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Abstract

At high level density of nuclear states, a separation of different time
scales is observed (trapping effect). We calculate the radial profile of
partial widths in the framework of the continuum shell model for some
1~ resonances with 2p—2h nuclear structure in **0 as a function of the
coupling strength to the continuum, A correlation between the lifetime
of a nuclear state and the radial profile of the corresponding decay
process is observed. We conclude from our numerical resulis that the
trapping effect creates structures in space and time characterized by
a small radial extension and a short lifetime. '
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Recently, the properties of open quantum systems are investigated in the-
framework of different models [1 - 12]. In most cases studied, the number N
of resonance states is much larger than the number K of open decay chan-
nels. One of the results obtained is the trapping effect which appears if the
average width T' of the resonance states is of the same order of magnitude
as their average distance D. In this case, a redistribution takes place inside
the nucleus which results in the formation of K short-lived resonance states
("broad states”) together with N — K long-lived ones ("narrow states”). The
time-scales of both types of states are well separated from each other.

The trapping effect is shown to occur in realistic many-body quantum
systems such as nuclei [4]. Here, at low level density, the nuclear spectro-
scopic properties are relevant, while at higher level density, the properties
of nuclei are described well by the unified theory of nuclear reactions where
the open decay channels are relevant. It is exactly this transition which is
described by the redistribution taking place inside the nucleus at the critical
degree T'/D = 1 of resonance overlapping.

Further, the trapping effect explains the different properties of resonances
observed in light and heavy nuclei. While the lifetimes of the resonances in
light nuclei are of the order of magnitude of the collision time between nu-
cleons (apart from selection rules), the resonances in heavy nuclei are very
long-lived. They are strongly mixed in the basic shell-model wavefunctions
what corresponds to the original definition of the compound nucleus given

by Bohr [13].

The trapping effect is the result of the interference between a certain
number N of overlapping resonances. Thus, one could expect that the ra-
dial extensions of the broad and narrow states are of comparable size. On
the other hand, the lifetimes of the long-lived and short-lived states differ
strongly from each other so that there exists, maybe, a correlation with the
radial extension of the nucleus.

There are two different possibilities for such a correlation which both have |
their own justification. One could imagine that the long-lived states have a
narrower radial extension than the short-lived ones with the consequence
that they are screened from the continuum. This might be the reason for
their long lifetimes. Another idea is the interpretation of the trapping effect
as the formation of Ystructures in space and time” by selforganization [14].
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In such a case, the radial extension of the short-lived states is expected to
be smaller than that of the long-lived ones. In this case, the broad states
appear to be localized in both time and space while the long-lived states are
spread over a larger extension in time as well as in space.

The purpose of our investigation is to clarify whether there is any rela-
tion between the lifetimes of resonance states and their radial extension. In
our calculations, the radial extension of a state is not determined directly.
We calculate, instead, the radial pattern of the partial width amplitudes, i.e.
of the area at which the emission of the particles from the resonance states
takes place. The partial width amplitudes vanish at the centre of the nuclear
states where the channel wavefunctions are small, and are sensitive to the
radius of the resonance state where its wavefunction vanishes. The results
obtained show clearly a correlation between lifetime and radius of different
states.
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The radial profile of the partial width amplitudes is studied in the framework
of the continuum shell model in line with the method described in [15].

In the continuum shell model, the Schrédinger equation
(H-EY¥ =0 (1)

is solved with an ansatz containing both bound and unbound states. The
total function space is subdivided, by using the projector operator technique,
into the two orthogonal subspaces P and ) under the condition P+ @ = 1.
The subspace @ contains the many-body states of A nucleous formed by the
antisymmetrized products of the wavefunctions of the single-particle bound
states and of the single-particle resonance wavefunctions up to some cui-
off radius. Therefore, the structural part in the continuum shell model is
the same as in the standard shell-model approaches. The eigenstates ®FY
of the Q-projected Hamiltonian Hgg are called [16] ”quasibound states em-
bedded in the continvum” (QBSEC). These QBSECs differ from the "bound
states embedded in the continuum” (BSEC) introduced by Mahaux and Wei-
denmiiller [17] by the contribution of the single-particle resonances from the
interior of the mucleus ("cut-off procedure”). The subspace P containg the
many-body states with A — 1 nucleons in bound orbits and one nucleon in a
scattering state as well as the part of the single-particle resonance wavefunc-
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tions beyond the cut-oft radius.

Using the cut-off procedure for single-particle resonances, it is possible to’
identify the matrix elements

Fre = (27)? < Qr|VIxS >
= (2n)Y2 < ®p|V|&; > (2)

with the amplitudes of the partial widths [18]. Here, the &5 are the eigen-
functions of the non-Hermitean operator :

HgJ = Hoq + Hop G& Hpg (3)
where G(+) is the Green function in the P-subspace and
H=Hy+V (4)

contains the central potential Hy as well as the two-particle residual interac-
tion V. Using the projector operator formalism, the Hamiltonian consists of
four parts

_H-——_HQQ +f:[Qp+HPQ+HPP (5)

where Hpg = PH(Q and soon. It is bp = > R GRR @f{:‘l with complex coeffi-
cients app. The functions €§ are solutions of the coupled channel equations
(Hpp — E)¢% = 0 while the x§ are the channel wavefunctions (wavefunc-
tions of the target nucleus in a certain state and one unbound nucleon). The
functions '

r=(Q+ Gﬁf) Hpq) ‘i’}-“z ' (6)

are the wavefunctions of the resonance states R. The details of the model
can be found in [16, 4].

Accordmg to the method used in [15], the radial profile of the amplitudes
of the partial deths is calculated from

= (20)? < Bg|V(r — )65 > NG

where §(r — 7'} is the Dirac delta function. An integration over the radius
variable v’ in the matrix elements gives us the r-dependent characteristics.
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The calculations are performed for different values

W= = (M| HopGY) Hpo|®5M) .
= (@M |VeaP Vo) (8)

of the mixing of two resonance states via the continuum of decay channels
("external mixing”). For this purpose, the external part V¥ = a® V of the
interaction in Hpg, Hop and Hpp is varied by means of varying the param-
eter a®®. The internal part V™® = o™ V of the interaction between bound
states appearing in Hgq remains constant in our calculations (o™ = 1). By
varying the external mixing W**, we change effectively the average degree
I'/D of overlapping of the resonances (Table 1).
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Some typical results of our calculations are shown in Figs. 1 and 2. We
have chosen a configuration space of N = 70 states 1~ of **Q with 2p-2h
nuclear structure and the 1s, 1ps/2, 1pij2, 2s and 1ds; shells. The number
of open decay channels is K = 2, which are either the two proton channels
B N3jo- +p and 5 Nyj2-+p, (Fig. 2) or the two neutron channels **Ogjy- +n
and **Oy/2- +n (Fig. 1). The energy of the system is F = 34 MeV. The in-
elastic channel opens at E = 6.30 McV in the proton decay and at F = 6.15
MeV in the neutron decay, i.e. there are no threshold effects at the energy
considered [12]. The parameters of the Woods-Saxon potential for neutrons
as well as for protons are taken from calculations describing proton scatter-
ing on NV [12, 16]. The Coulomb potential corresponds to a homogeneous
charged sphere of radius 1.25 - (A — 1)/® = 3.08 fm. The parameters of the
residual interaction V are the same as in [12]. '

The calculations are performed for &% = .2 up to «*® = 8. The trapping
effect appears at o & 2.6 where T/D = 1 (see table 1) [12], i.e. our cal-
culations at o = .2 are well below the critical region o while those with
o= = § are beyond it. The widths I'y of the states are given in table 1. In
each case, B = 1, 2 are the two states with the largest widths (second and
third columns). The sum of the widhts of the remaining 68 states as well
as its averaged squared deviation ¥? are given in the two last columms. Just
above the critical point o, where the two broad states separate from the
other resonances, the widths of most of the trapped modes decrease. There-
fore, the ¥* show a minimum in this region of &*.



The wavefunctions ®r and the matrix elements AR are complex. In Figs.
la to 1h, Re{%.} for the inelastic neutron channel is drawn for a® = .2 to
8. In Fig. 2, Re{7g.} as well as Im{3%.} are shown for both channels ¢;
(Figs. 2a,b,ef) and ¢y (Figs. 2c,d,g;h) in the case of proton decay and for
o = .2 and 8. In any case, the 3%, for the two states R = 1, 2 with the
largest widths are represented by dashed lines while the 4%, of all the other
states R = 3, ..., 70 are shown by dots at the radii r for which the calculations
are performed The solid curves in Fig. 1 are drawn for a typical trapped
state.

The results of our calculations show the following: With increasing o®®
the amplitudes 7%, increase for all states. Further, the transition matrix ele-
ments for the broad states get dominant peaks at small radii if the coupling
strength increases although the channel wavefunctions have a small ampli-
tude at small radii. That means, the fast decays take place mostly in the
inner part of the nucleus. In contrast to that, the decay of the trapped states
is distributed over the whole nucleus.

In other words, most nucleons which appear quickly from the short-lived
resonances, are emitted in the internal region. The nucleons emitted in the
surface region arise mostly from the long-lived states at a later time. This
result is independent of the charge of the emitted particle (compare F° igs. la,
1h and 2c, 2d). Tt is well expressed for the calculations with o®® > off where
the widths of the two broadest resonances are well separated from those of
the other 68 resonances.

It should be underlined here that the 45, of the two broadest resonances
R = 1,2 do not change their sign as a function of r in our calculations for
a®® above the critical point. After mtegratmg over r, that leads to large qr..
This is not so, generally, for the other resonances, above all at a®® > 2.5
where the resonances R = 3, .., 70 are trapped.

Anof;her numerical result is that the Yg. of the two resonances R = 1 and
2 have a similar dependence on r at o®® = 3 — 8. This is connected with the
channel-channel coupling which is large al large o®.



Table 1: The main characteristics of the resonance states -

ot® /D |Ty/MeV |Ty/MeV | TR, Tl /MeV | x2(T7)/MeV
protons
2 0.005 0.01 0.005 0.049 6.5E-05
1.5 0.325 0.66 0.34 2.9 3.4E-03
2.5 | 0.891 2.4 1.7 6.6 3.8E-02
4 2.212 10.3 9.6 6.7 1.4B-02
8 5103 | 43.9 37.2 14.3 2.2E-01
neutrons
2 0.006 0.01 0.005 0.049 6.5E-05
1.5 0.322 0.71 0.53 2.6 3.3E-03
2.5 0.881 2.8 2.6 5.2 1.8E-02
4 2.187 10.3 10.0 6.0 8.4E-03
8 43.2 37.6 14.5 2.3E-01

5.419

() = TR - TRF
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Summarizing, we conclude from our results on decaying states that there-
exists a correlation between the lifetimes of the states and their radial exten-
sions. In the short-time scale, most nucleons are emitted from the regions
of small radii. The nucleons emitted from the surface region of the nucleus
appear mainly in the long-time scale. That means, we observe a correlation
of the decay probability of nuclear states with their radial extension. The
shorter the lifetime of a state, the smaller is its radius.

The results of our calculations support, therefore, the assumption- that
the trapping effect creates "structures in space and time”. In this manner,
the trapping effect may be considered as a signature for selforganization in
the nuclear system.
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Figure 1

Re{7%,} for the inelastic neutron channel c; and for «*® = .2 to 8 (1a to 1h).
The g, for the two states R = 1, 2 with the largest widths are represented by
dashed lines while the Jg, of all the other states R = 3, ..., 70 are shown by points
at the radii r for which the calculations are performed. The solid curves belong to
a typical trapped state.

Figure 2

Re{7%.} and Im{¥%.} for the elastic channel ¢; (a,b,e,f) and the inelastic chan-
nel ¢ (e,d,g,h) in the case of proton decay. a®® = .2 and 8. The %, for the two
states R = 1, 2 with the largest widths are represented by dashed lines while the
F5. of all the other states R = 3, ..., 70 are shown by points at the radii 7 for which
the calculations are performed.
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