Since the shape is axially symmetric the projection of the orbital 
angular momentum onto the symmetry axis is conserved. We denote it by A. All 
levels with A = 0 are two-fold degenerated (spin up and down) and all with A 5: 
0 four-fold (spin up and down, A positive and negative). This doublet-quartet 
structure determines the local variation of the energy as a function of the numb~er of 
valence electrons, N, which is equal to the number of atoms for the neutral clusters. 

The Woods-Saxon levels in fig. 1 are very similar to the Clemenger's Modified Os- 
cillator levels [4]. Up to moderate values of a, Nilsson's deformation parameters [32] 
are related to ours by S PS $a and E ==: a. The spectrum contains a number of regions 
of low level density, marked with the corresponding electron numbers in fig. l. The 
shapes corresponding to such "openings" in the spectrum near the Fermi level are 
particularly stable. These are the generalized shell closures introduced by Strutinsky 
[14,15] into nuclear physics. ~ r o m t h e  molecular point of view the preferance of such 
shapes corresponds to a maximization of the HOMO-LUMO gap. The openings in 
the spectrum are the origin of the ondulation, which tlie shell correction adds to 
the smooth liquid drop energy. The interplay of the two contributions is illustrated 
in fig. 2, showing the dkformation energy as a function of a for the three clusters 
with N = 72,74 and 76. The liquid drop energy BLD grows up to the scission point 
at a = 1 and then remains almost constant. This is expected for neutral clusters 
having only a surface energy but no long range Coulomb interaction between the 
fragments. The slight changes at  large a are due to our shape parameterization that 
corresponds to deformed fragments near and after the scission point for a, = 0 (61, 
ref. [26]). The shell energy modulates the PES substantially. There is a deformed 
first minimum representing the ground state of the duster. The Pirst mirmimum is 
caused by the N=74 opening at a ==: 0.3 in Rg. 1. In addition, one sees a, second 
minimum at largeet CY. In the following we restrict the discussion mdmiy to the krst 
mini~num. However, we want to stress that second and third minima appear quite 
commonly. Most clusters tend to have strongly deformed shapp;.isemeric states, 

It turns oat that even1 for moderate distortions there are very often several com- 
peting shapes. It is a ao~n-trivial fa& to locate She lo%vest minima orm five- 
dlimensisslaP PE$ In order ;ko find them tue apply tke foI10tvinng sExategy. First We: 

generate the two-dimensiorral surfaces EsH(aj Q) and Zs~(rr,a3) and %PP$. %he IOW- 
est minima, These are used a the starting points of a gradient ~ F O G ~ ~ U E  $0 fhxl 
the minima on &he Sve-dimensional PE$. 



3 .l Results of the two-dimensional minimization 

The equilibrium deformations found for ESH(a, a4) ( simultaneous minimization 
with respect to the quadrupole alld hexadecapole deformations) are presented in 
fig. 1 of our first report [l8]. They are also shown as open circles in figs. 10' 
and the upper panel of fig. 11 . In fig. 3 we show the full deformation energy 
Em compared to the shell energy for spherical shapes. The energy gain due to  
deformation may amount to 2 eV. The spherical clusters with the magic numbers 
N = 20,40,5S,92,13S719S and 254 have an extra binding of about 1 eV compared to 
the classical energy of the spherical drop. The shell closure around 260 is somewhat 
washed out. The reason is the 3f-level, lying between the 254 closure and the 
4plevel starting the next shell at 268. This position is not a consequence of the 
Woods-Saxon parameterization of the potential [30]. It appears already for the 
spherical Kohn-Sham calculations [33]. 

Between the spherical shells the energy lies only about 0.1 eV below the spherical 
drop value. This reflects the lower symmetry of the shape, leading to a smaller 
shell correction. Like nuclei, the clusters are deformed between the magic numbers 
because they avoid the large positive shell energy of the spherical shape. 

Fig. 4 demonstrates by way of example: As a rule, a minimum of the one di- 
mensional energy function ESN(CY, a 4  = 0) belongs to the couloir around a deepelr 
minimum in the a - cu4-plane. Thus, the inclusion of cr4 as a second degree of free- 
dom does not lead to the appearance of new minima. The deformation parameters 
cu and C Y ~  are strongly correlated. The contour lines enclosing the minimum have 
principal axes that are not parallel to the cu or a4 axes. The energy gain due to the 
inclusion of a 4  is typically of the order of 200 - 300 meV, reaching its maximum of 
500 meV for N = 154. This is sufficient to exchange the relative positions of two 
minima. In fig- 4 the oblate minimum lies below the prolate one for cu4 = 0, whereas 
for the equilibrium values of a 4  tlie prolate minimum becomes the lowest. What is 
said about the inclusion of C Y ~  holds also for a g .  It does not lead to new minima. 
The energy shifts related to the relaxation in a 6  are typically equal to 100 meV or 
less, 

On the o t k  hand, breaking the reflection symmetry by including the octupole 
defamation, W, leads to the appearance of new minima in the PES. In figs. 5 the 
conkour plots give examples of the coexisting shape isomers. The equilibrium defor- 
mations found on the PES Em(cu, a) (simultaneous minimization with respect to  
khe quadmpde and octupole deformations) are shown in fig. 3 of our first report [l$]. 
For all clusters we compared the energy of the lowest minimum obtained by min- 
innizirng Es~[cr,  a3) with the lowest minimum. obtained by minimizing ESH(CY, cue). 
If the re8ecf;ian ayrnme6;ric minimum tvas lower we considered the cluster octupole 
defamed. 

Some sdected cluster shapes obtained by tm-dimensional minimization are 
shown in fig* G.  The left-hand column demonst-lates the shape modification due 
i~ .old. The middle ~ o l ~ m n  shaws an e x a m ~ k  of coexisting reflection symmetric and 
aynnmekris shapes. 



3.2 Results of the five-dimensional minimization 

The right-hand column of fig. 6 demonstrates the convergency of shape and en- 
ergy when taking into account an increasing number of multipoles. Including the 
multipoles up to cus, the axial shape can be considered as practically relaxed. For se- 
lected examples we found the energy gain obtained by the inclusion of the multipoles 
CY~,S,~,IO to be of the order of a few 10 meV. 

We carried out the five-dimensional minimization for all clusters in the mass 
range of 10sN< 90. The results are presented in figs. 7, 8 and 9. For the mass 
range of 90<NL310 only the even clusters have been considered. The results are 
presented in figs. 10, 11 and 12. Due to the reflection symmetry there are always 
two minima with identical energy that are related by changing the signs of all a, 
with odd p, as illustrated in fig. 5. We have fixed signs in figs. 7 and 10 such that 
the values of cr3 are always positive. With this choice the sign of as may be positive 
or negative. 

In order to find the absolute minimum we start our gradient method for all clus- 
ters from the lowest minimum found by means of the cr - a 4  minimization. Since we 
do not have evidence that creates any new minimakhe gradient search should find 
the lowest minimum with reflection symmetric shape. For all clusters we then com- 
pare the energy of the lowest minimum obtained by minimizing E s ~ ( a ,  as)  with the 
lowest minimum obtained by minimizing ESH(a, ad). If the reflection asymmetric 
minimum is lower than or has a similar energy as the reflection symmetric nlinimuxn 
we start the gradient search also from this point. Since we do not have evidence that 
the inclusion of as and cr6 creates new minima this search should provide the lowest 
minimum with reflection asymmetric shape. The lower one of the reflection symmet- 
ric and reflection asymmetric minima, found in this way, are included in figs. 8-12, 
In order to make sure that we do not end up in a local minimum (shape isomer), 
we started a search from the second reflection symmetric minimum ( the oblate 
one) -for clusters with energetically competing minima. The search always ended in 
a local minimum with higher energy, The deformation parameters and energies of 
the lowest isomeric states in the lightest clusters are shown in fig* 1% Beas"mng this 
careful search in mind we believe that figs, 8-12 refer to the absolpnte minimaof the 
five-dimensional PES. Since higher multipoles play an ix~signifisanlt role, the axid 
shapes found in this way may be considered as prztcticaPly relaxed. In the re~nainder 
of this section we discuss some features of these systematic calcula$ionms, 

3 -3 Quadrupole deformaltions 

Figs. 7 and 10 show the guadrupsle deformations in the upper ~ ~ E I E Z S ,  For the 
light dusters the results are similar to i,8me systemrtti~s ;sals,u$ated fix spf~eroidal 
shapes F, 12, 201. The shape is prolate in the Ia'cver lxalf of a sheIl ax~d obPrtte 
in the upper half- %he heavy clusters we find predoc~f~itwtly p ro ia t~  shapes 
tPxoughout the tvhoite s11eEl with some ablate deformation at ttfjie beginni~g. The 
dominance of proBte shapes is a tvell kt~otun xesdk in nucleiz~ physics3 where it 
been con%rmecl, expesime~~ta~ly. According $0 the cdcalakions of p i d .  f20) the re$on 



with oblate shapes at the very beginning of the shell is more extended in the heavy 
clusters. This may be due to the use of spherical Kohn-Sham levels instead of our 
Woods-Saxon potential. 

The systematics of spheroidal deformations has been discussed from different 
points of view. Bohr and Mottelson [34] relate them to the shell structure at the 
frequency ratio of 2:3 in the harmonic oscillator. For small N values Plkardt discusses 
spheroidal deformations in terms of the geometry of the A-substatas of s spherical 
shell with angular momentum l being filled up [12]. This discussion elucidates the 
transition from prolate to oblate shapes seen in the middle of the f-shell at N = 28 
and in the d-shell at N = 16. It can be understood geometrically as a consequence 
of the fact that the A = 0 states get lowest on the prolate side and highest on 
the oblate one. This behavior is evident from the matrix element of the spherical 
harmonic which is proportional to l (1  + 1) - 3A2. Geometrically the electrons 
are located near the poles in the A = 0 orbitals. The extra charge will attract the 
ions resulting in a prolate deformation of the cluster. Hence, two electrons in the 
A = 0 state drive the cluster to the prolate side, whereas two holes drive to the 
oblate side. For the higher N many l-shells intertwine and this simple picture is 
blurred. Here a discussion in terms of classical periodic orbits is more appropriate. 
In ref. [35] i t  is pointed out that the deformations are related to the triangular and 
quadrangular orbits lying in the plane that contains the symmetry axis. Ref. [36] 
demonstrates that the preference of prolate shapes observed for the higher N is 
explained by different changes of the length of the orbits when a sphere becomes a 
prolate or oblate spheroid of the same v~olume. 

Generally a CO-existence of oblate and prolate shapes is observed. This is illus- 
trated by the contour maps shown in figs. 4 and 5 .  From our calculations we cannot 
conclude whether the higher one is stable or bec0mes.a saddle point if one allows 
for non-axial deformations. Analogous calculations for nuclei indicate that usually 
the higher minimum is a saddle [37]. However, the calculations for NaI4 [l31 show 
that both oblate and prolate minima are stable. There is also the possibility that 
the lowest minimum is weakly triaxial. For the class of ellipsoidal shapes of a pure 
harmonic oscillator, studied in refs. [5, 351 this happens frequently. 

3 -4 Hexadecapole deformations 

The calculated values of a4 are shown in the second panel of figs. 7 and 10. They 
change from positive values at the beginning to negative ones a t  the end of the shell. 
At the beginning of the shell the shape is lemon like, spheroidal in the middle and 
Gxrel l i b  at  the end, This is illustrated in fig. 6 (left column) showing a low-shell, 
3nid-shelf and high-shell cluster. The same tendency is found in the calculation 
fox nuclei, for which the change of sign of a4 has been confirmed experimentally 
(c-$- f14, 391). In ref. E401 i t  i s  argued that the expectation value of the multipole 
sncrmat Yxo changes sign ($ - I f  times when a spherical shell of given l is being 
filled. Expanding the deformed potential (20) into multipoles, one sees that its 
eqectation value will be lowered if the deformation parameter associated with the 
muEtipole YYxa depends on N ia the same w&ya "Phis argumellt cannot be applied to 



the heavy clusters where several spherical states of given rZ combine to one shell. A 
discussion in terms of periodical classical orbits does not exist. 

3.5 Octupole deformations 

The a3 values are shown in the fourth panel of figs, 7 and 10. Octupole deformations 
appear only for the clusters lying somewhat above a spherical shell closure. This 
feature is well known for nuclear equilibrium shapes [41,42] and has also been found 
for clusters by Hamamoto et al. [43] , who studied the energies for quadrupole and 
octupole deformation separately. Comparing the dots with the circles in the upper 
panel of fig. 10 one notices that at the beginning of a new shell the octupole defor- 
mation combined with a small quadrupole deformation is energetically favoured in 
cornparision with the relatively large oblate deformations appearing if only reflec- 
tion symmetric shapes are considered. Thus, taking into account the possibility of 
the pear-like deformation the clusters, as a rule, are prolate or octupole-deformed 
(with a small positive or negative quadrupole admixture), and very seldom strongly 
oblate. This may be partially a feature of the assumed flat bottom of the 1"Voods- 
Saxon potential, since the calculations based on spherical Kohn-Sham levels [20] 
have a stronger tendency towards oblate deformations than our reflection syrnmet- 
ric calculations (cf. ref. [l81 and fig. 10, open circles). It would be interesting to see 
whether a more realistic radial profile of the electron potential changes the interplay 
between the reflection symmetric and antisymmetric multipoles. 

The energy gained by octupole deformation is of the order of 200 -300 meV with 
a maximum of 400 m e V  for N = 208. It flattens the sharp rise of the energy EsH 
after a closed shell, as can be seen in fig- 11, also showing as open circles the energies 
obtained by the two-dimensional minimization with respect to a and ad. For the 
heavy clusters one should keep in mind that the energies due to shell structure and 
deformation are sensitive to heating. 

The octupole deformation disappears abruptly, at somle stage of filling the shdi. + 

Such deformation jumps are a consequence of the coexistence of relection symmetric 
and asymmetric minima. The jump in as appears when the energy of ;z reflection 
symmetric minimum falls below the energy of the reflection asymmetric one. In 
fact, the coexistence of distinct minima may even let the deformation jump back 
and forth. An example is the development of the shape above N = 40, whicli is 
illustrated in fig. 5. There is a competition between the "acd;upoltss) minima~n a% 
large a3 and sligltly negative a and the g'quadrupole" minimum at Barge positive 
a, which has small or zero as. For N = 40 the octupole minimum is lowest, fop 42 
5% is the quadrupole one , for 44 it is again tlie octtp.pole minimam and for 46 the 
quadrupole minimum is lowest again, r e~na in iq  the lo\v@:st one in the Bigller par% 
of the shell. As will be discussed in section 4, these deforkatioa junlps cause an 
even-odd staggering of the cluster binding energy. In general, shape Esomes~snr is 
expected in the %ions of O C ~ U ~ B ~  deformation. 

As demonstrated by figs, 5, 7 and 10, there ate strong eorrdaia$ians Betweena 
a and as- Usually, an sctupole deformed srsjmirnum h a  also a finite quadrapoh 
deformation. As dismssed in ref. 1281, this" results in a. 5aike &%tic dipole xnoxnenit 



of the cluster. Looking for these dipole moments in the microwave spectra could 
provide direct evidence for the predicted octupole deformations. 

Some features of the a3 systematics can be understood by inspecting the electron 
levels as functions of a3 shown in fig. 14. In contrast to fig. 1 ,  the spherical levels are. 
only distorted by non-diagonal matrix elements, the most important of which are 
indicated by arrows in fig. 14. These are matrix elements of Go between spherical 
electron states that differ in angular momentum l by 1 ( the At = 1 couplings) and 
by 3 ( the A1 = 3 couplings). 

Let us discuss the clusters above N = 40 that are illustrated in fig. 5. The A=4 
level of the 19-shell is pushed down with increasing a3, since it has a A1 = 1 matrix 
elemenlt with the A=4 level of the lh-shell but none with the I f-shell, which does 
not have a A=4 state. Filling up this state gives rise to the octupole minimum for 
N = 41 - 44. Since the states of maximal A have a lower energy for negative a ,  
the shift of the octupole minimum to the oblate side is explained, The octupole 
deformation disappears when the gap between the A = 4 and the upslopiilg level 
A = 3 is crossed, i.e. at N = 46, since A = 3 does not favour as. 

The h = 4 level favouring a3 has to compete with the A = 0 , l  levels that 
slope down in the direction of positive a and small a3, as can be seen in fig. 1, 
Filling the A = 0 , l  levels gives rise to the quadrupole minimum in fig. 5 ,  which is 
strongly prolate deformed and represents the shape of the clusters above the octupole 
region. The jumps of the deformation above N = 40 can be understood in terms 
of the competition, between the occupation of high and low A levels producing the 
octupolle and quadrupole minima, respectively. As already discussed, N = 40 lies in 
the octupole minimum. It is more beneficial to fill the next two electrons into the 
A = Q llevel than into A = 4, hence the quadrupole minimum is lower for N = 42. 
For the next two electrons i t  is better to fill the A = 4 level, because of the gap 
between A = 0 and 1. Eence the octupole minimum is lower for N = 44. For the 
next twjo electrons it is again better to fill the A = 1 level because of the large gap 
between A = 4 and 3. Hence the quadrupole minimum is lower and the end of the 
octupole region is reached. 

The 2p-levels are pushed down by their A1 = 3 coupling to the A=O and 1 levels 
of the  LJ-shell. This has the remarkable consequence that the magic cluster N=40 
is octupole deformed. As seen in fig. 5, it is very soft with respect to a, what 
is reflected by the fact that the N = 40 gap is almost independent of a3. In the 
five-dimensional minimization we find that the spherical shape lies only 0.05 eV 
above the octupole deformed minimum. Nevertheless, this energy gain should be 
big enough to survive &e thermal fluctuations. 

Above N = 20 the situation is quite analogous to the one above 40. The A = 3 
level of %he If-she11 is pushed, down by the A2 = 1 coupling to the A = 3 level from 
the Ig-shell and the Zs-level is puslled down by the A1 = 3 coupling to the A = 0 
Ieve3 from the P$-shell, Again, an oblate octupole and a prolate reflection symmetric 
minimum compete. The energy gain by ocfiupole deformation is somewhat less due ta 
the lower i;t~,gaia~;~ amentarn of the states. As a consequence, the prolate minimum 
1;- ahrtys sa=e%~iha~, below %he o~tupole one and N = 20 is spherical, though very 
s~fk  a s i n ~ t  osktep~lie deformation. The analogous scenario also holds above N = 70.. 



Here it is the A = 5 level from the lh-shell, the 3s- and, to some extent, the 2d- 
levels that are pushed down. Due to the higher angular momentum of the states 
the energy gain by octupole deformation is bigger and the prolate minimum now 
always lies slightly above the octupole one until the gap between A = 5 and 4 in- 
the lh-shell is reached, where the prolate minimum takes over and the end of the 
octupole region is reached. 

In conclusion, there are two mechanisms generating the octupole deformation. 
The A1 = 3 coupling acts across the spherical shell gap leading to octupole softness 
or even instability for the magic clusters. The A l  = 1 coupling of the states with 
maximal l in adjacent shells pushes the A = l states of the the lower shell down 
leading to octupole deformation for the first 4 electrons in the shell that can be 
accomodated into this orbit. 

Systematic calculations [41, 421 show that nuclei are less susceptible to octupsle 
deformation than clusters. One reason are the pairing correlations in nuclei that 
tend to keep the system spherical. Another one is the large spin orbit splitting 
in nuclei. It leads to a different pattern of octupole instability. The spin orbit 
potential shifts the state j = l,,, + 112 into the next lower shell and the state 
j = l,,, - 112 among the levels with lower I. The A l  = l coupling is reduced, 
since it shifts the j = l,,, - 112 levels only relative to the low l levels resulting 
in a level redistribution but no energy gain (no shell gap opens). Thus, it is the 
interaction with the j = l,,, + 112 levels that remains, which can only give half 
the energy gain. The interaction is now a combination of the A1 = 3 coupling of 
these "intruder" level with the states of the shell they are embedded and the A1 = 1 
coupling to the intruders in the next higher shell. Again, the resulting repulsion is 
most effective at the shell beginning since the lowest states are pushed down like the 
A = l levels in the clusters. Higher in the shell there is only a redistribution among 
the levels of opposite parity not generating much of a shell gap. Hence the spin- 
orbit coupling reduces the energy gained by octupole deformation to about a half. 
Moreovej, in nuclei the neutrons and protons may act out of phase. Nevertheless, - 
octupole deformation is predicted and experimentally confirmed above the magic 
nucleus 208Pb [4i]. 

As in the case of the quadrupole deformation, for larger N many I-shdls inter- 
twine and the intezpretation of the deformation systematics in terms of the distor- 
tion of individual i-shells becomes blurzed. Unfortunately> a systematic discwsion 
in terms of classical orbits, as for the quadrupole deformatiox~, is not available for 
the case of the combination of octupole with small quadrupole deformations $ c-fa, 
however, ref. l441 for the the combination of octupde with large quadrupole defor- 
mation]. Bohr and Mottelson l341 and Hamarnoto et al, 1431 argue that .ifsI~eUs with 
Al = 3 come close tagether near the Fermi surface the systezn should be pasltim1arIy 
apt to octnpole distorti~ns. This occurs for the shell 313% < N < 198 ( I a 3 arid 
G ) .  Neither our calmlations aor the mles given in ref. f433 show enhanced odupale 
defon-matioas for this shell. Rather there is a general tendency for o c t ~ p d e  d e f ~ r ~ ~ ~ a -  
tion to occur at the beginning of each shell, Applying groap theoretied argumen& 
to two degenerate sMPs wikh $ = 6 a$ 1 3, IIa~~a~xxoko et al. 143) dernelxslr8ked 
the importance of noa-mid octupole distortions, which Is indeed born ox% &y their 



study of the one-dimensional PES of shapes defined by combining the sphere with 
only one of the spherical harmonics The correlations between these degrees of 
freedom and the axial and non-axial quadrupole and hexadecapole ones remain to 
be studied. From our investigation of the family of axial shapes it is expected that 
the correlations will be strong since the resulting shapes we display in figs. 9 and 12 
are rather different from distortions generated by just one multipole. 

Due to the tendency of the levels with maximal A to prefer both octupole and 
negative quadrupole deformation it is likely that the oblate shapes found in ref. [28] 
are unstable against octupole deformation, The mean field used in that work, which 
is based on the spherical Kohn-Sham levels, has the increased tendency towards 
oblate shape compared to our Woods-Saxon potential, It is possible that this ten- 
dency will lead to many more reflection asymmetric clusters. 

3.6 The deformations c u ~  and cus 

Panels 3 and 5 of figs. 7 and 10 show the (YG and as deformations. The a5 val- 
ues change their sign within each octupole region reflecting the increase of nodes 
with multipolarity. That has already been discussed for a4 as compared to cu [do]. 
Comparison of a6 with Q* shows a more frequent crossing of the zero line. However 
it is not simply one node more, as could be expected from the argument given in 
ref. [40]. The reason is presumably the interplay between the different deformation 
modes that becomes increasingly important at higher multipolarity. 

The (ys deformation may still give an energy gain of the order of 100 meV, as can 
be seen in fig. 11 from comparing the open circles with the full ones in the regions 
witih zero a3. The same comparison in fig. 10 shows that the correlation with c u ~  
may lead to noticeable changes of a and a4. 

4 Experimental consequences of cluster defor- 
mat ions 

In this section we will discuss some implications of our systematic study of the 
shape of Na clusters. It is only possible to address to selected aspects, while many 
more have to be left for further investigations. Here we shall not discuss ioniza- 
tion potefttials, leaving discussion of this important experimental information for 
a forthcoming study that treats the Coulomb field of charged clusters within the 
shell correction method. As discussed in our first report [18], the combination of 
quadrupole azzd octqole deformation leads to static dipole moments that can, in 
principle, be detected by observing interaction with electromagnetic radiation in the 
micro%t"itve range, A first rough estimate of the expected dipole mornents and of the 
wavelength of the rat;atiunztl lines can be found there, A more detailed study of the 
dipale Cf:Spoase the low-frequeacy range will aIso be presented in a future paper, 
while the fiigl~-Tfe~ne~cy modes wi1I be discussed below. 
h geaerd, the magnitude of the equilibrium deformations scales with IV-'l3 ac- 

cording t o  generaf arguments concerning the degeneracy of the electron system 1341. 



The actual deformations fluctuate considerably around the expected average. Nev- 
ertheless, the scaling law sets the order of magnitue of any observable consequence 
of the electronic shell structure. 

4.1 Stability of the shapes 

The degree of localization of the shape in the minimumis determined by the quantal 
zero-point- and thermal fluctuations. The order of magnitude of the former can be 
roughly estimated by assuming an irrotational flow for the oscillations around the 
minimum. The corresponding mass coefficient DPP for the quadrupole deformation 
parameter p can be found in ref. [27, 341. Taking into acoount the relation to  our 

deformation coordinate, a FZ f i / 3  ( c. f. section 3), the mass parameter becomes 

where we use Mc2 = 23 * 939AleV for the Na mass. For N = 72 one obtains 
D z 9.6 1o6h2/eV. The zero-point energy and amplitude for harmonic vibrations 
become, respectively, 

The numerical values correspond to N = 72 with the curvature C % 75 eV at  the 
minimum a = 0.22 (c. f. fig. 2). Thanks to the heavy ions the cold clusters are very 
well localized in their deformation minima, much better than nuclei are. (Compare 

the ratio F 2.0 10-' in clusters to the value of 10-' in nuclei). This is due to 
the small ratio of the electron mass, which determines the stiffness G, to the mass 
of the Na ion, which determines the mass coefficient B. In nuclei the nucleon mass 
appears in both C and D. 

The thermal fluctuations correspond to an excitation energy of the order of kT, 
i.e., to an average potential energy of 

For a cluster temperature of 500 O K  the ellcrgy KT m 45 meV corresponds to ha2 
6. 10-4, which is larger then the quantal zero-point fluctuations. Tlaa situakion 
discussed is typical for all deformation degrees of fxeedom considered, since the 
mass coefficients are comparable and the variations of the PES are, at kast%t, in 
the 100 meV range. Except fur cases close ta instability, %be e1ustt;l.s are very well 
localized in the minima of the PES, Usually the energy difieremce between the groltmd 
and the isomeric con6guratiuns is equal to a f e ~ v  100 meV at least, Le., tlse isomecs 
are very weakxy excited in thermal equiiiibrim, Ho\uever, for cses with competing 
minima, like irs the regioas of octupole defmat ioa  or around M=28, the two sl~ape 
isomers may both be thcrrna'ily excited, * 



The thermal stability of the shell structure was shown in ref. [34] to be controlled i 

by the ratio 
2a2 kT 

T=-- 
2w2kT - 

hushell 3.5 eVN-lI3 ' (26) 

where hushell is the spacing between the spherical shells. Since deformation comes 
as the consequence of avoiding the large positive shell correction at spherical shape, 
the appearance ,of deformed shapes should be controlled by the same ratis T. Using 
kT = 45 meV one finds 0.09, 0.15 and 0.26 for N=20, l00 m d  500, respectively. 
Thus one expects that below N = 500 the finite tempexature will not significantly 
change the large quadrupole deformations in the middle of a shell, For the heaviest 
clusters considelred (N W 300), the temperature will begin to change the higher 
deformation modes. (The estimates of the magnitude of the energy gain for different 
deformation modes was given in the preceding section). In fact, the regiofis of 
spherical shape near the magic numbers will extend and the deformed regions will 
shrink, in accordance with the energy gain due to deformation (c.f. fig, 3). 

4.2 Splitting of the dipole resonance 

The most direct measurement of the cluster deformation is the splitting of the dipole 
resonance obserwed in the photo-absorption spectrum ( also denoted as the Mie 
resonance or plasmon) [3,5,6,7, S, 9,101. For axial shapes tliere are two degenerated 
eigenmodes in the equatorial plane and one eigenmode along the symmetry axis. In 
fact the observed absorption spectra show a splitting of the dipole resonance into a 
high-intensity peak, associated with the equatorial modes, and a low-intensity one 
due to  the polar mode. 

Assuming a spheroidal jellium model, Lipparhi and Stringari [46] have derived 
an approdmate expression for the relation between the ratio of the two resonance 
energies EL and E,, 

with the deformation parameter defined as 

Using e¶s- (27) and (19) one finds that 

Inverting eq- (27) we derive the "experimental7$ values for 6, which we compare 
Cluf dcu lak~d  a's. Oae may derive the same expression starting from the 

'A Very cloZiteria L&ulated in ref. [44, where the critical temperature for the shell 

dhzppesrence ?vat i ~ & r ~ d ~ ~ e d  kT, = f &usheit. 



splitting of the classical Mie resonance of an ellipsoidal metal body. 
Fig. 15 compares the experimental values of 6 obtained from the experimental 

ratios of the energies of the two peaks in the photo-absorption spectrum by using 
expression (27) with the calculated S values. As already pointed out in our first pa-. 
per [IS], the calculations reproduce the experimental trends very well. Both in the 
Id-shell and in the l f -2p-shell the experiments are in accordance with the calcu- 
lated transition from prolate to oblate shape around N=16 and N=30, respectively. 
This transition has also been found in calculation within the restricted family of 
spheroidal shapes [12, 201. Hence, the lifting of the restriction in the shapes does 
not change the occurrence of the prolate-oblate transition in these two shells. 

Like for the family of ~ a ,  a4-shapes studied in our first report [lS], we find the 
prolate and oblate shapes coexisting for the clusters N = 27 and 28 at nearly the 
same energy. It is interesting that the Copenhagen group finds two peaks of equal 
intensity [S] just for these electron numbers. The equal intensity may be understood 
if the clusters occupy the prolate and the oblate minima with equal probability, as 
expected for nearly equal energies [S, IS]. Another possibility of coexistence beween 
oblate and prolate shapes appears for N = 12 (cf. fig. 13). In ref. [6] the spectra 
show two humps of about the same height. However, the experimental picture is 
less clear, since the absorption cross section increases again above the second peak, 
This has been interpreted by the authors as evidence for a third peak that might 
be due to a triaxial shape. As mentioned before, our calculations cannot answer the 
question whether there is a barrier beween the two minima or not. 

Above iV = 40 there is a discrepancy between our calculations and the exper- 
iments, which indicate oblate shapes for N, = 41 - 48 [S, 181, Combining all the 
multipoles, we obtain strong prolate deformation for N = 42 and 1Y = 46 - 48 
and for N = 43 and 44 ,an octupole deformation combined with a slight oblate 
quadrupole deformation. The reflection asymmetric shape might account qualifa- 
tivly for the observed small high-frequency peak. However, there is the problem that 
this minimum has almost the same energy as the prolate reflection symmetric oae. 
The close energy of the two minima is refected by the jumping of the shape in this 
region, as seen in figs. 5 and 12. Comparable probability of .the two shapes should 
lead to two peaks of about the same height, as seen near N = 27- Presently it is not 
clear, whether this discrepancy reflects the property of the Woods-Saxon potential 
of being more prone towarids prolate shape than real clusters ( The calcd~tions 1201 
based on spherical Kohn-Sham levels tend to give mare oblate clusters- Momver 
this result may be changed if fiigller multipoPes of the shape are taPten into =count. 
c. f. discussion in sect. 31-51. It is also possible that the collective inberpretrt.tisfa 
of the resonance splitting is not appropriate because of la significarrd; fragrne~~tatiasn 
of the dipole strength among the different par tide-hole exdt atbns. Gjea~ly~ this 
problem can only be resolved by a microscopic calculation of the dipoh mspollse 
function for deformed clusters. Such studies could dso shed light on the que~tlsza 

to  how we19 the ratio of the. resonance energies is determined by exprestism (27), 

"Ksesia. has demgnskrated that also for ernail ~lusters the t~qiiency 3~atio $8 ?;em close tsr %be 
~kiSSf~al one [4?). 



which is derived under the assumption of spheroidal shape. The assumption that 
the frequency ratio is controlled mainly by the ratio 3 can be supported by angu- 

RI 
lar momentum coupling arguments 134, 481. However, a Inore quantitative study is 
neccessary. 

Most of the experiments shown in fig. 14 correspond to singly charged clusters. 
We assume that the shapes of these clusters are the same as for neutrals. This can 
be justified by the fact that the shape is mainly determined by shell effects, which 
are almost the same for neutrals and for singly charged clusters, since they are not 
very sensitive to the depth of the average electron potential. " 

4.3 Separation energies 

Pig. 3 demonstrates the drastical effects that the cluster deformation has on the 
binding energies. The large positive shell correction appearing in the middle of the 
spherical shell is completely avoided in going to non-spherical shapes. More detailed 
pictures of the binding energies incIuding all axial deformations are given by figs. 8 
and 11. Comparing these calculations with the calculations of ref. [20], which con- 
sider only spheroidal cluster deformation, and our two-dimensional calculations [Is] 
shown as open circles in fig. 11, one notices that the more flexible the family of 
shapes is, the smoother the N-dependence of the energy becomes. The richer va- 
riety of shapes cuts away the spikes in the deformed region just as the spheroidal 
deformation cuts the huge spherical shell maxima away (c.f. fig. 3). A d. irect com- 
parison of the binding energies with the experimental values of the derivative of the 
abundances, as suggested in ref. [20], seems problematic to us since cluster abun- 
dances are most likely to be related to separation, energies. Comparing fig. ll with 
fig. 5 of ref. 1201 one notices that the most pronounced open shell structures of 
ref. [203 ( at N = 72,112,172 and 236) seem to  be also present for our more general 
shapes, though they appear at slightly different values of N. 

Another conspicuous feature of the binding energies is the doublet-quartet struc- 
ture that emerges from the two-fold and four-fold degeneracy of the A = 0 and A # 0 
electron states. This structure is an immediate consequence of the assumed axial 
shape. h fig, Sa the quartets s h  up in binding energies as inverted parabolas con- 
sisting of five points or in the separation energies, in fig. Sb, as upsloping straight 
lines consis2,iag of four points. The experimental abundances [SO] as well as the ex- 
perimental sepa~ation energies E511 shown in fig. 16 provide some evidence for such 
quartets starting with N = 15, 21 and 31, rdated to the A = 2 Id-electron state 
and go the R 32- aad 3 levels of the If-state, respectively. Pedersen et al. [503 have 
also faumd some evidence for N = 47, 52 and 55 presumably related to the A = 2, 3 
and 4 Ig -levels The N-dependence within a quartet is easy to understand. FiLling 
- ,  

GThe mdn b.iRerent.i& between the sigly cllarge$ and neutral clusters seems to be a larger frag- 
mentation (Caadj21t dirmping) in tihe netltrais, which has been explained by Yannouleas et al. 1491. 
Accardiagly aatap of the explerimc~titaf absotpkion spectra for neutrals do not show the simple 
hw63-peak s%rac%ur: (cC$, ref. [G]) but rather shaflorv structures that cannot be interpreted in terms 
d the simple caliectirse piefiure employed here, 



electrons into the same A-level results in a quadratic growth of the energy 

where E, and No are the energy and electron number of the last cluster before the 
quartet starts. The formula assumes that the relative energy of the quartet members 
can be obtained from the approximate deformation energy 

C de 
E(a)  = E, + 2(a - t (N - No)(e + -(a da - a,)), (31) 

which is correct if the polarization of each electron in the quartet level at the energy 
e is small enough for only the leading order terms in the deformation parameter a 
to be important.7 The quartets N = 11, 23 and 47 in figs. 8 and 15 show this N - 
dependence clearly. 

The experimentally observed quartets are perturbed by an overlaying even-odd 
staggering. The origin of this staggering is not clear at the moment. It may in- 
dicate a deviation from axial shape that would lift the four-fold degeneracy or it 
could be due to correlations between the electron spins according to Hundk rule 
as in atoms. However, within our approach, restricted to axial shapes and no spin - - 

correlations, there is also a mechanism that may perturb quartets. Take as an ex- 
ample, N=27,28,29 and 30, which, according to fig. 1, is the h = 2 quartet on the 
prolate side. For N=27 the shape is prolate, whereas for N=28 an oblate shape is 
preferred. This shape change leads to a gain relative to the energy given by eq. (30). 
For N=29 the cluster goes back to the prolate side (A=2 and 3 are filled and the gap 
to A=l disfavours oblate shape) and thus back to the. energy (30), where it remains 
for N=30. The resulting N-dependence of the binding energy displays an even-odd 
staggering. In a similar way the quartets starting at N=lS, 31 and 41 are per- 
turbed by jumps in the cluster shape, In our calculation, there is also a competing 
shape for the N=ll quartet (c-f. fig. 13), which however Pies a Iitile too high in the 
calculations to perturb this qua~tet.  It is interestirlg to note that for the quartets 
N= 11,15 and 27 there is independent evidence for about equal energy of .the prolate 
and oblate shape from the splitting of the dipole resonance (c.f, discussion in the 
preceding sectio~i). 

Fig. 16 shows that the calculated separation energies reprbduce rather well the 
magnitude of the experimental ones. This means thacone *aY estimate the smooth 
trend of the separation energies of the very small systems conside~cd by using the 
bulk surface tension and evaporation enithalpy in eq.(22) withozlif the imcl~sion 0.f a 
carvatu~e term. It remains to be seen what the csnsequeaces of an ex%~;r charge arc:, 
since the experiments a ~ e  done for singly charged ions. Since the  expesimen~%s are 
sensitive to energy differences between isas of the same cha~ge state, lhlii3Sk 05 the 
Coulomb energy is expected to cancel, 

The calculated shell ssluc%ure %Inat modslates the: smooth tread seems be 
correlated ~ i t t  the expesirnnez~tal ms79anIation, though i& is too proelaurncedL The 

I l i e a s i l y b e d  eneralizedto many deg-mation pnrameters resulting still in the 
same N-deptsndence given by eg,(30). 



inclusion of finite temperature will not damp the shell structure significantly, since 
the cluster temperature of 50 meV is much smaller than the typical subshell 
structure of the light clusters, that is 1 eV (c-f. section 4.1). Thus, if the 
analysis of the experimental evaporation spectra does not underestimate the shell 
fluctuations, there must.be additional mechanisms to damp the shell structure. 
These could be the appearance of non-axial deformations [6,13] or the roughness of 
the surface caused by the discrete ionic background [52]. 

Another feature of the data in fig. 16  is the systematic even-odd staggering. The 
calculations show the even-odd structure, if A = 0 electron levels are occupied or 
the quartets are perturbed by jumps of the shape, as discussed above. The N = 111 
and N = 23 quartets remain clearly visible in the calculations whereas there is no 
evidence for them in the data (though at N = 23 there might be the beginnirlg 
of a perturbed quartet). The data seem to indicate a distorted quartet starting at 
N = 31, in agreement with the abundance data of Pedersen et al. [50]. If this 
interpretation is correct, it would indicate that the A = 0 level from the 2p-state lies 
above the A=3 level from the l f-state rather then below it, as in fig. 1 for a > 0.2. 

5 Conclusions 

The shell correction method is an effective calculation scheme permitting the study 
of the cluster shape within a multi-dimensional family of axial shapes. A wide 
range of clusters up to mass 300 has been studied and an extension to mass 1000 is 
well within the reach of the method. Strong deviations from the spheroidal shape 
are found. The size of the deformation parameters scales with lV-lI3, however 
significant fluctuations around this scaling law appear in the individual clusters. 
There are strong correlations between the different deformation parameters of the 
considered family of shapes, and this is expected to be the case for other shape 
parameterization as well. The lightest clusters below mass 50 take shapes which 
remind that of big moPecdes (c. f. fig. 9). This is remarkable since the calculations 
use the jellium approximation for the io~w. The shapes reflect the spatial distribution 
of the delocalized valence electrons. For the heavier clusters the shapes are &ore 
rounded, still they are far from being spheroidal. At the very beginning of each 
shell clusters have a tendency to look pear-like. In the higher part of the shell they 
prefer reflection symmetric shapes looking lemon-like in the lower and barrel-like in 
the upper hdf of the shdl. Though we did not study the question in detail, the 
cdculations reved the existence of many isomeric shapes. 

Direct; experimental information about the cluster shapes is very restricted. So 
far it is mainly the splitting of the dipole resonance that contains such information. 
The m e a  are consistent with our calculations, except for some clusters 
above mass 40. In pa~ticular, the cases with the two peaks of equal height seem to 
be correlated with the calcsll[ated c~exis~tence of prolate and oblate shapes. Clearly, 
irt ~ o u l d  be i~~terestifrg to measure Itea~ier clusters. Anotl~er open probIe~n, mostly 
il gheoretricd one., is the relatiotl between the shape of the clusters and the resona~xce 
splgtting- WC aged a rather qualitagive relation, which is based on the assu~nption 



of spheroidal shape. It is necessary to study the dipole resonance on a microscopic 
basis to see the influence of the more complicated shapes. One will also have to take 
into account the fragmentation of the resonance among the particle-hole excitations. 

Compared to  calculations that assume a spherical shape, the cluster deformation. 
strongly modifies the binding and separation energies as functions of the number of 
atoms in the cluster. There are only few measurements that provide separation 
energies for comparison. They coincide moderatly well with our calculated val- 
ues, demonstrating the ability of the shell correction method with deformations to 
provide the separation energies. The calculated shell structure seems still to  be 
somewhat too pronounced. The calculated energies show a doublet-quartet struc- 
ture, which is a consequence of the assumed axial shape. The experiments provide 
some evidence for the quartets, which are perturbed by an overlaying even-odd stag- 
gering. Jumps of the axial shape as a function of the number of atoms generate such 
staggering for some of the calculated quartets. It would be highly desirable to relate 
the rich data on cluster abundances to the calculated separation energies in a more 
quantitative way. 

The authors wish to express their deep gratitude to S. Bjgrnholm for his great 
encouragement and the numerous clarifying discussions. We would also like to thank 
J. Borggreen and J .  Pedersen for providing us with experimental results prior to 
publication. 
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Figure Captions 

Fig. 1. Electron levels as functions of the deformation parameter a .  The cal- 
culation corresponds to the Woods-Saxon well for N = 35. Levels with positive, 
(negative) parity are drawn by full (dashed) lines. The numbers indicate the an- 
gular momentum projection A onto the symmetry axis. The numbers obtained by 
filling electrons into the level are given in circles. The quantum numbers far the 
spherical well are given at  a = 0. 

Fig. 2. Deformation energies for the clusters N = 72, 74 (shifted by 2 eV) and 
N = 76 (shifted by 4 eV). The shapes are pure Cassinian ovaloids, which break into 
two fragments at a = 1. The full and dashed lines denote .EsH and .ELB, respectively. 

Fig. 3. Deformation energies at the first minimum after simultaneous minizniza- 
tion with respect to a and C Y ~  (open circles). The shell energies for spherical shapes 
are included (full circles). 

Fig. 4. Energy for N = 44 as a function of the deformation parameters a and ad. 
Each contour line corresponds to AEsH = 0.1 eV.  Minima (maxima) are labelled 
by crosses (dots). 

Fig. 5 .  Energy for N =40, 42, 44 and 46 as a function of the deformation p&- 
rameters a and a3. Each contour line corresponds to ABsPr = 8.1 eV. Minima, 
(maxima) are labelled by crosses (dots). 

" Fig. 6. Examples of cluster shapes. The left column shows typical reflection sym- 
metric ground state shapes, which are calculated by minimizing the two-dimensiolmd 
PES E(a ,  04)- The upper cluster (N = 150, a = 0.209, ad = 0.095) is at the be- 
gining of the shell, the middle one ( N  = 166, a = 0.218, % =.: 0.0003, is at the 
mid-shell and the lower one (N = 184, cu = 0,095, a4 = -0.080) Ss in the upper part 
of the shell. The middle column shows three coexisting shapes for N = TO calcu- 
lated by minimizing the two-dimemsioml PE5 E(a, e3). The middle is tine grouad 
state (a = 0.022, = 0.169, EsH = -0.18 eV), tk~e top is the first shape iso- 
mer ( a  = -0.26, a3 = 0,000, Em -: 0-1-4 eV) and %he Ibo$tonw. is %ha second isan~er 
(a = 0-241, a 3  = 0-000, ESH = 020 eV). The right coBuma~ demoa$%rata "axe S%?%%- 

egy and convergency of the mininnisation on the 6ve-dimensiod PBS for N = 210. 
The top ( a  = 0.1645 cu4 = 0.083, EsH = -6.0149 eV) L iowesg rninnipahamef the two- 
sfimensional PES E(a, %). The 1.niddBe (& = O0,D%8, % -- 0.103, = -0*2B elf] 
is the lowest m in imm of the txvo-d$mensianal PBS E(% Tae bottom (a 
0.1104, a3 = 0,0995, ar, = 0,0385, as = 14.8319, == 0*0041, ESH - -0.378 tz'7[p) 
the minimupm m the five-dirnensiond PES found by starting from the shape in *ha: 
anidd1~. Starting from the shape ora the top sesuIts ia a iocai mi~mslnaam xar%b h%gI;5aer 
energy, 

Kg, 7. Befarma%iaa pa~amrskers of tkie M& clusters 1% the mws xaxrge POM 592& 



Fig. S. The shell part of the binding energies, EsH, (upper panel) and monomer 
separation energies AIE(N)  = EsH(N) - E ~ H ( N +  1) of the Na clusters in the mass 
range 105  N 590. Only the modulation due to the shell structure is depicted. 
The total binding and separation energies are to be obtained by adding the energy 
of the spherical liquid drop, c.f. eq.(22). 

Fig. 9. Shapes of the Na clusters in the mass range 101: N 589. The clusters are 
ordered according to their electron number N from the left to the right. The values 
of N are given for the clusters on the outer border of the figure. The symmetry axes 
lie horizontally. 

Fig. 10. Deformation parameters of the even Na clusters in the mass range 
50 5 N 5310. The results of two-dimensional minimization with respect to a and 
a4 [IS] are included as open circles. 

Pig. 11. The shell part of the binding energies Esw (upper panel) and half of 
the dimer separation energies AIE(N) = (E~H(N)  - EsH(N + 2))/2 of the even Na 
clusters in the mass range 50 < N 5310. Only the modulation due to the shell 
structure is depicted. The total energies are to be obtained by adding the energy 
of the spherical liquid drop eq.(22). The open circles in the upper panel show the 
results of two-dimensional minimization with respect to a and a4 [lS]. The open 
circles in the lower panel show half of the dimer separation energies for the sphere. 

Fig. 12. Shapes of the even Na clusters in the mass range 90 _< N 5 310. The - 

clusters are ordered according to their electron number N from the left to the right. 
The values of N are given for the clusters on the outer border of the figure. The 
symmetry axes lie horizontally. 

Fig, 13. Binding energies ESH and deformation parameters for the ground states 
and the lowest isomeric states in the lightest clusters. Different types of symbols 
permit associating the isomers in the panels. With ascending energy the following 
syrntsols are used : full circle, open circle, square, star and U-cross. The scale of the 
middle panel on the right side shows the deformation parameter S used in eq.(27) 
to describe the splitting of the dipole resonance, which is related to o by eq.(29). 

Pig. 14. Electron levels as functions of the deformation parameter a:3. The calcu- 
Pation corresponds to the Woods-Saxon well for N = 35. The numbers indicate the 
angtnla;~ momentum projection A onto the symmetry axis. The numbers obtained 

RZling dectrons into the leve9s are given in circles. The quantum numbers for 
the spherical well m given at a = 0. The arxows indicate the octupole couplings 
between the spherical states, where AE is quoted. 

Fig, 15, ExgerimeaftaE S values (stars) obtained from the splitting of the dipole 
resmap1~8 by means of eqi,(27) and calculated S values obtained by means of the 



relation (29) from the a values shown in figs 7 and 13. Low lying isomers are in- 
cluded, where the same use of symbols is made as in fig. 13, i. e. with ascending 
energy full circle, open circle, square and star are used. The data are taken from 
ref. [8] where singly charged clusters were studied. The point for N=10 and is from 
ref. [6], where neutrals were studied. No errors have been estimated for this case. ' 

Fig. 16. Experimental separation energies obtained in ref. [51] for singly charged 
clusters (dashed line) compared with the calculated ones (full line). The experiments 
only permit to  obtain the mean value (AlE(21) + A1E(22))/2, which is show11 as 
the horizontal bar. The thick solid line represents the smooth separation energy of 
spherical clusters, as given by eq.(22). 
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