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- Abstract: The shell correction method is applied to Na clusters to calculate their
shapes and binding energies. The equlibrium shapes are calculated minimizing si-
multanously five deformation parameters. Strong deviations from spheroidal shape
including reflection asymmetric shapes are found. The influence of cluster deforma-
‘tion on the splitting of the dipole resonance and the separation energies is studied
and compared with the available experimental data.

1 Introduction

Shortly after the discovery of sharp peaks in the abundance distributions of alkali
clusters (magic numbers and shell structure) [1, 2, 3] it was realized that the detailed
N-dependence of the abundances or the ionization potentials can be understood as
a consequence of non-spherical cluster shapes [3, 4]. Direct evidence for cluster
deformation came from the splitiing of the photo-absorption resonance (plasmon)
[3,5,6,7,8,9,10]. All these effects are considered to be due to the quantization of
the motlon of the s-valence electrons through the whole cluster in a self-consistent
potential. First estimates of the magnitude of the spheroidal shape distortions have
been obtained by approximating the self-consistent potential by the modified har-
monic oscillator model [4, 11]. More general Kohn-Sham calculations assuming a
spheroidal jellium ion background also predicted deformations of the light Na clus-
ters up to N = 20 [12]. Triaxial ellipsoidal shapes have been investigated using both
‘the oscillator model [5, 6] and Kohn-Sham calculations [13]. The approach based on
‘the oscillator model is simple enough to allow the study of a wide range of clusters,
but the estimates of the energies are only qualitative, The Kohn-Sham calculations
with deformed jellium, on the other hand, are restricted to hght clusters because of
the large numerical effort needed. So far, the studies of equilibrium deformations
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have been restricted to the ellipsoidal shapes'. The study of nuclear shapes strongly
suggests deviations from the ellipsoidal deformations (c.f. e.g. [14]). In the present

paper the so-called microscopic-macroscopic shell correction method (SCM) [14, 15)

developed in nuclear physics for general single-particle potentials is adapted to alkali .
clusters. It is very efficient and accurate enough to calculate the shape of metallic

clusters in a wide mass range exploring a rather large class of axial shapes, which

describe to sufficiently good approximation the most general axial shapes a cluster

can assume when treated as the quantal droplet. The SCM with approximate ana-

lytic calculations of the "smooth” quantities, possible for the ellipsiodally deformed

square well and oscillator potentials, was considered in refs. [11, 16, 17]. The SCM in

its general formulation has been introduced to cluster physics by the present authors

(18] who studied the family of axial shapes combining a quadrupole and a hexade-

capole deformation using a Woods-Saxon electron potential. The SCM method was

used in ref. [20] to study spheroidal cluster shapes by means of a modified oscillator

potential tuned to spherical Kohn-Sham calculations.

The paper is composed as follows. Section 2 describes the shell correction theory
adapted to alkali clusters. After a discussion of the physical background (2.1),
the choice of the liquid drop energy and shape parameterization (2.2) is described.
Then the average electron potential (2.3) and some technicalities (2.4) are presented.
Section 3 contains the results of calculations for the five-parameter family of shapes
in the mass range of N = 10 to 310. The physics of deformation is discussed. In
particular, relations to the nuclear deformations are considered. The implications of
our results for experimental quantities such as separation energies, abundances and
the splitting of the photo-absorption resonance are discussed in section 4.

2 Shell correction for alkali clusters

2.1 The physical background

The physical concept of the SCM applied to alkali clusters is the following one: The
cluster is considered as a quantal droplet. Its total energy is divided into a classical
part and a shell correction. The first is the energy of the classical droplet of liquid
alkali metal, comprising the contributions of both the electrons and the ions. For
neutral clusters, to which we restrict ourselves in the present study, its deformation
dependence is exclusivly determined by the surface tension. The parameters of the
liquid drop energy (surface tension and binding energy per atom) are not calcu-
lated but taken fo be the experimental values for bulk metal. The classical drop
prefers to be spherical. Deviations from the spherical shape are a consequence of the
quantized motion of the delocalized s-valence electrons. The shell correction is the
contribution to the valence-electron energy, which arises from the quantization of
the electron motion. It is calculated from the energies of the valence electrons in the
mean potential, which is generated by the ions together with the "non-quantized”

: fmﬁmug& in the Kohn-Sham calculations the electron density can take any shape, the restric-
tion to ellipsoidal jellium does not allow for a free relaxation of the cluster shape.




valence electrons. The mechanism that determines the shape is similar to the Jahn-
Teller effect. Shapes for which the level density is small at the Fermi surface are
energetically preferable. The actual deformation results from the competition be-
tween these quantal shell forces and the classical surface tension. The SCM ireats .
this competition in a quantitative way permitting binding energies and deformation
parameters to be calculated.

To quantify this discussion, let us formulate the SCM as an approximation to a
jellium Kohn-Sham calculation [11,-16, 17, 19]. Here, the total energy is given by
the expression ‘

ety [ara 820 s ms [anpu@em,
where 1, p and Fx are the kinetic energy, the charge density and the exchange -
correlation energy functional of the valence electrons, respectively, whereas V7 and
E; are the Coulomb potential and the Coulomb energy of the jellium background of
the positive ions, respectively. The valence-electron density is now divided into the
smooth part p and a small shell correction ép

p=p-+dp. @)

The precise definition of the density of the non-quantized valence electrons p
is given in refs. [14, 15]. It may be viewed as resulting from a Thomas-Fermi like
treatment of the functional (1) (as in ref. [19]). Neglecting terms of the order O{8p?)
the energy becomes

E=E+§E, ’ (3)

where the expression for E commdes with functional (1) substituting p for its argu-
ment p.

The Strutinsky energy theorem [15] states that up to errors of the order 0(5,0 }
‘ the shell correction 6 is the difference between the energy of N electrons in the

average potential ¥V and the "smooth” energy of N non-quantized electrons in the
same poten’mal

5E=;ve,;-— / degle)e, | 4

where ¢; are the eigenvalues of the electron hamiltonian

;32 -
h=2e 1V S {5
b= o +V, (8}
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It is seen that V is generated by the ionic ba{;kground and the non-quantized valence
electrons. ‘



The smooth level density §(e) is calculated by folding the smgle—partlcle level
density
Ple)=1 dle—e) (")

with the smearing function f((e — ¢')/7) (c.f refs. [14, 15]) such that the level
bunching caused by the quantization is averaged out:

i) = 77 [ aes(e~e)meie)

=00

= 5! Zf((e —e)/7), (8)

where the function f can be expressed in terms of the Hermite polynomials Hy

2m

fz) = = 2exp(~ ) > Hi(0)Hy()/(25kY)

k=0,2

= 773 exp(—z?) Z arHi(z),
k=0,2
1
a = 1, ap = -—§ak_2/k for k> 2.
We use the smearing function of the order m = 3. The choice of - is discussed below
in subsection 2.4.

The total energy is determined by E and h. The simplification of the SCM as
compared with to the full Kohn - Sham problem stems from the possibility to pa-
rameterize these two quantities, which then can be very efficiently calculated. Note,
that there is no double counting of interaction terms as, e.g., in the unrenormal-
ized sum of electron energies. Both physical intuition a,nd Kohn-Sham calculations
suggest that the non-quantized cluster should have a deformation energy E=Eip
of a drop of liquid metal and the valence electrons move in potential V = U with
a flat bottom and a thin surface region. The potential and the drop are supposed
to have the same shape but slightly different dimensions. The details of our choice
of this parameterization are discussed below. It is noted that the partition of the
energy into a smooth part and a shell correction does not depend on the validity
of the local deusity approximation of the Kohn-Sham functional. By adjusting the
parameters of Epp (for example, the value of the surface tenslon) one may correct
for some possible deficiencies of this approximation.

The physics put into the parameterization of E and V, which is basically the
one of the jellium model, sets the frame of applicability of the SCM for clusters.
It does not take into account the tendency of the ions to arrange themselves into
geometrical palterns at low temperature [21, 22]. Hence, the physics of quantal
droplets, described by the SCM is particularly relevant above a certain temperature
(about 400 °K, which is roughly the melting temperature of bulk Na). Below it, the
results set a scale, which the geometrical arrangement energies can be compared to.
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Since the "freezing” goes gradually [21} there is a whole temperature range below
400 °K, for which one expects that the clusters behave basically like quantal droplets.
In fact, this may even be the case for small clusters at zero temperature. The
arrangement of atoms into geometrical patterns is expected to be most important
for the deformation energy of the non-quantized droplet, Erp. The shell effects are
not expected to be modified dramatically, since the pseudopotentlals of the Na ions
are very weak [23]. :

Calculating the shell correction 6 F, the temperature of the valence electrons is
assumed to be zero. This sets another limitation to the results. The thermal fluctu-
ations will smooth the shapes we calculate for zero temperature. The temperature
of clusters in typical experiments is about 45 meV (500 °K) or less. The fluctua-
tions corresponding to this temperature do not very much modify the shape of light
clusters of mass below 100. For heavier clusters the thermal averaging will decrease
the deformations. : :

It is noted that the "Shell correction through the kinetic - energy term” used
in ref. [19] is identical with the above discussed general formulation of the SCM,
which has been first applied to-alkali clusters by the present authors [18]. The
equivalence is easily seen by comparing eq. (4) with egs. (20-22) of ref. [19] and
realizing that the second term in eq. (4) is tr(Ap) [14, 15]. The difference between
the two approaches is that we parametrize E determining the parameters from the
experimental bulk properties whereas ref. [19] calculate E by means of the Extended
Thomas Fermi theory from the energy densify functional. The latier is known to
have problems to reproduce the experimental surface tension of bulk sodium.

2.2 The liquid drop energy and the shape parameteriza-
tion

It was shown in the previous subsection that the total binding energy of a metallic

cluster may be divided into the smooth part, Erp, describing the total energy of

clusters whose electron motion is not quantized and the shell correction, §E, that

accounts for the bunching in the electron spectrum caused by i:he quantal nature of
the electron motion, i.e.,

E = Eyp + §E. ™
For neutral clusters we write Ezp as the energy of a droplet consisting of N atoms

Epp = —aN + 4wriN 258 (0)/Se- (lﬁ)
Here rg is the Wigner-Seitz radius as given by the cluster volume ;
dr . f B : :
¥ %Rﬁ, By=7sN'S. (1B
We use rs = 2.17 A, the value COIIeSpondlnﬂ‘ to the density of bulk Na at
500 °K [24]. The first term in eq. {10) is the volume energy that is independent of

the cluster shape. For the separation energy of one atom from bulk Na at 500 °K
we adopt @ = 1.083 eV, which is the enthalpy of evaporation of liquid Na into a gas
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of monomers [25]. The second term is the surface energy. It depends on the cluster
shape which is described by the set of deformation parameters o, (see below). It is
the product of the surface energy of a sphere, Sy, with radius Ry and the ratio S/Sp
of the areas of the surface fixed by the set «, and a sphere of the same volume. For
the surface tension we take o = 0.177 J/m? = 0.0111eV/ A% the value for bulk Na
at 500 °K [24].

The shape of the cluster is assumed to be axially symmetric. It is described by
a two-dimensional surface enclosing the volume V. We use the family of surfaces
introduced in ref. [26], where one may look for details. It is based on the sequence
of Cassinian ovaloids labelled by the deformation parameter o. The values a <
0,0,0<a<1,landl < acorrespond, respectively, to an oblate shape, a sphere,
a prolate shape with some neck, the scission shape looking like co and two fragments.
To conveniently describe an arbitrary axial shape close to the above mentioned
Cassinian ovaloids a special orthogonal coordinate system is introduced in which
one of the families of the coordinate lines is the Cassinian ovals. The connection of
the coordinates in this system, (R, z), which may be called Cassinian coordinates,
to the cylindrical coordinates, (r, 2), is given by the following relations [26]

R o= [ + 1) = 2¢(2° —r?) 4 75,

- _ mgn(;) ) ~ ’zz_rz__g % |
& { ’ (22 +72)% — 2(22 — r2) + gz}% } ’ (12)

with the inverse transformation

r = \/2[(7244—2;7?,2(22: —-1)-{—;2)2 R*(2z% — 1) __g]%

° T §l’g;l;—gc_)[m"“W(?ﬂcz—1)+c2)%+72“’(‘z$2—1)+<]'3", (13)

where ¢ is the squared distance from the focus of the Cassinian oval to the origin
of the coordinates. In case of ¢ = 0 the Cassinian coordinates are the radius and

cosine of the polar angle of the polar coordinate system. Tt is convenient to mtroduce
instead of ¢ a dimensionless parameter g,

e=¢(c/Ro)2. o (14)

The radius Ry has been introduced earlier and c(a, a,,) is chosen in such a way that
the volume V inside the surface S is kept constant.

The deviation of the actual surface from the Cassinian ovaloid is represented by
a sum of Legendre polynomials, P, weighted with the deformation parameters ay
as follows

Réx)*H(H-Zaﬂ Pu(=)). ()

Thus the parameters (s o, ) completely charactenze the cluster shape. To describe
very deformed shapes that may be encountered in fission another parameter was
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introduced in ref. [26]. For a reflection-symmetric shape 1t is defined as follows
a = (21 + 2 — 20)/ (21 + 2k + 20), (16)

where zp(g) is the minimum (maximum) value of z on the surface and ¢ = 72_, in’
case of single-connected body, .. being the minimal radius of the cross-section
of the surface in the plane perpendicular to the axis of symmetry. For two sepa-
rated fragments, g is minus the square of half the distance between the tips of the
fragments. The relation between o and ¢ can be derived from egs. (13) and (16)

‘+(1+Z(—1)“au)2} | )

- 1)”/(2“ hHr, (18)

p=1

which will be used also for asymmetric shapes We will use the set of defounatmn
parameters (o, o).

For |a| < 0.4 the ovaloids approach spheroids and the shape parameterization
is similar to standard multipole expansion relative to a sphere [27]. In this case
oy generates essentially a shift of the body as a whole along the symmetry axis
and o is strongly correlated with e. Thus for |a| < 0.4 we consider only p > 3.
In what follows we will mainly be concerned with this case and, somewhat loosely
speaking, we will refer to o, o3, 0,... as to the guadrupole, octupole, hezadecapole,

.. deformations. For the family of reflection-symmetric shapes generated by « and
oz, the ratio of the radius of the equator, Ry = Tpe, and the distance of the pole
_from the center, Rj = zg, is given by

R_L l1—-a l : o : g
= . {19
R“ [14—01‘ - ( )

This express;on will also be used for asymmetmc shapes, where Rl Lzt + zR)

2.3 The valence-electron hamiltohian

In expression (5) for the single-valence-electron hamiltonian we set m equal to the
free electron mass since the effective mass of a valence electron in bulk Na approaches
very closely to this value [23]. For a sufficiently large cluster, the potential V = U,
which is generated jointly by the ions and the (non-quantized) electrons, is expected
to be approximately constant inside and to disappear in a thin surface layer. We
assume the thickness of the layer to be independent of the shape of the cluster,?
describing the surface profile by means of a Fermi function '

U8 = o/l + exp U@/, @

'Thms appmxxmatmn is cansxsignt with the expression for the quid drop energy {10) which may
be viewed as an gxpansmn into powers of N—1/3, The next term wmﬂd be the curvature energy
that has its counterpart in a varying surface t}m;kness

7



where I(Z) measures the distance of a point Z from the the equipotential surface
U(l = 0) = 3U, [14, 28, 29]. The value of {(Z) is found numerically. The shape of this
surface is the same as the one used to calculate Frp. The volume inside the surface
is kept constant and equal to V = #£r3 N with rp = 2.25 A. To account for the spill
out of the electron density, the potentlal radius rp is chosen to be slightly higher
than the Wigner-Seitz radius, rg, for the density used in the calculation of Frp. The
parameter is adopted from ref. [30] who optimized the potential for heavy clusters.
As a consequence, the spillout, which scales for our potential with N'/3, is somewhat
underestimated for the light clusters. Adopting nuclear terminology we call U a
deformed Woods-Saxon potential. The remaining parameters are Uy = —6 ¢V and
d = 0.74 A, which have been determined in ref. [30] by fitting a spherical Woods-
Saxon potential to the self-consistent potentials calculated by Ekardt [2] in the
framework of the Kohn-Sham approach.

2.4 Numerics

The so-called plateau condition is an important criterion for the Strutinsky renor-
malization to be valid [15]. It states that within an energy interval approximately
equal to the distance between two shells £ must not depend on the smoothing pa-
rameter . The quality of the plateau is very good in our calculations. It is of the
order of several tens of meV for heavier clusters, around N = 20 it may amount to
0.1 eV. 3 We choose v = 3.5N~1/3 ¢V as a best value for all the cases considered.

The energies e; are calculated by diagonalizing h in the basis of a deformed
harmonic oscillator whose frequency ratio is optimized for each deformation (c.f.
refs. [28, 29]). The optimal oscillator frequency fiwp, which governs the range of the
basis wave functions, is found to be close to 3.5N/3 ¢V for heavier clusters. The
value TN™1/3 eV produces a better plateau (c.f. above ) for the lighter clusters. The
connection of hwp to the quality of the plateau is discussed in ref. [31]. We use a
basis that corresponds to roughly 16 oscillator shells in the spherical case. It ensures
very good convergence for the electron spectra up to N = 500.

To save computing time in case of two-dimensional minimization the diagonal-
ization is carried out only for the base numbers Ng = 35, 85, 115, 155, 205 and 281.
The energy levels for clusters lying in between are obtained by scaling the basis
spectrumn according to N-dependence of the harmonic oscillator [32]

)= eNR NN, (21)

This interpolation procedure has also been used in our two chmensmna,l minimiza-
tions reported in ref. [18} For the five-dimensional minimization there is no need

“for any scaling because in this case each cluster is calculated in its own potentla]l
e, N B = N.

3T§1€ plateau is more stable than for the nuclear Woods-Saxon potentials. The reason is that
for neutral clusters the Fermi level lies deeper in the potential well than for nuclei (at ~ 10U and
£17s , respectively). This has as a consequence that the continuum of positive energies deteriorates
the platean much less in clusters than in nuclel. ,



3 Cluster shapes in the mass range of 10 to 310

When displaying the potential energy surface (PES) we always locate the zero point
of the energy at the liquid drop energy for spherical shape, i.e. we plot the quantity.

Esn (o, ) = B(a ay) +alN —4rr Lo NP = E(e, o) = (—1.063N +0. 6a4N2/3) eV.

v (22)
We call it Esy (SH for shell), since the deviations of the energy from the spherical
liquid drop value are a consequence of the valence electron shell structure.

Fig. 1 shows the valence electron levels for N = 35 as functions of the quadrupole
deformation «. Since the shape 1s axially symmetric the projection of the orbital
angular momentum onto the symmetry axis is conserved. We denote it by A. All
levels with A = 0 are two-fold degenerated (spin up and down) and all with A #
0 four-fold (spin up and down, A positive and negative). This doublet-quartet
structure determines the local variation of the energy as a function of the number of
valence electrons, IV, which is equal to the number of atoms for the neutral clusters.

The Woods-Saxon levels in fig. 1 are very similar to the Clemenger’s Modified Os-
cillator levels [4]. Up to moderate values of o, Nilsson’s deformation parameters [32]
are related to ours by § =~ %a and € & «. The spectrum contains a number of regions
of low level density, marked with the corresponding electron numbers in fig. 1. The
shapes corresponding to such ”openings” in the spectrum near the Fermi level are
particularly stable. These are the generalized shell closures introduced by Strutinsky
(14, 15] into nuclear physics. From the molecular point of view the preferance of such
shapes corresponds to a maximization of the HOMO-LUMO gap. The openings in
the spectrum are the origin of the ondulation, which the shell correction adds to
the smooth liquid drop energy. The interplay of the two contributions is illustrated
in fig. 2, showing the deformation energy as a function of « for the three clusters
with N = 72,74 and 76. The liquid drop energy Ezp grows up to the scission point
at a = 1 and then remains almost constant. This is expected for neutral clusters
having only a surface energy but no long range Coulomb interaction between the
fragments. The slight changes at large « are due to our shape parameterization that
corresponds to deformed fragments near and after the scission point for o, = 0 (c.f.
ref. [26]). The shell energy modulates the PES substantially. There is a deformed
first minimum representmg the ground state of the cluster. The first minimum is
caused by the N=T74 opening at o = 0.3 in fig. 1. In addition, one sees a second
minimum at larger .. In the following we restrict the discussion mainly to the first
minimum. However, we want to stress that second and third minima appear quite
commonly. Most clusters tend to have strongly deformed shape-isomeric states.

It turns out that even for moderate distortions there are very often several com-
peting shapes. It is a non-trivial task to locate the lowest minima on our five-
dimensional PES. In order to find them we apply the following strategy. First we
generate the two-dimensional surfaces Esy{o, o4) and Esu{a, es) and find the low-
est minima. These are used as the starting points of a gradient pmcedam to find
the minima on the five-dimensional PES. ‘



3.1 Results of the two-dimensional minimization

The equilibrium deformations found for Egsy(a,ay) ( simultaneous minimization
with respect to the quadrupole and hexadecapole deformations) are presented in
fig. 1 of our first report [18]. They are also shown as open circles in figs. 10
and the upper panel of fig. 11 . In fig. 3 we show the full deformation energy
Esy compared to the shell energy for spherical shapes. The energy gain due to
. deformation may amount to 2 eV. The spherical clusters with the magic numbers
N = 20,40,58,92,138,198 and 254 have an extra binding of about 1 eV compared to
the classical energy of the spherical drop. The shell closure around 260 is somewhat
washed out. The reason is the 3f-level, lying between the 254 closure and the
4p-level starting the next shell at 268. This position is not a consequence of the
Woods-Saxon parameterization of the potential [30]. It appears already for the
spherical Kohn-Sham calculations [33].

Between the spherical shells the energy lies only about 0.1 eV below the spherical
drop value. This reflects the lower symmetry of the shape, leading to a smaller
shell correction. Like nuclei, the clusters are deformed between the magic numbers
because they avoid the 1arge positive shell energy of the spherical shape.

Fig. 4 demonstrates by way of example: As a rule, a minimum of the one di-
mensional energy function Esp(a,as = 0) belongs to the couloir around a deeper
minimum in the o — a4-plane. Thus, the inclusion of ¢y as a second degree of free-
dom does not lead to the appearance of new minima. The deformation parameters
a and o4 are strongly correlated. The contour lines enclosing the minimum have
principal axes that are not parallel to the o or a4 axes. The energy gain due to the
inclusion of @y is typically of the order of 200 — 300 meV, reaching its maximum of
500 meV for N = 154. This is sufficient to exchange the relative positions of two
minima. In fig. 4 the oblate minimum lies below the prolate one for ay = 0, whereas
for the equilibrium values of oy the prolate minimum becomes the lowest. What is
said about the inclusion of oy holds also for ag. It does not lead to new minima.
The energy shifts related {o the relaxation in ag are typically equal to 100 meV or
less.

On the other hand breaking the reflection symmetry by mcludmg the octupole:
deformation, as, leads to the appearance of new minima in the PES. In figs. 5 the
contour plots give examples of the coexisting shape isomers. The equilibrium defor-
mations found on the PES Esg(«, az) (simultaneous minimization with respect to
the quadrupole and octupole deformations) are shown in fig. 3 of our first report [18].
For all clusters we compared the energy of the lowest minimum obtained by min-
imizing Esg{c, a3} with the lowest minimum obtained by minimizing Esp (e, o).
If the reflection asymmef;rxc minimum was lower we considered the cluster octupole
deformed. :

Some selected cluster shapes obtamed by fwo- dimensional mmlmzzatlon are
shown in fig. 6. The left-hand column demonstrates the shape modification due
to ay. The middle column shows an example of coexwﬁmg reflection symmetric and
asymmetric shapes.
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3.2 Results of the five-dimensional minimization

The right-hand column of fig. 6 demonstrates the convergency of shape and en-
ergy when taking into account an increasing number of multipoles. Including the
multipoles up to ag, the axial shape can be considered as practically relaxed. For se--
lected examples we found the energy gain obtained by the inclusion of the multipoles
a7 8,0,10 to be of the order of a few 10 meV.

We carried out the five-dimensional minimization for all clusters in the mass
range of 10<N<X 90. The results are presented in figs. 7, 8 and 9. For the mass
range of 90<N<310 only the even clusters have been considered. The results are
presented in figs. 10, 11 and 12. Due to the reflection symmetry there are always
two minima with identical energy that are related by changing the signs of all
with odd g, as illustrated in fig. 5. We have fixed signs in figs. 7 and 10 such that
the values of oz are always positive. With this choice the sign of as may be positive
or negative. - ,

In order to find the absolute minimum we start our gradient method for all clus-
ters from the lowest minimum found by means of the & — oy minimization. Since we
do not have evidence that ag creates any new minima the gradient search should find
the lowest minimum with reflection symmetric shape. For all clusters we then com-
pare the energy of the lowest minimum obtained by minimizing Fsy(a, az) with the
lowest minimum obtained by minimizing Esy(a, o). If the reflection asymmetric
minimum is lower than or has a similar energy as the reflection symmetric minimum
we start the gradient search also from this point. Since we do not have evidence that
the inclusion of a5 and o5 creates new minima this search should provide the lowest
minimum with reflection asymmetric shape. The lower one of the reflection symmet-
ric and reflection asymmetric minima, found in this way, are included in figs. 8-12.
In order to make sure that we do not end up in a local minimum (shape isomer),
we started a search from the second reflection symmetric minimum { the oblate
one) for clusters with energetically competing minima. The search always ended in
a local minimum with higher energy. The deformation parameters and energies of
the lowest isomeric states in the lightest clusters are shown in fig. 13. Bearing this
careful search in mind we believe that figs. 8-12 refer to the absolute minima of the
five-dimensional PES. Since higher multipoles play an insignificant role, the axial
shapes found in this way may be considered as practically relaxed. In the remainder
of this section we discuss some features of these systematic calculations.

3.3 Quadrupole deformations

Figs. 7 and 10 show the quadrupole deformations in the upper panels. For the
light clusters the results are similar to the systematics caleulated for spheroidal
shapes [4, 12, 20]. The shape is prolate in the lower half of a shell and oblate
in the upper half. For the heavy clusters we find predominantly prolate shapes
throughout the whole shell with some oblate deformation at the beginning. The
dominance of prolate shapes is a well known result in nuclear physics, where it has
been confirmed experimentally . According o the caleulations of ref. [20] the region
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with oblate shapes at the very beginning of the shell is more extended in the heavy
clusters. This may be due to the use of spherical Kohn-Sham levels instead of our
Woods-Saxon potential.

The systematics of spheroidal deformations has been discussed from different
points of view. Bohr and Mottelson [34] relate them to the shell structure at the
frequency ratio of 2:3 in the harmonic oscillator. For small N values Ekardt discusses
spheroidal deformations in terms of the geometry of the A-substates of a spherical
shell with angular momentum ! being filled up [12]. This discussion elucidates the
transition from prolate to oblate shapes seen in the middle of the f-shell at N = 28
and in the d-shell at N = 16. It can be understood geometrically as a consequence
of the fact that the A = 0 states get lowest on the prolate side and highest on
the oblate one. This behavior is evident from the matrix element of the spherical
harmonic Yo which is proportional to {({ 4+ 1) — 3A%. Geometrically the electrons
are located near the poles in the A = 0 orbitals. The extra charge will attract the
ions resulting in a prolate deformation of the cluster. Hence, two electrons in the

= 0 state drive the cluster to the prolate side, whereas two holes drive to the
oblate side. For the higher N many [-shells intertwine and this simple picture is
blurred. Here a discussion in terms of classical periodic orbits is more appropriate.
In ref. [35] it is pointed out that the deformations are related to the triangular and
quadrangular orbits lying in the plane that contains the symmetry axis. Ref. [36]
demonstrates that the preference of prolate shapes observed for the higher N is
explained by different changes of the length of the orbits when a sphere becomes a
prolate or oblate spheroid of the same volume.

Generally a co-existence of oblate and prolate shapes is observed. This is illus-
trated by the contour maps shown in figs. 4 and 5. From our calculations we cannot
conclude whether the higher one is stable or becomes-a saddle point if one allows
for non-axial deformations. Analogous calculations for nuclei indicate that usually
the higher minimum is a saddle [37]. However, the calculations for Na;4 [13] show
that both oblate and prolate minima are stable. There is also the possibility that
the lowest minimum is weakly triaxial. For the class of ellipsoidal shapes of a pure
harmonic oscillator, studied in refs. {5, 38] this happens frequently.

3.4 Hexadécapole deformations

The calculated values of a4 are shown in the second panel of figs. 7 and 10. They
change from positive values at the beginning to negative ones at the end of the shell.

At the beginning of the shell the shape is lemon like, spheroidal in the middle and
barrel like at the end. This is illustrated in fig. 6 (left column) showing a low-shell,

mid-shell and high-shell cluster. The same tendency is found in the calculation
for nuclei, for which the change of sign of a4 has been confirmed experimentally
(c.f. 14, 39]). In ref. [40] it is argued that the expectation value of the multipole
mc}ment Yio changes sign (~ — 1) times when a spherical shell of given ! is being
filled. Expanding the deformed potential (20) into multipoles, one sees that its
expectation value will be lowered if the deformation parameter associated with the
multipole Yig depends on NV in the same way. This argument cannot be applied to
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the heavy clusters where several spherical states of given I combine to one shell. ‘A
discussion in terms of periodical classical orbits does not exist.

3.5 Octupole deformations

The a3 values are shown in the fourth panel of figs. 7 and 10. Qctupole deformations
appear only for the clusters lying somewhat above a spherical shell closure. This
feature is well known for nuclear equilibrium shapes [41, 42] and has also been found
for clusters by Hamamoto et al. [43] , who studied the energies for quadrupole and
octupole deformation separately. Comparing the dots with the circles in the upper
panel of fig. 10 one notices that at the beginning of a new shell the octupole defor-
mation combined with a small quadrupole deformation is energetically favoured in
comparision with the relatively large oblate deformations appearing if only reflec-
tion symmetric shapes are considered. Thus, taking into account the possibility of
the pear-like deformation the clusters, as a rule, are prolate or octupole-deformed
(with a small positive or negative quadrupole admixture), and very seldom strongly
oblate. This may be partially a feature of the assumed flat bottom of the Woods-
Saxon potential, since the calculations based on spherical Kohn-Sham levels [20]
have a stronger tendency towards oblate deformations than our reflection symmet-
ric calculations (c.f. ref. [18] and fig. 10, open circles). It would be interesting to see
whether a more realistic radial profile of the electron potential changes the interplay
between the reflection symmetric and antisymmetric multipoles.

The energy gained by octupole deformation is of the order of 200 —-300 meV with
a maximum of 400 meV for N = 208. It flattens the sharp rise of the energy Esy
after a closed shell, as can be seen in fig. 11, also showing as open circles the energies
obtained by the two-dimensional minimization with respect to & and «y. For the
heavy clusters one should keep in mind that the energies due to shell structure and
deformation are sensitive to heating.

~ The octupole deformation disappears abruptly, at some stage of filling the shell.

Such deformation jumps are a consequence of the coexistence of relection symmetric
and asymmetric minima. The jump in a3 appears when the energy of a reflection
symmetric minimum falls below the energy of the reflection asymmetric one. In
fact, the coexistence of distinct minima may even let the deformation jump back
and forth. An example is the development of the shape above N = 40, which is
illustrated in fig. 5. There is a competilion between the “octupole” minimum at
- large o3 and slightly negative o and the “quadrupole” minimum at large positive
@, which has small or zero os. For N = 40 the octupole minimmum is lowest, for 42
it is the quadrupole one , for 44 it is again the octupole minimum and for 46 the
quadrupole minimum is lowest again, remaining the lowest one in the higher part
of the shell. As will be discussed in section 4, these deformation jumps cause an
even-odd staggering of the cluster binding energy. In ge:neral shape isomerism is
expected in the regions of octupole deformation.

As demonstrated by figs. 5, 7 and 10, there are stzonw tmre’ilatmﬂs between
o and as. Usually, an octupole deformed minimum has also a finite quadrupole
deformation. As discussed in ref. [18], this results in & finite static dipole moment
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of the cluster. Looking for these dipole moments in the microwave spectra could
provide direct evidence for the predicted octupole deformations.

Some-features of the a3 systematics can be understood by inspecting the electron
levels as functions of &3 shown in fig. 14. In contrast to fig. 1, the spherical levels are.
only distorted by non-diagonal matrix elements, the most important of which are
indicated by arrows in fig. 14. These are matrix elements of Y39 between spherical
electron states that differ in angular momentum I by 1 ( the Al = 1 couplings) and
by 3 ( the Al =3 couplings).

Let us discuss the clusters above N = 40 that are illustrated in fig. 5. The A=4
level of the 1g-shell is pushed down with increasing a3, since it has a Al = 1 matrix
element with the A=4 level of the 1A-shell but none with the 1 f-shell, which does
not have a A=4 state. Filling up this state gives rise to the octupole minimum for
N = 41 ~ 44. Since the states of maximal A have a lower energy for negative o
the shift of the octupole minimum to the oblate side is explained. The octupole
deformation disappears when the gap between the A = 4 and the upsloping level
A = 3 is crossed, 1.e. at N = 46, since A = 3 does not favour as.

The A = 4 level favouring a3 has to compete with the A = 0,1 levels that
slope down in the direction of positive & and small as, as can be seen in fig. 1.
Filling the A = 0,1 levels gives rise to the quadrupole minimum in fig. 3, which is
strongly prolate deformed and represents the shape of the clusters above the octupole
region. The jumps of the deformation above N = 40 can be understood in terms
of the competition between the occupation of high and low A levels producing the
octupole and quadrupole minima, respectively. As already discussed, N = 40 lies in
the octupole minimum. It is more beneficial to fill the next two electrons into the
A = 0 level than into A = 4, hence the quadrupole minimum is lower for N = 42.
For the next two electrons it is better to fill the A = 4 level, because of the gap
between A = 0 and 1. Hence the octupole minimum is lower for N = 44. For the
next two electrons it is again better to fill the A =1 level because of the large gap
between A = 4 and 3. Hence the quadrupole minimum is lower and the end of the
octupole region is reached.

The 2p-levels are pushed down by their Al = 3 coupling to the A=0 and 1 levels
of the 1g-shell. This has the remarkable consequence that the magic cluster N=40
is octupole deformed. As seen in fig. 5, it is very soft with respect to oz, what
is reflected by the fact that the N = 40 gap is almost independent of az. In the
five-dimensional minimization we find that the spherical shape lies only 0.05 eV
above the octupole deformed minimum. Nevertheless, this energy g vain‘should be
big enough to survive the thermal fluctuations.

Above N = 20 the situation is quite analogous to the one above 40. The A =3
level of the 1 f—sheﬂ is pushed down by the Al =1 coupling to the A = 3 level from
the 1g-shell and the 2s-level is pushed down by the Al = 3 coupling to the A =0
level from the 1f-shell. Again, an oblate octupole and a prolate reflection symmetric
minimum compete. The energy gain by octupole deformation is somewhat less due to
the lower angular momentum of the states. As a consequence, the prolate minimum
lies always somewhat below the octupole one and V = 20 is spherical, though very
soft agatnst octupole deformation. The analogous scenario also holds above N = 70.
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Here it is the A = 5 level from the 1A-shell, the 3s- and, to some extent, the 2d-
levels that are pushed down. Due to the higher angular momentum of the states
the energy gain by octupole deformation is bigger and the prolate minimum now
always lies slightly above the octupole one until the gap between A = 5 and 4 in_
the 1h-shell is reached, where the prolate minimum takes over and the end of the
octupole region is reached. ’ .

In conclusion, there are two mechanisms generating the octupole deformation.
The Al = 3 coupling acts across the spherical shell gap leading to octupole softness
or even instability for the magic clusters. The Al = 1 coupling of the states with

maximal [ in adjacent shells pushes the A = [ states of the the lower shell down
'~ leading to octupole deformation for the first 4 electrons in the shell that can be
accomodated into this orbit.

Systematic calculations [41, 42] show that nuclei are less susceptible to octupole
deformation than clusters. One reason are the pairing correlations in nuclei that
tend to keep the system spherical. Another one is the large spin orbit splitting
in nuclel. It leads to a different pattern of octupole instability. The spin orbit
potential shifts the state § = [, + 1/2 into the next lower shell and the state
7 = lmaz — 1/2 among the levels with lower I.° The Al = 1 coupling is reduced,
since it shifts the j = [,.; — 1/2 levels only relative to the low [ levels resulting
in a level redistribution but no energy gain (no shell gap opens). Thus, it is the
interaction with the j = [, + 1/2 levels that remains, which can only give half
the energy gain. The interaction is now a combination of the Al = 3 coupling of
these "intruder” level with the states of the shell they are embedded and the Al =1
coupling to the intruders in the next higher shell. Again, the resulting repulsion is
most effective at the shell beginning since the lowest states are pushed down like the
A = [ levels in the clusters. Higher in the shell there is only a redistribution among
the levels of opposite parity not generating much of a shell gap. Hence the spin-
orbit coupling reduces the energy gained by octupole deformation to about a half.
Moreover, in nuclei the neutrons and profons may act out of phase. Nevertheless,
octupole deformation is predicted and experimentally confirmed above the magic
nucleus 2%®Ph [41].

As in the case of the quadrupole deformation, for larger N many I-shells inter-
twine and the interpretation of the deformation systematics in terms of the distor-
tion of individual {-shells becomes blurred. Unfortunately, a systematic discussion
in terms of classical orbits, as for the quadrupole deformation, is not available for
the case of the combination of octupole with small quadrupole deformations { ¢.f,,
however, ref. [44] for the the combination of octupole with large quadrupole defor-
mation). Bohr and Mottelson [34] and Hamamoto et al. [43] argue that if shells with
Al = 3 come close together near the Fermi surface the system should be particularly
apt o octupole distortions. This occurs for the shell 138 < N < 198 { I = 3 and

- 6). Neither our calculations nor the ones given in ref. [43] show enhanced octupole
deformations for this shell. Rather there is a general tendency for octupole deforma-
tion to occur at the beginning of each shell. Applying group theoretical arguments
to two degenerate shells with { = 6 and ! = 3, Hamamoto et al. {43] demonstrated
the importance of non-axial octupole distortions, which is indeed born out by their
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study of the one-dimensional PES of shapes defined by combining the sphere with
only one of the spherical harmonics Y5,. The correlations between these degrees of
freedom and the axial and non-axial quadrupole and hexadecapole ones remain to
be studied. From our investigation of the family of axial shapes it is expected that .
the correlations will be strong since the resulting shapes we display in figs. 9 and 12
are rather different from distortions generated by just one multipole.

Due to the tendency of the levels with maximal A to prefer both octupole and
negative quadrupole deformation it is likely that the oblate shapes found in ref. [20]
are unstable against octupole deformation. The mean field used in that work, which
is based on the spherical Kohn-Sham levels, has the increased tendency towards
oblate shape compared to our Woods-Saxon potential. It is possible that this ten-
dency will lead to many more reflection asymmetric clusters.

3.6 The deformations o5 and d6

Panels 3 and 5 of figs. 7 and 10 show the og and s deformations. The as val- -
ues change their sign within each octupole region reflecting the increase of nodes
with multipolarity. That has already been discussed for oy as compared to a [40].
Comparison of ag with a4 shows a more frequent crossing of the zero line. However
it is not simply one node more, as could be expected from the argument given in
ref. [40]. The reason is presumably the interplay between the different deformation
modes that becomes increasingly important at higher multipolarity.

The a5 deformation may still give an energy gain of the order of 100 meV, as can
be seen in fig. 11 from comparing the open circles with the full ones in the regions
with zero a3. The same comparison in fig. 10 shows that the correlation with o
may lead to noticeable changes of o and ay.

4 Experimental consequences of cluster defor-
mations

In this section we will discuss some implications of our systematic study of the
shape of Na clusters. It is only possible to address to selected aspects, while many
more have to be left for further investigations. Here we shall not discuss ioniza-
tion potentials, leaving discussion of this important experimental information for
a forthcoming study that treats the Coulomb field of charged clusters within the
shell correction method. As discussed in our first report (18], the combination of
quadrupole and octupole deformation leads to static dipole moments that can, in
principle, be detected by observing interaction with electromagnetic radiation in the
microwave range. A first rough estimate of the expected dipole moments and of the
wavelength of the rotational lines can be found there.' A more detailed study of the
dipole response in the low-frequency range will also be presented i ina futme paper,
while the high-frequency modes will be discussed below.

In general, the magnitude of the equilibrium deformations scales with N~ ~1/3 5.
cording to general] arguments concerning the degeneracy of the electron system [34].
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The actual deformations fluctuate considerably around the expected average. Nev-
ertheless, the scaling law sets the order of magnitue of any observable consequence
of the electronic shell structure.

4.1 Stability of the shapes

The degree of localization of the shape in the minimum is determined by the quantal
zero-point- and thermal fluctuations. The order of magnitude of the former can be
roughly estimated by assuming an irrotational flow for the oscillations around the
minimum. The corresponding mass coefficient Dgg for the quadrupole deformation
parameter (3 can be found in ref. [27, 34]. Taking into acoount the relation to our

deformation coordinate, o = 1/ Zf ( c. f. section 3), the mass parameter becomes

4 2
D= %Dgﬁ %N5/3M7~§ = TTSIN**5 [eV (23)
where we use Mc? = 23 % 939MeV for the Na mass. For N = 72 one obtains
D = 9.6 10°4%/eV. The zero-point energy and amplitude for harmonic vibrations
become, respectively, :

Eor 1
%ﬁw =3 C/D = 1.4 meV, Ad®= 5/\/ CD ~ 1.9 107%, (24)

The numerical values correspond to N = 72 with the curvature C' = 75 eV at the
minimum « = 0.22 (c. {. fig. 2). Thanks to the heavy lons the cold clusters are very
well localized in their deformation minima, much better than nuclei are. {Compare
the ratio ‘/‘? /2 2.0 1072 in clusters to the value of 10~* in nuclei). This is due to
the small ratio of the electron mass, which determines the stiffness C, to the mass
of the Na ion, which determines the mass coefficient D. In nuclei the nucleon mass
appears in both C and D.

The thermal fluctuations correspond to an excitation energy of the order of kT,
i.e., to an average potential energy of

CAa? kT -
5 = -5 (25)

For a cluster temperature of 500 °K the encrgy kT =2 45 meV corresponds to Aa® =
6. 107, which is larger then the quantal zero-point fluctuations. The situation
discussed is typical for all deformation degrees of freedom considered, since the
mass coefficients are comparable and the variations of the PES are, at least, in
the 100 meV range. Except for cases close to instability, the clusters are very well
localized in the minima of the PES. Usually the energy difference between the ground
and the isomeric configurations is equal fo a few 100 meV at least, i.e., the isomers
are very weakly excited in thermal equilibrium. However, for cases with competing
minima, like in the regions of octupole deformation or around N=28, the two shape
isomers may both be thermally excited. '
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The thermal stability of the shell structure was shown in ref. [34] to be controlled
by the ratio ‘
22 kT 2 kT
Awspel - 3.5 6VN_1/37

where Aw,pey is the spacing between the spherical shells. * Since deformation comes
as the consequence of avoiding the large positive shell correction at spherical shape,
the appearance of deformed shapes should be controlled by the same ratio 7. Using
kT = 45 meV one finds 0.09, 0.15 and 0.26 for N=20, 100 and 500, respectively.
Thus one expects that below N = 500 the finite temperature will not significantly
change the large quadrupole deformations in the middle of a shell. For the heaviest
clusters considered (N ~ 300), the temperature will begin to change the higher
deformation modes. (The estimates of the magnitude of the energy gain for different
deformation modes was given in the preceding section). In fact, the regions of
spherical shape near the magic numbers will extend and the deformed regions will
shrink, in accordance with the energy gain due to deformation (c.f. fig. 3).

T =

(2)

4.2 Splitting of the dipole resonance

The most direct measurement of the cluster deformation is the splitting of the dipole
resonance observed in the photo-absorption spectrum ( also denoted as the Mie
resonance or plasmon) [3, 5, 6, 7, 8, 9, 10]. For axial shapes there are two degenerated
eigenmodes in the equatorial plane and one eigenmode along the symmetry axis. In
fact the observed absorption spectra show a splitting of the dipole resonance into a
high-intensity peak, associated with the equatorial modes, and a low-intensity one
due to the polar mode. '
Assuming a spheroidal jellium model, Lipparini and Stringari [46] have derived
an approximate expression for the relation between the ratio of the two resonance
energies F; and Ey
E’ .
o428 @)
with the deformation para.meter defined as
R; — Rzy
PR i (28)
2 Ri + 2R
‘ i L
Using egs. (27) and (19) one finds that

R
T

(29)

Inverting eq. {27) we derive the "experimental” values for §, which we compareV
with our Galculai;ed o’s. One may derive the same expression starting from the

)
A very CIOS% Gl‘ltena, was fcrmulated in ref [45], where the critical temperature for the shell
disappearence was introduced as T, = \/:ﬁwsheﬂ
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splitting of the classical Mie resonance of an ellipsoidal metal body. °

Fig. 15 compares the experimental values of § obtained from the experimental
ratios of the energies of the two peaks in the photo-absorption spectrum by using
expression (27) with the calculated § values. As already pointed out in our first pa-.
per [18], the calculations reproduce the experimental trends very well. Both in the
1d-shell and in the 1f—2p-shell the experiments are in accordance with the calcu-
lated transition from prolate to oblate shape around N=16 and N=30, respectively.
This transition has also been found in calculation within the restricted family of
spheroidal shapes [12, 20]. Hence, the lifting of the restriction in the shapes does
not change the occurrence of the prolate-oblate transition in these two shells.

Like for the family of «, ay-shapes studied in our first report [18], we find the
prolate and oblate shapes coexisting for the clusters N = 27 and 28 at nearly the
same energy. It is interesting that the Copenhagen group finds two peaks of equal
intensity [8] just for these electron numbers. The equal intensity may be understood
if the clusters occupy the prolate and the oblate minima with equal probability, as
expected for nearly equal energies [8, 18]. Another possibility of coexistence beween
oblate and prolate shapes appears for N = 12 (c.f. fig. 13). In ref. [6] the spectra
show two humps of about the same height. However, the experimental picture is
less clear, since the absorption cross section increases again above the second peak.
This has been interpreted by the authors as evidence for a third peak that might
be due to a triaxial shape. As mentioned before, our calculations cannot answer the
question whether there is a barrier beween the two minima or not.

Above N = 40 there is a discrepancy between our calculations and the exper-
iments, which indicate oblate shapes for N, = 41 — 48 [8, 18]. Combining all the
multipoles, we obtain strong prolate deformation for N = 42 and N = 45 — 48
and for V = 43 and 44 an octupole deformation combined with a slight oblate
quadrupole deformation. The reflection asymmetric shape might account gualita-
tivly for the observed small high-frequency peak. However, there is the problem that
this minimum has almost the same energy as the prolate reflection symmetric one.
The close energy of the two minima is refected by the jumping of the shape in this
region, as seen in figs. 5 and 12. Comparable probability of the two shapes should
lead to two peaks of about the same height, as seen near N = 27. Presently it is not
clear, whether this discrepancy reflects the property of the Woods-Saxon potential
of being more prone towards prolate shape than real clusters { The calculations [20]
based on spherical Kohn-Sham levels tend to give more oblate clusters. However
this result may be changed if higher multipoles of the shape are taken into account.
c¢. 1. discussion in sect. 3.5). It is also possible that the collective interpretation
of the resonance splitting is not appropriate because of a significant fragmentation
of the dipole strength among the different particle-hole excitations. Clearly, this
problem can only be resolved by a microscopic calculation of the dipole response
function for deformed clusters. Such studies could also shed light on the question
as to how well the ratio of the resonance energies is determined by expression {27),

SKresin has ﬂemonst:ate& that also for small clusters the {reqaency rabio is very close to the
classical one [47].
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which is derived under the assumption of spheroidal shape The assumption that
the frequency ratio is controlled mainly by the ratio —1L can be supported by angu-
lar momentum coupling arguments [34, 48]. However a more quantitative study is
neccessary. : .

Most of the experiments shown in fig. 14 correspond to singly charged clusters.
We assume that the shapes of these clusters are the same as for neutrals. This can
be justified by the fact that the shape is mainly determined by shell effects, which
are almost the same for neutrals and for singly charged clusters, since they are not
very sensitive to the depth of the average electron potential. €

4.3 Separation energies

Fig. 3 demonstrates the drastical effects that the cluster deformation has on-the
binding energies. The large positive shell correction appearing in the middle of the
spherical shell is completely avoided in going to non-spherical shapes. More detailed
pictures of the binding energies including all axial deformations are given by figs. 8
and 11. Comparing these calculations with the calculations of ref. [20], which con-
sider only spheroidal cluster deformation, and our two-dimensional calculations [18]
shown as open circles in fig. 11, one notices that the more flexible the family of
shapes is, the smoother the N-dependence of the energy becomes. The richer va-
riety of shapes cuts away the spikes in the deformed region just as the spheroidal
deformation cuts the huge spherical shell maxima away (c.f. fig. 3). A direct com-
parison of the binding energies with the experimental values of the derivative of the
abundances, as suggested in ref. [20], seems problematic to us since cluster abun-
dances are most likely to be related to separation energies. Comparing fig. 11 with
fig. 5 of ref. [20] one notices that the most pronounced open shell structures of
ref. [20] (at IV = 72, 112, 172 and 236) seem to be also present for our more general
shapes, though they appear at slightly different values of N.

Another conspicuous feature of the binding energies is the doublet-quartet struc-
ture that emerges from the two-fold and four-fold degeneracy of the A = 0 and A # 0
electron states. This structure is an immediate consequence of the assumed axial
shape. In fig. 8a the quartets show up in binding energies as inverted parabolas con-
sisting of five points or in the separation energies, in fig. 8b, as upsloping straight
lines consisting of four points. The experimental abundances [50] as well as the ex-
perimental separation energies [51] shown in fig. 16 provide some evidence for such
quartets starting with IV = 15, 27 and 31, related to the A = 2 1d-electron state
and to the A =2 and 3 levels of the 1f-state, respectively. Pedersen et al. {50] have
also found some evidence for N = 47, 51 and 55 presumably related to the A = 2, 3
and 4 1g -levels. The N -dependence within a quartet is easy to understand. F illing

The main éﬁﬂerenre between the sigly charged and neutral clusters seems to be a larger frag-
mentation (Landau damping) in the neutrals, which has been explained by Yannouleas et al. [49].
Accordingly many of the experimental ahsorption spectra for neutrals do mot show the simple
two-peak structure (c.f. ref. [6]} but rather shallow structures that cannot be interpreted in terms
of the simple collective pictute employed here.
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electrons into the same A-level results in a quadratic growth of the energy

(V- N)V'
20 | ‘
where F, and N, are the energy and electron number of the last cluster before tyhe'

quartet starts. The formula assumes that the relative energy of the quartet members
can be obtained from the approximate deformation energy

E(N)= E,+ (N — N,)e — (30)

E(a)=FE,+ %(oz — )+ (N = N,)(e + ;ic%(a —a,)), (31)

which is correct if the polarization of each electron in the quartet level at the energy
e is small enough for only the leading order terms in the deformation parameter o
to be important.” The quartets N = 11, 23 and 47 in figs. 8 and 15 show this N -
dependence clearly. |

The expérimentally observed quartets are perturbed by an overlaying even-odd
staggering. The origin of this staggering is not clear at the moment. It may in-
dicate a deviation from axial shape that would lift the four-fold degeneracy or it
could be due to correlations between the electron spins according to Hund’s rule
as in atoms. However, within our approach, restricted to axial shapes and no spin
correlations, there is also a mechanism that may perturb quartets. Take as an ex-
ample, N=27,28,29 and 30, which, according to fig. 1, is the A = 2 quartet on the
prolate side. For N=27 the shape is prolate, whereas for N=28 an oblate shape is
preferred. This shape change leads to a gain relative to the energy given by eq. (30).
For N=29 the cluster goes back to the prolate side (A=2 and 3 are filled and the gap
to A=1 disfavours oblate shape) and thus back to the energy (30), where it remains
for N=30. The resulting N-dependence of the binding energy displays an even-odd
staggering. In a similar way the quartets starting at N=15, 31 and 41 are per-
turbed by jurmnps in the cluster shape. In our calculation, there is also a competing
shape for the N=11 quartet {c.f. fig. 13), which however lies a little too high in the
calculations to perturb this quartet. It is interesting to note that for the quartets
N=11,15 and 27 there is independent evidence for about equal energy of the ;pm]ate
and oblate shape from the splitting of the dlpole resonance {c.f. discussion in the
preceding section). :

Fig. 16 shows that the calculated separation energies reproduce rather well the
magnitude of the experimental ones. This means that one may estimate the smooth
trend of the separation energies of the very small systems considered by using the.
bulk surface tension and evaporation enthalpy in €q.(22) without the inclusion of 2
curvature term. It remains to be seen what the consequences of an extra charge are,
since the experiments are done for singly charged ions. Since the experiments are
sensitive to energy differences between ions of the same charge state, most of the
Coulomb energy is expected to cancel. :

~ The calculated shell structure that modulates the smooth trend seems to be
correlated with the expeﬁmen'tal modulation, though it is too pronounced. The

7T}1e argnment can easﬁy be geﬁe:ahza& to many defmmatmﬁ gmramatms msu&mg still in the
same N-dependence given by =q.{30).



inclusion of finite temperature will not damp the shell structure significantly, since
the cluster temperature of ~ 50 meV is much smaller than the typical subshell
structure of the light clusters, that is ~ 1 eV (cf. section 4.1). Thus, if the
analysis of the experimental evaporation spectra does not underestimate the shell.
fluctuations, there must.be additional mechanisms to damp the shell structure.
These could be the appearance of non-axial deformations [6, 13] or the roughness of
the surface caused by the discrete ionic background [52].

Another feature of the data in fig. 16 is the systematic even-odd staggering. The
calculations show the even-odd structure, if A = 0 electron levels are occupied or
the quartets are perturbed by jumps of the shape, as discussed above. The N =11
and NV = 23 quartets remain clearly visible in the calculations whereas there is no
evidence for them in the data (though at N = 23 there might be the beginning
of a perturbed quartet). The data seem to indicate a distorted quartet starting at
N = 31, in agreement with the abundance data of Pedersen et al. [50]. If this
interpretation is correct, it would indicate that the A = 0 level from the 2p-state lies
above the A=3 level from the 1f-state rather then below it, as in fig. 1 for o > 0.2..

5 Conclusions

The shell correction method is an effective calculation scheme permitting the study
of the cluster shape within a multi-dimensional family of axial shapes. A wide
range of clusters up to mass 300 has been studied and an extension to mass 1000 is
well within the reach of the method. Strong deviations from the spheroidal shape
are found. The size of the deformation parameters scales with N~1/3, however
significant fluctuations around this scaling law appear in the individual clusters.
There are strong correlations between the different deformation parameters of the
considered family of shapes, and this is expected to be the case for other shape
parameterization as well. The lightest clusters below mass 50 take shapes which
remind that of big molecules (c. f. fig. 9). This is remarkable since the calculations
use the jellium approximation for the ions. The shapes reflect the spatial distribution
of the delocalized valence electrons. For the heavier clusters the shapes are more
rounded, still they are far from being spheroidal. At the very beginning of each
shell clusters have a tendency to look pear-like. In the higher part of the shell they
prefer reflection symmetric shapes looking lemon-like in the lower and barrel-like in
the upper half of the shell. Though we did not study the questlon in detail, the
calculations reveal the existence of many isomeric shapes.

Direct experimental information about the cluster shapes is very restricted. So
far it is mainly the splitting of the dipole resonance that contains such information.
The measurements are consistent with our calculations, except for some clusters
above mass 40. In particular, the cases with the two peaks of equal height seem to
be correlated with the caleulated coexistence of prolate and oblate shapes. Clearly,
it would be interesting to measure heavier clusters. Another open problem, mostly
a theoretical one, is the relation between the shape of the clusters and the resonance
splitting. We used a rather qualitative reldtion, which is based on the assumption
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of spheroidal shape. It is necessary to study the dipole resonance on a microscopic
basis to see the influence of the more complicated shapes. One will also have to take
into account the fragmentation of the resonance among the particle-hole excitations.

Compared to calculations that assume a spherical shape, the cluster deformation.
strongly modifies the binding and separation energies as functions of the number of
atoms in the cluster. There are only few measurements that provide separation
energies for comparison. They coincide moderatly well with our calculated val-
ues, demonstrating the ability of the shell correction method with deformations to
provide the separation energies. The calculated shell structure seems still to be
somewhat too pronounced. The calculated energies show a doublet-quartet struc-
ture, which is a consequence of the assumed axial shape. The experiments provide
some evidence for the quartets, which are perturbed by an overlaying even-odd stag-
gering. Jumps of the axial shape as a function of the number of atoms generate such
staggering for some of the calculated quartets. It would be highly desirable to relate
the rich data on cluster abundances to the calculated separation energies in a more
quantitative way.

The authors wish to express their deep gratitude to S. Bjgrnholm for his great
encouragement and the numerous clarifying discussions. We would also like to thank
J. Borggreen and J. Pedersen for providing us with experimental results prior to
publication.
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Figure Captions

Fig. 1. Electron levels as functions of the deformation parameter o. The cal-
culation corresponds to the Woods-Saxon well for N = 35. Levels with positive.
(negative) parity are drawn by full (dashed) lines. The numbers indicate the an-
gular momentum projection A onto the symmetry axis. “The numbers obtained by
filling electrons into the level are given in circles. The quantum numbers for the
sphemcal well are glven at = 0.

Fig. 2. Deformation energies for the clusters N = 72, 74 (shifted by 2 eV) and
N = 76 (shifted by 4 eV'). The shapes are pure Cassinian ovaloids, which break into
two fragments at o = 1. The full and dashed lines denote Egg and Erp, respectively.

Fig. 3. Deformation energies at the first minimum after simultaneous minimiza-
tion with respect to a and oy (open circles). The shell energies for spherical shapes
are included (full circles).

Fig. 4. Energy for N = 44 as a function of the deformation parameters o and 4.
Each contour line corresponds to AEsy = 0.1 V. Minima (maxima) are labelled
by crosses (dots).

Fig. 5. Energy for N =40, 42, 44 and 46 as a function of the deformation pa-
-rameters & and «z. FEach contour line corresponds to AEsy = 0.1 eV. Minima
(maxima) are labelled by crosses (dots).

~ Fig. 6. Examples of cluster shapes. The left column shows typical reflection sym-
metric ground state shapes, which are calculated by minimizing the two-dimensional
PES E(a, a4). The upper cluster (N = 150, o = 0.209, oy = 0.095) is at the be-
gining of the shell, the middle one (N = 166, o = 0.218, ay = 0.000) is at the
mid-shell and the lower one (N =184, a = 0.095, &y = —0.080) is in the upper part
of the shell. The middle column shows three coexisting shapes for N = 70 caleu-
lated by minimizing the two-dimensional PES E{«, e3). The middle is the ground
state (o = 0.022, a3 = 0.169, Esy = —0.18 ¢V), the top is the first shape iso-
mer (a = —0.26, as = 0.000, Esy = 0.14 eV and the bottom is the second isomer
(o= 0.241, a3 = 0.000, Egy = 0.20 ¢V). The right columyn demonstrates the strat-
egy and convergency of the minimization on the five-dimensional PES for N = 210.
The top (o = 0.164, a4y = 0.087, Egy = ~0.049 eV) is lowest minimum of the two-
dimensional PES E{e, «). The middle (o = 0.088, as = 0.103, Esy = ~0.298 V)
is the lowest minimum of the two-dimensional PES F{w,els). The bottom (& =
0.1104, a3 = 0.0995, o4 = 0.0385, as = 0.0319, ag = 0.0041, By = —0.378 V) is
the minimum on the five-dimensional PES found by starting from the shape in the

middle. Starting from the shape on the top results in a local minimum with higher
energy.

Fig, 7. Deformation parameters of the Na clusters in the mass range 10€ N <082
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Fig. 8. The shell part of the binding energies, Esy, (upper panel) and monomer
separation energies Ay E(N) = Esg(N)— Esg(IN +1) of the Na clusters in the mass
range 10< N <90. Oanly the modulation due to the shell structure is depicted.
The total binding and separation energies are to be obtained by adding the energy
of the spherical liquid drop, cf. eq.(22).

Fig. 9. Shapes of the Na clusters in the mass range 10< N <89. The clusters are
ordered according to their electron number N from the left to the right. The values
of IV are given for the clusters on the outer border of the figure. The symmetry axes
lie horizontally.

Fig. 10. Deformation parameters of the even Na clusters in the mass range
50 < N <310. The results of two-dimensional minimization with respect to o and

g [18] are included as open circles.

Fig. 11. The shell part of the binding energies Egsy (upper panel) and half of
the dimer separation energies A1 E(N) = (Esg(N) — Esg(N +2))/2 of the even Na
clusters in the mass range 50 < N <310. Only the modulation due to the shell
structure is depicted. The total energies are to be obtained by adding the energy
of the spherical liquid drop eq.(22). The open circles in the upper panel show the
results of two-dimensional minimization with respect to o and a4 [18]. The open
circles in the lower panel show half of the dimer separation energies for the sphere.

Fig. 12. Shapes of the even Na clusters in the mass range 90 < N < 310. The
clusters are ordered according to their electron number N from the left to the right.
The values of IV are given for the clusters on the outer border of the ﬁgure The
symmetry axes lie horizontally. '

Fig. 13. Binding energies Esy and deformation parameters for the ground states
and the lowest isomeric states in the lightest clusters. Different types of symbols
permit associating the isomers in the panels. With ascending energy the following
symbols are used : full circle, open circle, square, star and u-cross. The scale of the
middle panel on the right side shows the deformation parameter § used in eq.(27)
to describe the splitting of the dipole resonance, which is related to o by eq (29)

Fig. 14. Electron levels as functions of the deformation parameter az. The calcu-
lation corresponds to the Woods-Saxon well for N = 35. The numbers indicate the
angular momentum projection A onto the symmetry axis. The numbers obtained
by filling electrons into the levels are given in circles. The quantum numbers for
the spherical well are given at o = 0. The arrows indicate the octupole couphngs
between the spherical states, where Al is quoted. :

Fig. 15. Experimental § values (stars) obtained from the splitting of the dipole
resonance by means of eq.(27) and calculated § values obtained by means of the
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relation (29) from the « values shown in fig.s 7 and 13. Low lying isomers are in-
cluded, where the same use of symbols is made as in fig. 13, i. e. with ascending
energy full circle, open circle, square and star are used. The data are taken from
ref. [8] where singly charged clusters were studied. The point for N=10 and is from
ref. [6], where neutrals were studied. No errors have been estimated for this case. -

Fig. 16. Experimental separation energies obtained in ref. [51] for singly charged
clusters (dashed line) compared with the calculated ones (full line). The experiments
only permit to obtain the mean value (A E(21) + A;1E(22))/2, which is shown as
the horizontal bar. The thick solid line represents the smooth separation energy of
spherical clusters, as given by eq.(22).
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