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Abstract 

At high level density of nuclear states, a separation of different time 
scales is observed (trapping effect). We calculate the radial profile of 
partial widths in the framework of the continuum shell model for some 
1- resonances with 2p- 2h nuclear structure in as a function of the 
coupling strength to the continuum, A correlation between the lifetime 
of a nuclear state and the radial profile of the corresponding decay 
process is observed. We conclude from our numerical results that the 
trapping effect creates structures in space and time characterized by 
a s m d  radial extension and a short lifetime. 



Recently, the properties of open quantum systems are investigated in the 
framework of different models [l - 121. In most cases studied, the number AT 
of resonance states is much larger than the number I< of open decay chan- 
nels. One of the results obtained is the trapping eflect which appears if the 
average width f" of the resonance states is of the same order of magnitude 
as their average distance D. In this case, a redistribution takes place inside 
the nucleus which results in the formation of K short-lived resonance states 
("broad states") togeth~er with M - I< long-lived ones ("narrow states"). The 
time-scales of both types of states are well separated from each other. 

The trapping effect is shown to occur in realistic many-body quantum 
systems such as nuclei 141. Here, at low level density, the nuclear spectro- 
scopic properties are relevant, while at higher level density, the properties 
of nuclei are described well by the unified theory of nuclear reactions where 
th~e open decay channels are relevant. It is exactly this transition which is 
described by the redistribution taking place inside the nucleus at the critical 
degree F / D  E 1 of resonance overlapping. 

Further, the trapping effect explains the different properties of resonances 
observed in light and heavy nuclei. While the lifetimes of the resonances in 
light nuclei are of the order of magnitude of the collision time between nu- 
cleons (apart from selection rules), the resonances in heavy nuclei are very 
long-lived. They are strongly mixed in the basic shell-model wavefunctions 
what corresponds to the original definition of the compound nucleus given 
by Bohr [13]. 

The trapping effect is the result of the interference between a certain 
number N of overlapping resonances. Thus, one could expect that the ra- 
dial extensions of the broad and narrow states are of comparable size. On 
the other hand, the lifetimes of the long-lived and short-lived states differ 
stsonghy horn each other so that there exists, maybe, a correlation with the 
radial extension of the nucleus. 

There are two different possibilities for such a correlation which both have , 

their own justiEcation. One could imagine that the long-lived states have a 
narrower radial extension than the short-lived ones with the consequence 
that tfney are screened from th co4lb;inuum. This might be the reason for 
their loag Bifeltiws. Another idea is the interpretation of the trapping effect 
as 'Eke fornation of "s~xuetures in space and time" by selforganization [14]. 



In such a case, the radial extension of the short-lived states is expected to 
be smaller than that of the long-lived ones. In this case, the broad states 
appear to  be localized in both time and space while the long-lived states are 
spread over a larger extension in time as well as in space. 

The purpose of our investigation is to clarify whether there is any rela- 
tion between the lifetimes of resonance states and their radial extension. In 
our calculations, the radial extension of a state is not determined directly. 
We calculate, instead, the radial pattern of the partial width amplitudes, i.e. 
of the area at which the emission of the particles from the resonance states 
takes place. The partial width amplitudes vanish at the centre of the nuclear 
states where the channel wavefunctions are small, and are sensitive to the 
radius of the resonance state where its wavefunction vanishes. The results 
obtained show clearly a correlation between lifetime and radius of different 
states. 

The radial profile of the partial width amplitudes is studied in the framework 
of the continuum shell model in line with the method described in [15], 

In the continuum shell model, the Schrtidinger equation 

is solved with an ansatz containing both bound and unbound states. The 
total function space is subdivided, by using the projector operator technique, 
into the two orthogonal subspaces P and Q under the condition P 4 $ = 1. 
The subspace Q contains the many-body states of A nucleons formed by the 
antisymmetrized products of the wavefunctions of the single-partide bound 
states and of the single-particle resonance wavefunctions up to some cut- 
off radius. Therefore, the structural part in the continuum shell model is 
the same as in the standard shell-model approaches. The dgenstates @F 
of the Q-projected Hamiltoniaa WQQ are called [16] "qaatsibrteand states em- 
bedded in the contin~urn'~ (QBSEC). These QBSEC's differ from Lbe '%band 
states embedded in the continuud"BSEC) intrsduced by h2akaa;lx and 
denmGUe~: [J7] by the contdbantiosl of the single-paskick resonances from the 
interior of %he nucleus ("cut-off procedurd' 1). The subspace $ -ci~~%&i;19lp" the 
many-body states with A - 1 nucleons in bound orbit8 a d  onc B U C I ~ O X ~  in 8 
scattering state as well as the part of the single-palrticle resonamFe W S Y ~ ~ ~ ~ D C -  



tions beyond the cut-off radius. 

Using the cut-off procedure for single-particle resonances, it is possible to 
identify the matrix elements 

with the amplitudes of the partial widths 1181. Here, the 6R are the eigen- 
functions of the non-Hermitean operator 

where G$*) is the Green function in the P-subspace and 

contains the central potential No as well as the two-particle residual interac- 
tion V. Using the projector operator formalism, the Hamiltonian consists of 
four parts 

where IfpQ G and so on. It is 6~ = ER, URRJ @gy with complex coeffi- 
cients a ~ ~ l .  The functions Jg are solutions of the coupled channel equations 
(Hpp - E)& = 0 while the X& are the channel wavefunctions (wavefunc- 
tions of the target nucleus in a certain state and one unbound nucleon). The 
functions 

are the w a v e f ~ ~ c ~ i o n s  of the resonance states R. The details of the model 
can be found in [l6: 4). 

According to  the method used in [15I, the radial profile of the amplitudes 
of the partial widths is calculated from 

where 5(r  - r*) )is the Dirac ddtz  function, An integration over the radius 
variable r9-n the matrix elements gives us the T-dependent characteristics- 



The calculations are performed for different values 

We" = (@$y l H Q ~ G ~ ) H ~ ~  1 @gw) 
= ( @ ~ ~ ~ V ' " G ~ ' V ~ " ~ @ ~ ~ )  (8) 

of the mixing of two resonance states via the continuum of decay channels 
("external mixing"). For this purpose, the external part V"" = a"" V af the 
interaction in HpQ, ErQp and Hpp is varied by Ineans of varying the param- 
eter a"". The internal part Vin = ain V of the interaction between bound 
states appearing in HQQ remains constant in our calculations (a" = 11). By 
varying the external mixing We", we change effectively the average degree 
F / D  of overlapping of the resonances (Table 1). 

Some typical results of our calculations are shown in Figs. 1 and 2. We 
have chosen a configuration space of N = 70 states 1- of l60 with 2p-2h 
nuclear structure and the Is, lp312, 1p1/2r 2s and ld512 shells. The number 
of open decay channels is K = 2, which are either the two proton channels 
15N312- + p  and l5NIl2-  + p ,  (Fig. 2) or the two neutron channels 1503/2- +n 
and 150112- + n (Fig. 1). The energy of the system is E = 34 MeV. The in- 
elastic channel opens at P = 6.30 MeV in the proton decay and at B = 6.15 
MeV in the neutron decay, i.e. there are no threshold elTects at the energy 
considered [12]. The parameters of the Woods-Saxon potential for neutrons 
as well as for protons are taken from calculations describing proton scaktex- 
ing on [12, 161. The Coulomb potential corresponds to a homoge~xesus 
charged sphere of radius 1-25 (A - 1)*13 = 3.08 h. The parameters of %he 
residual interaction V are the same as in fl.21. 

The calculations are performed for aez = .2 up to ae" =r 8. The trapping 
effect appears at a:: ;=: 2.6 where T1-B a 1 (see table 1) 1121, Le. our cal- 
culations at a"" = -2 are well bdsw the critical region ctg while those wikfin 
ar"" = 8 are beyond it. The widths Fa of the states ate given in tabfa 1. In 
each case, R = 1, 2 are the two states with the Prtrgest; tvidiths (sewnd sad 
third colunn~ps). The sum of the wi&ts of the remaining 68 states as xvdl 
as its averaged squared deviation x2 are given in the two last ~ 0 1 ~ ~ s ~  Just 
above the critical point a z ,  where the two broad states separate from She 
other resonnances, the tvidths of most of the trapped modes deerease* %ere- 
.fore, .the X%how a ni4ninnmum in this region of 



The wavefunctions and the matrix elements are complex. In Figs. 
l a  to lh,  Re{;iih,) for the inelastic neutron channel is drawn for cue" = .2 to  
8. In Fig. 2, Re{?b,) as well as I.m{?h,) are shown for both channels cl ' 
(Figs. 2a,b,e,f) and c2 (Figs. 2c,d,g,h) in the case of proton decay and for 
cue" = .2 and 8. In any case, the ?&, for the two states R = 1, 2 mith the 
largest widths are represented by dashed lines while the ?hc of all the other 
states R = 3, ..., 70 are show*n by dots at the radii T for which the calculations 
are performed. The solid curves in Fig. l are drawn for a typical trapped 
state. 

The results of our calculations show the following: With increasing cue" 
the amplitudes ?hc increase for all states. Further, the transition matrix ele- 
ments for the broad states get dominant peaks at small radii if the coupling 
strength increases although the channel wavefunctions have a small ampli- 
tude at small radii. That means, the fast decays take place mostly in the 
inner part of the nucleus. In contrast to that, the decay of the trapped states 
is distributed over the whole nucleus. 

In other words, most riucleons which appear quickly from the short-lived 
resonances, are emitted in the internal region. The nucleons emitted in the 
surface region arise mostly from the long-lived states at a later time. This 
result is independent of the charge of the emitted particle (compare Figs. l a, 
I h  and 2c, 2d). It is well expressed for the calculations with a"" > a:: where 
the widths of the two broadest resonances are well separated from those of 
the other 68 resonances. 

It should be unde~lined here that the ?&, of the two broadest resonances 
R = 1,2 do not change their sign as a function of T in our calculations for 
ae" above the critical point. After integrating over T, that leads to large ;iiRc. 
This is not so, generally, for the other resonances, above all at ae" > 2.5 
where the resonances R = 3, .., 70 are trapped. 

Another numerical result is that the ?hc of the two resonances R = 1 and 
2 have a similar dependence on r at ae" = 3 - 8. This is connected with the 
channel-channel coupling which is large at l zge  cue", 



Table 1: The main characteristics of the resonance states 



Summarizing, we conclude from our results on decaying states that there 
exists a correlation between the lifetimes of the states and their radial exten- 
sions. In the short-time scale, most nucleons are emitted from the regions 
of small radii. The nucleons emitted from the surface region of the nucleus 
appear mainly in the long-time scale. That means, we observe a correlatio11 
of the decay probability of nuclear states with their radial extension. The 
shorter the lifetime of a state, the smaller is its radius. 

The results of our calculations support, therefore, the assumption that 
the trapping effect creates "structures in space and time7'. In this manner, 
the trapping effect may be considered as a signature for selforganization in 
the nuclear system. 
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Figure 1 

Re{yh,) for the inelastic neutron channel c2 and for aex = .2 to 8 (la to lh). 
The y;i, for the two states R = 1, 2 with the largest widths are represented by 
dashed lines while the ?R, of all the other states R = 3, ..., 70 are shown by points 
a t  the radii T for which the calculations are performed. The solid curves belong to 
a typical trapped state. 

&e(yhc] and Im{YR,) for the elastic channel cl (a,b,e,f) and the inelastic chan- 
nel c2 (c,d,g,h) in the case of proton decay. aex = -2 and 8. The 75, for the two 
states R = 1, 2 with the largest widths are represented by dashed lines while the 
75, of all the other states R = 3, ..., 70 are shown by points at  the radii T for which 
the calculations are performed. 
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