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Symmetries and localization properties of defect modes of a one-dimensionsional bi-component
magnonic superlattice are theoretically studied. The magnonic superlattice can be seen as a periodic
array of nanostripes, where stripes with different width, termed as defect stripes, are periodically
introduced. By controlling the geometry of the defect stripes, a transition from dispersive to practi-
cally flat spin-wave defect modes can be observed inside the magnonic band gaps. It is shown that
the spin-wave profile of the defect modes can be either symmetric or asymmetric by depending on
the geometry of the defect. Due to the localization peculiarities of the defect modes, a particular
magnonic superlattice is proposed, wherein the excitation of either symmetric or antisymmetric flat
modes is enabled at the same time. Also, it is demonstrated that the relative frequency position of
the asymmetric mode inside the band gap does not significantly change with the application of an
external field, while the symmetric modes move to the edges of the frequency band gaps. The results
are complemented by numerical simulations, where an excellent agreement is observed between both
methods. The proposed theory allows exploring different ways to control the dynamic properties of
the defect modes in metamaterial magnonic superlattices, which can be useful for applications on
multifunctional microwave devices operating over a broad frequency range.

I. INTRODUCTION

The dynamic properties of spin waves (SWs) in
magnonic devices with artificial periodic modulation of
the magnetic or geometrical parameters have been a
glowing research area in the last years.1–9 The mag-
netic metameterials termed magnonic crystals (MCs)
have been widely studied since its excitation spectrum
present magnonic band gaps (BGs), which can be con-
trolled by external magnetic fields.10–12 These systems
can be created by artificial modulation of the mag-
netic properties,13–16 or by modification of the film
geometry.17–26 The magnonic BGs are strongly depen-
dent of the geometrical parameters of the periodic lat-
tice, whose spatial range usually lies in the hundreds of
nanometers. Around these gaps, SWs can be excited
in well defined allowed frequency bands, where, depend-
ing on the wave vector, the waves may have a standing
or a propagating character. In particular, the standing
SWs are localized at the borders of the Brillouin zones
of the periodic structure and therefore, such waves can
be only excited at some specific wave vectors. This char-
acteristic makes difficult to channelize or guide the spin
waves along specific regions, which turns out key for ap-
plications in magnonic waveguides9,12 and tunable nar-
row passband SW filters.27,28

In the field of photonic crystals, it is well known that

the incorporation of a local defect breaks the transla-
tional symmetry and electromagnetic modes can appear
within the forbidden band gaps.29–32 For instance, the
addition of extra dielectric material in one of the unit
cells gives rise to modes within the BGs that behaves
like a donor atom in a semiconductor, while the removal
of dielectric material from the crystal produces acceptor-
like modes.29 This extra degree of freedom allows manip-
ulating and controlling the properties of light in dielec-
tric metamaterials. Indeed, the defect-induced phenom-
ena in photonic crystals have been applied for controlling
the spontaneous light emission,33–35 and trapping optical
pulses.36 In analogy to photonic crystals, it has been also
demonstrated that the controlled introduction of periodic
defects in magnonic crystals induces defect modes (DMs)
inside de BGs that can beneficially enrich the SW band
structure of the magnetic metamaterial.27,28 Here, the
periodic lattice induces translational symmetry on the
SWs that can be broken with the controlled introduction
of periodic defects, that is, a change in the periodic struc-
ture that redefines the unit cell, in the same way that in
a crystal with a complex unit cell. This system can be
seen as a magnonic superlattice (MSL), which consists of
a periodic array of magnonic supercells.

The emergence of DMs lying into the band gaps has
been predicted37–39 and recently observed experimentally
in magnonic superlattices.27,28 Multilayered ferromag-
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netic structures having variations in the magnetization,
uniaxial anisotropy and/or thicknesses have been theo-
retically studied in backward volume (BV) geometry in
Refs. 37–39. A theoretical analysis of short-wavelength
perturbations in two-dimensional MCs with point de-
fects was performed by Yang, Yun and Cao,40–43 where
different configurations of the point defects were inves-
tigated. Defect-induced phenomena in one dimensional
bi-component MC with structural defects were more re-
cently investigated by Brillouin light scattering (BLS)
measurements and by numerical simulations.27,28 Here,
arrays of 250 nm-width Py stripes were fabricated in
such a way that every ten wires, there is a defect wire
having a width ranging from 300 to 500 nm. Regard-
ing to these BLS measurements, a direct comparison be-
tween theory and experiment has not been feasible so
far, maybe because magnetostatic terms were neglected
in previous theoretical works. Since the recent experi-
ments were realized in the Damon-Eshbach (DE) geom-
etry at small wave vectors (around 10 µm−1), the dy-
namic dipolar contribution must be taken into account.
Furthermore, the analysis of an arbitrary angle of the
magnetization respect to the symmetry axes of the crys-
tal has not been reported so far and also, there is not
a model that considers a general way to introduce arbi-
trary arrays of periodic defects on the MC. Besides, the
evolution of the DMs as a function of the external field
has not been deeply explored. These aspects clearly do
not allow a deeper study of the dynamic properties on
MSL structures.

In this paper, symmetries and localization proper-
ties of defect modes on one-dimensional bi-component
magnonic superlattices are theoretically addressed and
contrasted with micromagnetic simulations. It is shown
that by controlling the lattice parameter of the defect
stripes, a transition from slight to almost null dispersion
of the defect modes is observed. Besides, by changing the
width of the defect stripes the symmetry nature as well
as the frequency of the DMs can be modified. It is also
demonstrated that the external field can change the rela-
tive position of the symmetric modes respect to the BG,
while the antisymmetric ones remain in the same relative
frequency position. The possibility of exciting both sym-
metric and antisymmetric DMs at the same time is also
proposed.

II. THEORETICAL DESCRIPTION

By combining a defect-free lattice with a periodic ar-
ray of stripes with different width, a one-dimensional bi-
component magnonic superlattice is formed, as shown in
Fig. 1. Here, the lattice parameter of the defect-free crys-
tal is a, while the lattice parameter of the defect stripes is
νa. Here, ν = 1, 2, 3..., is introduced to locate a defective
wire each ν repetitions, allowing for a general description
of the MSL.

The dynamics of the magnetic system is described
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FIG. 1. Geometry of the one-dimensional bi-component
magnonic superlattice, which is composed of materials A and
B. The lattice parameter of the periodic array of nanostripes
is a, while νa corresponds to the lattice parameter of the
defect stripes. Note that ν represents the number of lattice
repetitions that are necessary to form the MSL. The width of
nanostripes (defects) is ` (` + 2δ). The SWs are assumed to
propagate in z-direction, while the equilibrium magnetization
(external field) makes an angle ϕ (ϕh) with the z-axis. The
zoom denotes the unit cell of the superlattice structure.

by the Landau-Lifshitz (LL) equation Ṁ(r; t) =
−γM(r; t) × He(r; t), where γ is the absolute value of
the gyromagnetic ratio, M(r; t) is the magnetization and
He(r; t) is the effective field. For small magnetization
deviations around the equilibrium state, both magneti-
zation and effective field can be written as M(r; t) =

Ms(r)Ẑ + m(r; t) and He(r; t) = He0(r) + he(r; t), re-
spectively. Here, Ms(r) is the saturation magnetization,

Ẑ represents the equilibrium orientation of the magneti-
zation and m(r; t) = mX(r; t)X̂+mY (r; t)Ŷ corresponds
to the dynamic magnetization. Besides, He0(r) is the
static part of the effective field and he(r; t) is the time-
dependent part. Now, assuming harmonic time depen-
dence, m(r; t) = m(r)eiωt, and neglecting the second
order terms in m(r), the LL dynamic equation can be
written as

i(ω/γ)mX(r) = −mY (r)He0
Z (r) +Ms(r)heY (r) (1)

and

i(ω/γ)mY (r) = mX(r)He0
Z (r)−Ms(r)heX(r); (2)

with ω being the angular frequency. Note that in Eqs.
(1) and (2), the equilibrium conditions Ms(r)He0

Y (r) = 0
and Ms(r)He0

X (r) = 0 have been considered. Now, the
effective field is given by He(r) = H + Hex(r) + Hd(r),
where H is the external field, Hex(r) is the exchange field
and Hd(r) is the dipolar field. These fields are detailed in
appendix A. According to Bloch’s theorem, the dynamic
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FIG. 2. In (a)–(e) the dispersion of a supercell composed by ν = 5 is shown, while in (f)–(j) the case ν = 10 is depicted. The
parameter δ has been varied from −`/2 up to `/2 in such a way that the width (` + 2δ) of the SL ranges from 0 to a. The
upper inset on each plot schematically illustrates the unit cell of the magnonic superlattice structure.

magnetization components are expanded into Fourier se-
ries as m(r) =

∑
G m(G)ei(G+k)·r, where G = Gνnẑ de-

notes the reciprocal lattice vector. Here Gνn = (2π/νa)n,
where n, and ν are integer numbers. The saturation mag-
netization and exchange length are respectively given by
Ms(r) =

∑
GMs(G)eG·r and λex(r) =

∑
G λex(G)eG·r.

Now, by including the effective fields in Eqs. (1) and (2),
the following eigenvalue problem is obtained:

Ã mG = i
ω

γ
mG (3)

where mT
G = [mX(G1), ...,mX(GN ),mY (G1), ...,mY (GN )]

is the eigenvector and Ã is given by

Ã =

(
ÃXX ÃXY

ÃY X ÃY Y

)
. (4)

By using standard numerical methods and a convergence
test to check the reliability of the results, the eigenvalues
and eigenvectors of Eq. (3) can be obtained. The matrix
elements are given in appendix A.

III. MICROMAGNETIC SIMULATIONS

Micromagnetic simulations were performed with the
GPU-accelerated open-source code MuMax3.44 The bi-
component magnonic crystal was modeled as a 100 µm x
20 nm x 30 nm stripe. Periodic boundary conditions were
applied to regain the thin film nature of the system. The
stripe was discretized into 16384 x 4 x 1 cells, which re-
sults in a cell size of 6.1 nm x 5 nm x 30 nm. The material
parameters in the simulation were chosen as mentioned
below. In addition, the Gilbert damping value of 0.01
was chosen. Two kind of simulation were performed for

the magnonic supercell. At first the SW dispersion rela-
tion was calculated with a sinc-pulse in time and space.45

In addition to the approach in Ref. 45, the sinc-pulse
was shifted in space by 5(Lz/Nz) in respect to the unit
cell to also excite the total antisymmetric SW modes.
The resulting SW dispersion relations were obtained by
performing a 2D Fast-Fourier-Transform (FFT) for ev-
ery lines for cells in the z-direction. Furthermore, the
ferromagnetic resonance (FMR) response of the system
has been simulated. Therefore, the time evolution of the
system excited with a sinc-pulse in time was recorded.46

To also excite the antisymmetric SW mode an additional
linear offset was added. The SW frequencies were ex-
tracted as the summation of the spatial FFT in time of
each cell.

IV. RESULTS AND DISCUSSION

To study dynamic properties of the system, standard
values of Cobalt and Permalloy are employed.27 Namely,
the magnetic properties of the material B are taken from
the Cobalt and they are: MB

s = 1100 kA/m and AB
ex =

2.5 · 10−11 J/m. On the other side, magnetic properties
of the material A are linked to the Permalloy (Ni80Fe20),
i.e. MA

s = 730 kA/m and AA
ex = 1.1 · 10−11 J/m. Here,

Aex is exchange constant and hence λex =
√

2Aex/4πM2
s .

For both materials, an effective gyromagnetic ratio of
γ = 0.0185556 GHz/G and thickness d = 30 nm are
used. Also, the lattice parameter of the defect-free crystal
is a = 500 nm and its width is ` = 250 nm. At 200
reciprocal lattice vectors, a convergence of the numerical
solutions of Eq. (3) is reached.

Fig. 2 shows the SW dispersion of a MSL composed
by ν = 5 [(a)–(e)] and ν = 10 [(f)–(j)] in the Damon-
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FIG. 3. Figures (a) and (b) show the dispersion relation of
the SWs calculated for δ = `/2 and δ = −`/2, respectively;
and ν = 10. The lines correspond to the theoretical calcu-
lations, while he color code represents the numerical simula-
tions, where the brighter color indicates a maximum of the
response.

Eshbach geometry at H = 0. Here, the equilibrium mag-
netization is given by ϕ = π/2 and the SW propagation is
along the z-axis. The parameter δ has been varied from
−`/2 up to `/2 in such a way that the width (`+2δ) goes
from 0 to a. In both cases, ν = 5 and ν = 10, a nearly
flat defect mode labeled as AS (S) moves from the high
(low) frequency region into the BG when δ > 0 (δ < 0).
If δ < 0, the mode located at the low-frequency edge of
the BG (mode S) enters into the magnonic BG and it is
localized near to the center of the gap at δ = −`/2. On
the other side, at δ > 0 the mode located at the high-
frequency edge of the BG gets into the BG and also is
located around the center of the gap at δ = `/2. Once
both modes S and AS are inside the band gap they are
characterized for a nearly flat dispersion. The label S
(AS) is due to the symmetric (antisymmetric) SW pro-
file of the mode (see the discussion of Fig. 5). Overall,
one can see that at higher values of ν the dispersion of
the modes become flatter. Note that the case shown in
Fig. 2(f) is coincident with the system measured in Ref.
27, in deed all the parameters used in this paper are the
same. Therefore, by comparing Fig. 3(b) of Ref. 27 with
Fig. 2(f), one can see an excellent agreement between
them.

Fig. 3 shows a comparison between the micromagnetic
simulations and theoretical results for a wider range of
frequencies. Here, the dispersion relation of the SWs
is calculated for a superlattice characterized by ν = 10,
while δ = `/2 in Fig. 3(a), and δ = −`/2 in Fig. 3(b). The
lines correspond to the theoretical calculations, while the
color code represents the numerical simulations, where
the brighter color indicates a maximum of the response.
Overall, an excellent agreement is reach between both
methods, which corroborates the theoretical approach.
Since a larger range of frequencies is plotted, one can
see that DMs are present in the first two BGs for the
case δ = `/2, while in the case δ = −`/2 just one mode is
located in the first band gap. On the other side, it is pos-
sible to see that the defect modes always have a periodic
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an antisymmetric SW profile is observed for δ = `/2. The
vertical dashed (dotted-dashed) line depicts the unit cell for
ν = 5 (ν = 3).

dispersion with finite oscillation amplitude, nonetheless
this amplitude dramatically decreases as the lattice pa-
rameter of the MSL νa increases. This is depicted in Fig.
4, where the cases ν = 3, 5 and 10 are shown. One can
observe that the position of the DMs is not significantly
affected by ν, nevertheless the oscillation amplitude and
the number of peaks are clearly dependent on ν. Thus,
at ν = 10 for instance the mode inside the BG seem to
have no dispersion, which is in concordance with recent
BLS experiments and micromagnetic simulations.27,28

The spatial spin-wave profiles obtained from the in-
plane dynamic component mX are depicted in Fig. 5 for
δ = ±`/2 and ν = 3, 5 and 10. The vertical dotted-
dashed (dashed) line depicts the unit cell for ν = 3
(ν = 5). The main conclusions of these calculations
are that the defect modes correspond to SW excitations
mainly localized in the modified stripes of width ` + 2δ,
and they can be symmetric or antisymmetric depend-
ing on the sign of δ. For instance, if δ < 0 the mode
is symmetric as shown Fig. 5(a), while it becomes anti-
symmetric when δ > 0 [see Fig. 5(b)]. These symmetry
properties can be reversed if the materials A and B are
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exchanged (not shown). On the other hand, from Fig. 5
it is easy to see that the amplitude of the defect modes
decreases quickly as z increases and this effect becomes
enhanced as ν increases. Thus, for ν = 10, the amplitude
of the SW excitation becomes almost zero at z = ±5a.
This localization of the defect mode allows implementing
the following: If the width of the fifth stripe (localized
at z = ± 5a) in the lattice with ν = 10 is geometrically
modified, both the frequency and localization of the de-
fect mode should not change notoriously, since the area
around z = ± 5a is irrelevant for the dynamics of both
S or AS modes. To corroborate this behavior, one can
take the case ν = 10 with δ > 0, in such a way to excite
the AS mode, and at the same time modify the width of
the fifth stripe by changing `→ `+ 2δ′ (with δ′ < 0), in
order to excite both S and AS modes inside the magnonic
band gap at the same time. The calculation of a super-
lattice with two alternating widths ` + 2δ and ` + 2δ′

every five stripes can be implemented in the theory by
replacing the term cos(nπ) sin (nπ`/10a) in Eq. (B3) by
cos(nπ) sin [nπ(`+ 2δ′)/10a], in such a way that δ mod-
ifies the width of the stripe located at z = js10a and δ′

modifies the width of the stripe in z = (js+1/2)10a, with
js = 0, 1, 2, 3.... In Fig. 6 such a superlattice structure
with two different defects characterized by δ = `/2 and
δ′ = −`/2 is shown. As was previously established, both
the frequency and localization of S and AS modes are
not modified notoriously [see Figs. 2(f) and 2(j)]. The
interesting feature of this kind of system is that clearly
uncoupled symmetric and antisymmetric defect modes
are excited at the same time, which respectively evolves
from the upper and lower boundaries of the band gap, as
δ and δ′ are incremented in magnitude.

In Fig. 7(a) the evolution of the S and AS modes for
a MSL with two different defects is shown as a function
of the magnitude of δ and δ′. Here, it is assumed that
δ > 0 and δ′ < 0. Figs. 7(b)–(c) show the simulated
and calculated dispersions for some specific values of δ
and |δ′|. Note that there is a crossing point near to δ =
|δ′| = 115 nm, where both S and AS modes have the
same frequency. Then, for the case δ = |δ′| = 125 nm,
the S mode have a slightly larger frequency than the AS
mode, as opposed for the cases where δ = |δ′| < 115 nm.
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FIG. 7. a) Symmetric and antisymmetric modes as a function
of δ and the magnitude of δ′, since δ′ < 0. Figures (b)-(e) de-
pict the simulated and theoretically calculated SW dispersion
for some values of δ and |δ′|.

The symmetry features of the defect modes should
be useful, for instance, in FMR experiments, since the
nature of the external excitation in typical FMR setups
allows to excite only the symmetric modes, and therefore
under specific conditions the S mode should be detected
at kz = 0. The applied field dependence of the S and AS
modes is shown in Fig. 8(a) at the FMR limit (kz = 0).
Here, the low-frequency mode is plotted together with
the S and AS modes, where one can appreciate that
the symmetric mode is clearly influenced by the field,
in such a way that at higher values of H the mode
moves towards the high-frequency edge of the band
gap (gray zone). Nevertheless, the AS mode remains
almost in the same relative frequency position respect
to the BG. Figs. 8(b) and (c) show the SW profile for
the AS and S modes, respectively. Clearly, the profile
of the AS modes remains constant as the external field
increases, while the S mode is notably modified. Since
the dynamic part of the Zeeman energy density can be
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FIG. 8. (a) Evolution of the symmetric (dashed line) and
antisymmetric (solid line) modes as a function of the external
field for kz = 0. Here, the S mode is excited with δ = −`/2,
and the AS mode with δ = `/2. The gray zone depicts the BG
width and the (blue) dotted line indicate the low-frequency
FMR mode. In (b) and (c) the SW profiles are depicted for
the AS and S mode, respectively, where it is clearly seen that
only the S mode in influenced by the field.

expressed as εZ = −(H/2Ms)(m
2
X +m2

Y ), it is expected
that the AS modes do not have an additional dynamic
contribution in εZ , since the term m2

X + m2
Y is not

modified. Nevertheless, since for the S mode mX changes
with the field, then the relative frequency position of the
symmetric mode is influenced by the field. Therefore,
it is demonstrated that the symmetric modes have a
limited range of field where they can be observed, since
when these modes reach the borders of the BG they are
extended along the crystal and therefore they can not
be externally detected.27 On the other side, once the
antisymmetric mode is excited, it should be observed in
a wider range of fields.

V. FINAL REMARKS

Dynamic characteristics of one-dimensional bi-
component magnonic superlattices have been theo-
retically studied by taking into account both dipolar
and exchange interactions. Symmetries, localization
as well as field-dependent properties of the nearly
flat defect modes have been theoretically addressed
and contrasted with micromagnetic simulations. It is

found that by controlling the width of the modified
stripe of the magnonic superlattice either symmetric
or antisymmetric modes can be excited. Also, by
modifying the separation between defects, a transition
from dispersive to practically flat spin-wave branches is
observed inside the magnonic band gaps. Due to the
localization features of the defect modes, a system is
proposed that consists of a superlattice with wide and
narrow stripe-like defects, where it is possible to observe
uncoupled symmetric and antisymmetric modes at the
same time. It is also demonstrated that the symmetric
modes have a limited range of field where they can
be observed, while the antisymmetric ones should be
externally detected in a wider range of external fields.
The dynamic properties observed in this work can
be used to engineer the band structures of magnonic
superlattice systems, since the controlled introduction
of defects provides additional degrees of freedom, which
can be of fundamental importance for technological
applications in magnonic crystal based devices.
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Appendix A: Effective fields and matrix elements

For the periodic structure shown in Fig. 1, the static
exchange field is given by

Hex0
Z (r) = −4π

∑
G,G′

G · (G′ + G)Ms(G)[λex(G′)]2 ×

ei(G
′+G)·r, (A1)

where the other two static components are zero (Hex0
X =

Hex0
Y = 0). On the other side, the dynamic exchange

components are

hexX,Y (r) = −4π
∑
G,G′

(G + k) · (G′ + G + k)[λex(G′)]2 ×

mX,Y (G)ei(G
′+G+k)·r. (A2)

According to Fig. 1 the external applied field is H0
Z =

H cos(ϕh−ϕ) and H0
X = H sin(ϕh−ϕ), where ϕh (ϕ) is

the angle between the external field (equilibrium magne-
tization) and the z-axis. On the other hand, the dynamic
components of the dipolar field are

hdY (r) = −
∑
G

mY (G)ζ(G,k)ei(G+k)·r (A3)
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and

hdX(r) = 4π
∑
G

mX(G)ξ(G)2[
ζ(G,k)− 1

|G + k|2 ]ei(G+k)·r.

(A4)
Here, it has been defined ξ(G) = (Gνn + kz) sinψ and

ζ(G,k) =
2 sinh[|G + k|d/2]e−|G+k|d/2

|G + k|d . (A5)

Also, the Z-component of the static dipolar field is

Hd0
Z (r) = −4π

∑
G

Ms(G)χ(G)2
1− ζ(G, 0)

|G|2
eiG·r, (A6)

where χ(G) = Gνn cosϕ.

By introducing the effective fields in the dynamic equa-
tion of motion, the submatrices in Eq. (4) are given by

AXX
G,G′ = AY Y

G,G′ = 0, (A7a)

AXY
G,G′ = −H cos(ϕ− ϕh)δG,G′ + 4πMs(G−G′)

[
χ(G−G′)2

1− ζ(G−G′, 0)

|G−G′|2
− ζ(G′,k)

]
− 4π

∑
G′′

Ms(G−G′′) [(G′ + k) · (G′′ + k)− (G−G′′) · (G−G′)] [λex(G′′ −G′)]2 (A7b)

AY X
G,G′ = H cos(ϕ− ϕh)δG,G′ − 4πMs(G−G′)

[
χ(G−G′)2

1− ζ(G−G′, 0)

|G−G′|2
+ ξ(G′)2[

ζ(G′,k)− 1

|G′ + k|2 ])

]
+ 4π

∑
G′′

Ms(G−G′′) [(G′ + k) · (G′′ + k)− (G−G′′) · (G−G′)] [λex(G′′ −G′)]2. (A7c)

Appendix B: Fourier coefficient of one-dimensional
magnonic superlattices

For a general one-dimensional superlattice, the Fourier
coefficient of the saturation magnetization can be ob-

tained by analyzing the one-dimensional periodic struc-
ture. Thus, according to Fig. 1, it is straightforward to
see that

Ms(G
ν
n) =

1

2νa

[
MA

s

∫ − νa−`2

− νa2
e−iG

ν
nzdz +MB

s

∫ − (ν−2)a+`
2

− νa−`2

e−iG
ν
nzdz +MA

s

∫ − (ν−2)a−`
2

− (ν−2)a+`
2

e−iG
ν
nzdz

+ ...+MA
s

∫ w+2δ
2

− `+2δ
2

e−iG
ν
nzdz + ...+MB

s

∫ νa−`
2

(ν−2)a+`
2

e−iG
ν
nzdz + MA

s

∫ νa
2

νa−`
2

e−iG
ν
nzdz

]
, (B1)

if ν is an even number (2, 4, 6...). On the other side, if ν is an odd number (1, 3, 5...), the coefficient is calculated as

Ms(G
ν
n) =

1

2νa

[
MB

s

∫ − (ν−1)a+`
2

− νa2
e−iG

ν
nzdz +MA

s

∫ − (ν−1)a−`
2

− (ν−1)a+`
2

e−iG
ν
nzdz +MB

s

∫ − (ν−3)a+`
2

− (ν−1)a−`
2

e−iG
ν
nzdz

+ ...+MA
s

∫ `+2δ
2

− `+2δ
2

e−iG
ν
nzdz + ...+MA

s

∫ (ν−1)a+`
2

(ν−1)a−`
2

e−iG
ν
nzdz + MB

s

∫ νa
2

(ν−1)a+`
2

e−iG
ν
nzdz

]
. (B2)

By carrying out the appropriate integration of Eqs. (B1) and (B2), the result can be generalized as

Ms(G
ν
n) = MB

s

sin(nπ)

nπ
+
MA

s −MB
s

nπ

{
sin

[
nπ(`+ 2δ)

νa

]
+ Ψ(n, ν) sin

(
nπ`

νa

)}
, (B3)
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where

Ψ(n, ν) = cos(nπ) cos2
(
ν
π

2

)
− 2 + 2

ν∑
j=1

{
cos

[
(j − 1)nπ

ν

]
cos2

[
(j + 1)

π

2

]
cos2

[
(ν + 1)

π

2

]
+ cos

[
(j − 2)nπ

ν

]
cos2

(
j
π

2

)
cos2

(
ν
π

2

)}
. (B4)

Here, ν represents the number of lattice repetitions that
are necessary to form the MSL. A similar structure can

be used for the exchange length λex(Gνn). Therefore, by
choosing δ and ν any 1D bi-component magnonic super-
lattice can be modeled.
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S. Gröblacher, and O. Painter, Phys. Rev. Lett. 112,
153603 (2014).

37 S. Nikitov, P. Tailhades, and C. Tsai, J. Magn. Magn.
Mater. 236, 320 (2001).

38 A. Kuchko, M. Sokolovskii, and V. Kruglyak, Phys. B:
Cond. Matt. 370, 73 (2005).

39 V. V. Kruglyak, M. L. Sokolovskii, V. S. Tkachenko, and
A. N. Kuchko, J. Appl. Phys. 99, 08C906 (2006).

40 H. Yang, G. Yun, and Y. Cao, J. Appl. Phys. 111, 013908
(2012).

41 H. Yang, G. Yun, and Y. Cao, J. Appl. Phys. 112, 103911

(2012).
42 H. Yang, G. Yun, and Y. Cao, J. Magn. Magn. Mater.

356, 32 (2014).
43 D. Xing, H. Yang, and Y. Cao, J. Magn. Magn. Mater.

377, 286 (2015).
44 A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen,

F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv.
4, 107133 (2014).

45 G. Venkat, D. Kumar, M. Franchin, O. Dmytriiev,
M. Mruczkiewicz, H. Fangohr, A. Barman, M. Krawczyk,
and A. Prabhakar, IEEE Trans. Mag. 49, 524 (2013).

46 R. D. McMichael and M. D. Stiles, J. Appl. Phys. 97,
10J901 (2005).

http://dx.doi.org/10.1109/JQE.2016.2587104
http://dx.doi.org/ 10.1103/PhysRevLett.112.153603
http://dx.doi.org/ 10.1103/PhysRevLett.112.153603
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-8853(01)00470-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-8853(01)00470-X
http://dx.doi.org/http://dx.doi.org/10.1016/j.physb.2005.08.035
http://dx.doi.org/http://dx.doi.org/10.1016/j.physb.2005.08.035
http://dx.doi.org/10.1063/1.2164419
http://dx.doi.org/ 10.1063/1.3673333
http://dx.doi.org/ 10.1063/1.3673333
http://dx.doi.org/ 10.1063/1.4766907
http://dx.doi.org/ 10.1063/1.4766907
http://dx.doi.org/ http://dx.doi.org/10.1016/j.jmmm.2013.12.039
http://dx.doi.org/ http://dx.doi.org/10.1016/j.jmmm.2013.12.039
http://dx.doi.org/ http://dx.doi.org/10.1016/j.jmmm.2014.10.119
http://dx.doi.org/ http://dx.doi.org/10.1016/j.jmmm.2014.10.119
http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4899186
http://scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4899186
http://dx.doi.org/10.1109/TMAG.2012.2206820
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1063/1.1852191

