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Abstract

The kaon-nucleon interaction in nuclear matter is considered by taking into
account tree graphs, p-wave interaction, pionic intermediate states, kaon fluctu-
ations and some residual interaction. The latter one is constrained by Adler’s
consistency condition. The K, K%, K°, K° polarization operators are calculated
in cold nuclear matter with arbitrary isotopic composition. An extra s-wave re-
pulsion is found, which probably shifts the critical point of a K~ condensation
with vanishing kaon momentum to large nucleon densities. Oppositely, an extra
p-wave attraction is obtained, which may lead to a K~ condensation at van-
ishing temperatures and densities p > p7 ~ (4 - 6)po- The spectrum of the
kaonic excitations in nuclear matter is analyzed and a new low-lying branch in
the K~ (and also K°) spectrum is found. Its presence’ may lead to interesting
observable consequences, such as the enhancement of the K~ yields in heavy-ion
reactions. At p > p the frequency of this low-lying branch becomes negative at
non-vanishing momentum; that signals the onset of inhomogeneous K~ conden-
sation. The K~ condensate energy is calculated in the approximation of a small
KK coupling constant. Accordingly; neutron matter may undergo a first-order
phase transition to proton matter with K~ condensate at p > p7. The tempera-
ture dependence of the most important terms of the KX~ polarization operator is
discussed. In a rather wide temperature region 0 < 7. < %‘mma growing temper-
ature enlarges the K~V attraction and promotes the kaon condensation. The
possibility of K° condensation is also considered. The question is qualitatively
discussed whether proton matter with K~ condensate or neutron matter with
K?° condensate is energetically more favorable. o
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1 Introduction

Possible manifestations of in-medium effects in nuclear reactions are under intensive
investigation in the last two decades. After focusing on the properties of pion-like
excitations in nuclei and in neutron stars and in the course of heavy-ion collisions (for
reviews see refs. [1, 2, 3, 4]) now one turns to the properties of strangeness in a nuclear
environment [5]. The growing body of experimental information does certainly inspire
the future efforts in this field.

First, there exist experimental data on the K*-nucleon and K*-nucleus scattering
and on kaonic atoms, from which one extracts the information about the optical poten-
tial of K~ in atomic nuclei [6, 7, 8, 9, 10]. We mention here also the empirical data on
the enhancement of the cross sections of K+ mesons scattered off carbon and calcium
nuclei in comparison with those on nucleons, which indicate certain in-medium effects
[11].

Second, the yields of K+, K~ mesons have been measured in some nucleus-nucleus
collisions for a wide range of energies [12, 13]. In order to describe the kaon production
in the collisions of nuclei it is required to know, how kaons interact with excited nuclear
matter. The K* mesons probe different stages of the collision, e.g. the K™ mesons
have a rather long mean free path and carry the information about an earlier stage of
the collision, whereas the K~ mesons with shorter interaction length probe somewhat
later stages.

Third, on the theoretical side the interest in a possible connection between the low-
energy sector of QCD and the phenomenological theory of strong interaction results in
the development of improved effective theories, which are widely related to the chiral
symmefry. One of the interesting properties of chiral Lagrangians is the hypothesis of
the universal in-medium scaling of hadron masses [14]. Among the topics on hadrons
in dense and hot nuclear matter [15] the investigation of the kaon properties can be
considered as intriguing test of our knowledge on strangeness degrees of freedom in
the strongly interacting many-body system. The opinion has been put forward that at
a density several times larger than the nuclear saturation density, p, ~ 0.17fm™>, a.
s-wave K~ condensation might happen [16, 17, 18, 19, 20, 21, 22]. Such a phenomenon
would lead {o interesting consequences also in the physics of neutron stars [18, 19].

Up today the KN interaction in nuclear matter has been considered mainly in
relation to the K~ condensation. This problem has been raised first by Kaplan and
Nelson, who use for this aim a SU(3)xSU(3) model Lagrangian. In ref. [16] and in the
subsequent more detailed investigations [17, 18, 20, 23] only the s-wave terms of the KN
interaction are included into consideration. Within the chiral-symmetric tree expansion
it is shown that the s-wave interaction is attractive and grows with increasing nucleon
density. Hence, it is argued that at the density p > p, ~ (3 —4)p, a K~ condensate
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appears. The role of the p-wave KN interaction is discussed in refs. [21, 22], where it
has been concluded that K~ condensation may arise due to the s-wave attraction, and
only at appreciably larger density a K~ condensate with non-zero momentum may set
in. ’

In the present paper we consider the problem of KN interaction in nuclear mat-
ter and calculate the K~ polarization operator. We argue for a rather strong p-wave
attraction. We show that due to this p-wave interaction a new low-lying branch of
excitations appears in the spectrum of K~ mesons. The presence of this additional
branch may substantially affect the properties of K~ mesons in a nuclear medium as
well as the kaon yields in nucleus-nucleus collisions. To describe the s-wave interac-
tion we take into account new graphs connected with pionic intermediate states, loop
contributions and Adler’s consistency condition. Due to the latter one the form of
the s-wave part of the off-shell K~ polarization operator becomes different from the
on-shell polarization operator and an additional repulsion arises (a similar conclusion
is drawn also in ref. [24]). Therefore the zero-momentum K~ condensation probably
does not occur up to rather high nucleon density. On the contrary we show that, in
spite of some uncertainties in the s-wave description, the K~ condensation is likely to
be retained due to the p-wave K~ N attraction and appears in an inhomogeneous state
with finite momentum at densities as large as pJ ~ (4 — 6)p, (at vanishing tempera-
ture). We also argue that at approximately the same densities a condensation of f{"’
mesons may appear. (Such a possibility was mentioned in ref. [25] but has not been
considered in the sufficient details.) As a result new particularities in the KN interac-
tion may lead to interesting consequences in the description of K-nucleus scattering,
kaon production in nucléus—nucleus collisions and the neutron star structure,

Our paper is organized as follows. In sect. 2 we calculate the p-wave part of
_the K~ polarization operator. The Ap, £°p and L7 intermediate states are consid-
ered. In sect. 3 we calculate the regular part of the K~ polarization operator. Besides
the previously discussed graphs, which are obtained in the tree expansion of a chiral
Lagrangian, we consider contributions from Ap, £°p, &% loops at vanishing kaon mo-
mentum k£ = 0 and frequency w = 0 and also the extra contributions from the pionic
intermediate states and from the proper kaon fluctuations. The residual interaction in
the K~ polarization operator is fixed by making use of Adler’s consistency condition.
We extend this analysis then to the K+, K°, K° polarization operators. In sect. 4 we
obtain the kaon spectrum in nucleonic matter. The appearance of the extra low-lying
branch in the K~ spectrum is discussed in detail. In sect. 5 we calculate the K~ con-
densate energy and find the critical density of the K~ condensate formation. Sect. 6
is devoted to the discussion of finite temperature effects. In sect. 7 we consider the
possibility of the K? condensation and raise the question which phase of dense nuclear
matter is energetically more favorable, e.g., profon matter with X~ condensate or neu-



tron matter with K° condensate. In sec. 8 we draw our conclusions and discuss some

perspectives.

2 P-wave part of the kaon polarization operator

Let us start with the consideration of the K~ mesons. The system K~ meson - nu-
cleon has the strangeness S = —1. Hence, the intermediate states of K~ N — K~N
scattering can consist only of the particles with the same strangeness S = —1, 1.e.,
A Y, A* 5 etc. We restrict ourselves to the consideration of the lightest of them
since just these intermediate states correspond to the most sensitive dependence of
the kaon polarization operator on frequency and momentum in the region of frequen-
cies jw|] < mg and momenta k¥ € my, which are of interest here (mg =~ 3.5m.,
my = 6.7m, are the kaon and nucleon masses, respectively). By this reason we do
not introduce the form factors in the vertices; which are important at somewhat larger
frequencies and momenta. Some graphs, which depend somewhat more smoothly on
frequency and momentum, are also presented in explicit form, whereas the residual
part of the kaon polarization operator is extracted from the experimental data as well
as from the current algebra relations. Such an approach to fix the polarization operator
has been used in the case of pions in ref. [3].
The terms of the Lagrangian corresponding to the p-wave interaction

Lrna = fxnaby*ys(8.KT)N (1)

Lrny = fKNEEa’Y“”Ys(apr?)TaN : : (2)

are quite similar to those of x VN interaction. Here N, A, ¥ are the bispinors of
nucleons, lambda and sigma particles, respectively. K7 = (K*,K?°) is the isotopic
spinor of kaons, v, denote the Dirac matrices and 7% are the Pauli matrices. The
values of the coupling constants are determined in ref. [9] by the fitting of hyperon-
micleon scattering within the Bonn boson exchange model performed by the Jilich

group as
Jrna m —117/mz,  frxns = 0.22/ s (3)

which are comparable to those obtained in the framework of a SU(3)xSU(3) model
[22] : ‘

<lir o 0.88/my,  FOUL ~ 0.26/m (4)

Below for applications we use the values of coupling constani:s given by eq. (3)-
The amplitude of the p-wave KN scattering is determined by the following graphs

4




AK N _

(6)

Here it is assumed that there are only Fermi seas of neutrons and protons and no Fermi
seas of strange particles. The line ”+—" corresponds to the nucleon quasi-hole (p or 72)
and the double line =" denotes the strange baryons. The hatched vertices should
be calculated by taking into account the in-medium baryon-baryon correlations. In
principle this can be done in analogous way as for pions [3]. ‘However because of the
lack of the empiriéal data and without detailed analyses one can say very little not
only about the numerical values of the correlation factors, but also even about their
sign. Therefore we shall not consider this correlation factors in the present work and
postpone their study, bearing in mind that they might have an influence on the final
results as it is found for pions (1, 2, 3].

An explicit form of the polarization operator {6) can be simply obtained in the
non-relativistic limit of the expressions (1, 2), which is a,pplicable for frequencies and

momenta of interest |w], k < my. Then in the direct analogy to the 7~ meson case [3]
we get ‘ '

. fz marsy + ma ek 1/ . FEnu Bk e
Af\\(zj)v - ‘BNA(E)( *AZ) N) ~o{14 MA(R) ) thi{E_}; . M
' W= W) - T
. mgv L ZMN

where s = (p+¢)® and p is the 4-momentum of nucleon and ¢ = {w, k), ma, ms denocte
the masses of the strange baryons and E and & are the momenta of the K~ meson
before and after scattering, respectively,

t=F —w’=—g% g =am (1 + ﬁ%) s WAE) = TAE) T

Here and in the following we neglect the finite widths cf’hypemﬁs& Sﬁggeéﬁing the
validity of the quasi-particle approximation. The generalization is straightforward.



The K~ polarization operator is defined as follows

mF e - [ 22 (m () AK ™ + 2 () 4K ? + () AET" (8)
I =T [\ 2

where n?(p), n"(p) are the occupation numbers of protons and neutrons, respectively.

By inserting the expression for the scattering amplitude (7) into eq. (8) and by

integrating over the phase space we obtain (]E | = [7@"|)
- 3 EE
HA’P = (1 + ) fKNA o Pp®@ap(w, k) (9)
4 my A (t) ,
where
‘ - @A(t) (a? — kz'l)}%'p a+ kvry
i) Ey = 21 L — ak 10
Ap(wa ) kSU%;p { 9 na _ k'UF,p ARVFp ( )
is the A particle-proton-hole Lindhard’s function with
f2
a =W — L:JA(t), L?)A(t) = (:JA + 2mN

(vFp = prp/my is the Fermi velocity of protons, p, = vp is the proton density).
The expression for I can be obtained from eq. (9) by the replacement

A—=3%  pp®ap — pp®Prp + 20,85, ‘ (11)

where p, = (1 — v)p is the neutron density.
In order to derive a simple analytical representation of the polarization operator we
use the expansion of the Lindhard functions at |a| 3> kv, i.e., at k < Jw—wpm)|mpz .

Then we can write

Gz (2)

Thereby we have
" L A, ~ llm,, (13)
' w —@a(t) po

w—0&x(t) po’
where we have also used that ¢ & k2 in the approximation & > w.
As we can see from eqgs. (13, 14) the term [tIz"F] is, as a rule, much smaller than
{HX'PE and can be neglected, except in only some very speciﬁc case when jw—a@s(t}] €
M. At v — 0, one has [IIz""] > [I[;°F}, however, {HE ?| remains much smaller than

the s-wave part of the polarization operator.
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Above we use the non-relativistic limit for the vertices (1, 2). Going beyond this
approximation and taking into account the minimal relativistic corrections with respect

to the parameters w/my < 1, k/mny < 1, which accounts for the nucleon recoil,
instead of egs. (13, 14) we now find

> _ 2 ~
M~ {Ao(kk w )+A1wwA(t) N Azw}

vl (15)

W — (:)A (t) Po

where

Ay~ 1lme, A~ 0.7Tm,,

_p Bo(kk' — w?) + Bywivs(t) P :
’ o~ - y)— 16
I { o 5a D +Byw ¢ (2 ”)po’ (16)

B ~ 0.04m,, By ~ 0.03m..

 The polarization operator of the K+ meson can be found from the
polarization operator of the K~ meson by the replacements w — —w, k — —k; it

corresponds to the consideration of the u-channel amplitude of the K+ N scattering

K+ K+

AK+N —

N N

RS b Sy e i o

instead of the s-channel amplitudes (5) -for the K~ N scattering. Following the sug-
gested approach we can also derive the polarization opeiator of K° and K mesons. In
comparing the K~N scattering amplitude (5) with the amplitude of the K°N — K°N
process given by the graphs

¥ 7,

4 BN

we conclude that the polarization operator for K° mesons can be obtained from the
K~ polarization operator by the replacement » — 1 — v, In order to obtain the
K°-polarization operator we have additionally to replace w — —w and & — —k.



3 The regular part of the K~ meson polarization

operator

3.1 Tree approximation

In ref. [20] the s-wave part of the K~ meson polarization operator is extracted from
the expansion of chiral Lagrangian. For this aim the Weinberg counting rule [26] has
been used. According to the latter one an amplitude, involving the number Ey of
external nucleon lines and Ex external kaon lines, is characterized by the factor Q”
in the amplitude, where Q is the characteristic small momentum scale involved in the

process and
_ 1 1
=242~ -Q—EN + Z(di + —2'ni - 2), (17)

where £ is the number of the loops. Here the sum over ¢ goes over all vertices, d; is
the number of derivatives acting on the #-th vertex; and n; is the number of nucleon
lines attached to the i-th vertex. In the absence of external fields, the chiral symmetry

constrains
_P,Edz+-;—n1—220 (18)

In application to the KN scattering one sees that the leading term in this counting is
given by £ = 0 and P; = 0. This is satisfied for a vertex with d; = 1 and n; = 2 and the
amplitude has the index ¥ = 1. In the next order, one has £ = 0 and one P; = 1 vertex
with Index 7 = 2. In ref. [’)0] the chiral expansion was restricted by the contributions
up to 7 = 2, and hence no loops were considered.

‘lhe tree terms of the Lagranman corresponding to v = 1 and 7 = 2 are equal to

Lom = N+*NY(K 8, K) + (N#*N)(K7 K)] " (19)

s [(
Lowy = EI‘N(NN)(KKH—(NTN)(KTK) (20)

~,

+F(1\7N)(8!,E’8"K) + F(N,:N) (a,J{Fa#I{),

where
= (p,n), AB I\—Ixa K—}—I&a K,

and fis assumed fo be equal to the pion decay constant fr = 93 MeV. 7 denotes
Pauli’s isospin matrix, Zxy is the so-called sigma term, and C, D, D' are some.
constants calculated by taking into account experimental information. In the limit
E — 0 egs. (19, 20) recover those obtained in ref. [20]. For the regular part of the



polarization operator of K~ one finds from egs. (19, 20)

T-res(f = 0) = — [D ;f + 21/%] o(w? — BF) — %pw - 2]{*’2” o (1)
In the limit £ — 0 eq. (21) approaches to the s-wave part of the polarization opera-
tor II™*. The numerical values of the quantities ﬁ, T, SkN can vary in rather wide
limits. The range of their variation has been evaluated in ref. [20] by some theoretical
arguments and the experimental data on the K+ N scattering length. Unfortunately,
scarcity of experimental information does not allow to define T~ completely and the
probability of K condensation depends sensitively on the numerical value of the si‘gma
term. The latter one has to be determined by taking into account the modifications of

kaonic excitations in nuclear matter [27]. In ref. [20] the following choice of parameters
is proposed as the most probable one '

D ~0.33/mx — Sxn/mk, D ~0.16/mx — C[mk, (22)

EKN jad 2m7,—, C =~ ——0.06Tn1\", mp =~ QmK.

Inserting the numerical values of these parameters into eq. (21), we obtain

II="(no loops) ~ — 2-37”,27& — 0.57Tmx(1 + V)w;p_ (23)
— (0.5 — 0.15)(w® — kK )L
\ : PO

In ref. [23] a somewhat different fit of the s-wave part to the KN scattering data
is performed with taking into account the A(1405) intermediate state and some loop
corrections. ‘ k

Our main aim here is to demonstrate the new qualitative particularities, but not
to fit precisely the experimental data. Therefore in the description of regular part of
polarization operator we shall restrict ourselves to the choice of the parameters (22)."

3.2 The contributions of (Alp™), (Z°|p™), (&~ |nY) loops

The p-wave part of the K™ polarization operator from egs. (15, 16), calculated via
relativistic vertices (1, 2), consists of a term which does not vanish in the limit & —
0, w — myg. The absolute value of this on-shell term can be even larger than the
contribution of the s-wave part given by eq. (21), and the former one has a quite
different off-shell frequency dependence. In accordance with the parameter choice (22),
fitted to the KN scattering data at w — my, & — 0, we have to perform the subtraction
of the on-shell p-wave part at k& — 0. If results in an extra confribution which must
be added to the regular part of the K~ polarization operator II""%, i.e.,

p P ot (4 = iy y :
U™ = {AﬁmI‘ : Aim?\%j\"? 5 mR} s i—lam-}{} y , 24
My~ wA~(t = *m;{) L Po '
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Bom? — Bymyos(t = —m2
+{ LT 1~m;\ E(, h ]‘)-Bng}(Q——y)-ﬂ
mg — wg(i = —mK) Po

~ (L4v +0.2)m2 2.
p

]

Therefore at w = mxg, k = 0 we have in agreement with egs. (21, 22) II="F(mg, k =
0) + STI~*(mx, k = 0) = 0.

3.3 The contribution of the pionic intermediate states
The K= interaction is described by the Lagrangian
| Lxren = gxre KT {K0,7 - 70,K}, ‘ (25)

where the value of the coupling constant is [8]

IKK*n

e 086, (26)

Taking into account the vertex (25) leads to the appearance of extra terms Il z., which
are represented graphically

,/TO —

: , W :
'\/\M/\/* —+ MM\/\/\
K*™. | K*°

(27)

in the polarization operator. Here the dashed line "mm wm ww” corresponds to heavy
mesons (K*°, K*~) in the intermediate states (mg+ ~ 6.4m;,) and the solid saw-seeing
line "\ /" is related to the exact Greens function Dy (w, k) of the pion in nuclear.
matter. They are in some analogy to the contribution of the pion fluctuations to the
pionic polarization operator [28, 29]. Such contributions become important at non-
zero temperatures near the crifical point of pion condensation. Their influence on the.
properties of p, w mesons in dense nuclear matter has been recently investigated in
ref. [30]. = o -
The pionic degree of freedom softens at densities p > pa = (0.5 — 0.7)p, according
to many theoretical studies [3, 4]. Indeed, the quantity &2 = —D;'(w = 0, k), which
plays the role of an effective pionic gap, gets a minimum at momentum k = koz 7 0,
f = pa. At the density p > per = (2 — 4)p, the value &Z(kor(p)) becomes so small (it
would vanish without taking into account the pion fluctuations) that pion condensation
can set in by a first-order phase transition [31]. A typical density dependence of the-
effective pionic gap @2(ko.(p)) is shown in the fig. B.1. in ref. {4].

The graphs displayed in (27) can be easily calculated in the limit of rather strong
softening of the pion mode. Here we should only include the contribution, which
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consists of the value @, (kor) characterizing the closeness to the critical point of the

7 condensation. The regular part of the graphs is contained in the parameters of II*
fitted to the empirical data.

Assuming p > pa, |w| < My, k< my, k' = ko ~ pp, @ (k) < m2 we have

~m%%)z&wm+%w@%«zmm ()

where the quantities v, ~ 1, i8,(k) = —z| o are defined as in ref. [3, 28] and
retarded Greens functions are used.

At small frequencies w and momenta k& the Greens function of K* mesons can be
presented in the simple form k

1
Gre = R s (29
(w—w)2—mi, —(E—F)? e

Q

since the integration over intermediate states in eq. (27) is characterized by w ~
Orlkor) <€ My, k ~ }]3 - E’} ~ kor <« m¥k. Taking this fact into account we
can see that the expression for II_ 4. differs from the fluctuation term of the pionic
polarization operator [3, 28] only in the coefficients. Making use of the egs. (28, 29),
from eqgs. (25, 27) we obtain

_ ; 2 pon(W? — Kk — k2 ,
i (w, k) = Iicxeal 3 on) (30)

] Cl3]u dw" o Ln T
— 12D~ C LR Y 3 k)
< [ (0. K'Y+ Dl )

_91) (pcl’w" k”) _ n_o(’ocl’w" k”) 9(p - pc:l)
gI\K*‘lr(w

= For) (94, + A,,o)

M.

where G(p pa)=1lat p> pa and 0 at p < pa, and

d3k zdu) " i : H ki ‘ ¥ X
Ar= W— {Dﬂ(ﬂv‘w 2k ) - Dvr(pt:hw sk )} 0(P - Pcl)"

Then, using the results of ref. [29], we have
A,, = —Colln — m,r)(?(p Pet)s ; {31)

with C5 ~ 0.1m,,. Insertmg eq. (31) into {30) and assuming that E.,e w2 Do weiget
the estimate

Uog{w, k) = glw® — kF —E2), (32}
© with

BQIXI\MTA»T — 3g 1 i’:’f Gﬂ(w;g — m*;‘}g{p ﬁtl}
TR ™
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Thus the contribution of the graphs (27) with pionic intermediate states corresponds
effectively to some attraction at small frequencies. Quantitative estimates at & — 0
w — 0 show that this contribution is rather small and can be neglected. This result
is analogous to that for pion fluctuations at zero temperature [31]. Namely, quantum
fluctuations are small, however, thermal fluctuations can be important at least near
the critical point of the 7-condensate phase transition [28, 29]. We will return to this

question in section 6.

3.4 The proper kaonic fluctuations

Kaon-kaon interaction is described by the following Lagrangian
A2
L = —E(KK) , (33)

2
where A o~ % is the vacuum coupling constant of KK interaction. This vertex pro-

duces a fluctuation term in the polarization operator, which can be displayed as

leluct (34)

|

where the fat point is related to the kaon-kaon interaction corrected by the in-medium
effects. |

The contribution (34) can be calculated in the same way as it has been done for
pions [28, 29] It is determined by eq. (31) with the only difference that at p > p the
value D, should be replaced on the corresponding kaon value at the density when the
minimurmn at k £ 0 arises in the effective kaon gap. The main effect of the graph (34)
is that the kaon condensation with k # 0 sets in as a first-order phase transition. At
vanishing temperature the contribution of quantum fluctuations is rather small and can
be neglected, whereas the thermal fluctuations are important at least near the critical

point of the K condensation phase transition.

3.5 The residual off-shell interaction and the consistency
condition of Adler “

It is easy to see from egs. (13, 14, 21, 24, 32, 34), that the polarization operator of

K~ mesons at & — 0 differs from that given by eq. (23) in ref. [20] due to the extra

graphs taken into account. Only on-shell at & — 0 the expression (23) is approximately

valid as before. At this, since the fit of coefficients in eq. (23) to the KN scattering

data is not unique, a more detailed analysis is required, which can, in principle, change

i2



substantially the corresponding set of parameters. Off-shell (e.g. at w = er < mg)
the regular term of the polarization operator with an additional loop contribution quite

differs from that given by eq. (23). Combining the eqs. (13, 14, 21, 24, 32) atw, kb — 0,
we find

| ,, Sen |
0w =0,k =0,p) = -5 N4 6T — gk2, ~ (L4v — 2.1)m ;’, (35)

where for numerical evaluation we supposed gy = 2m.,. So we get an additional
repulsion Therefore, it is allowed to call into question the statements of refs. (16,
17, 18, 19, 20, 21, 22] a,bout the appearance of the s-wave K~ condensatlon (see also
ref. [24)). '

‘One could ask, whether additional new graphs does not change our conclusions?
With a lack of experimental data and in the absence of any small parameters in the
theoretical analysis such a doubt would be meaningful. However even without an ad- -
ditional experimental information we can get rather important conclusion conce,rning
the off-shell behavior of the kaon polarization operator. For this goal we employ the
consistency condition of Adler derived for the 7V scattering amplitude in the frame-
work of the SU(2)xSU(2) model [32]. In refs. [4, 33] this condition has been used to
fix the off-shell pion propagator. An analogous consistency condition exists for the KN

scattering in the framework of the SU(3)xSU(3) symmetry. For the regular part of the
KN scattering amplitudes we can write

' A.,-eg(w = wl =, k= 0’ kl2 = —-—m%\,) = {. (36)

Applying eq. (36), one can see that the polarization operator used in the previous
paper [20] (e g., see eci (23)) does not véittingly satisfy Adler’s condition. The
polarization operator obtamed in our analysis is also still incompatible wﬁ;h the
condition (36). This means that we must add some residual term to the kaon
polarlzatlon operator in order to satisfy the relation (36). Unfortnnatély, it cannot
be done uniquely. One of possﬂ)le ways to satisfy Adler s relation is to add to the
amphtude
Aregld® = w* — kz, gl=w?— k2, qq, =’ — El—c")

the vanishing on-shell term A{w® — m% — k—”#) and to demand the fulfillment of
the condition (36). Such a procedure has been applied to the N scattering 4, 33]
?, where the authors use the expansion of the regular amplitude nearby mass shell

(w® >~ m¥% + k?). As result we obtain the followmg regula,r part of the KN scatiering
amplitude

’Lz ) . o 52 2 2 , -
Amg =b+b +L + 0k — Aw? — me — ;%, ?k ) 87)

2A somewhat other variant of gmng off-shell is recently suggested in refs. (24, 34]. It leads to the
sanie general conclusion that the s-wave amplitude of the KN scattering changes significantly off-shell.
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The parameters b,b’, ¢ have to be extracted from the experiments on K*N and
K* nucleus scattering and on K ~-atom data. Unfortunately, as mentioned above, the
experimental data are still incomplete, so they do not allow us even to constrain the
constant b uniquely and provide no information on the values b and ¢™¢. That is
why the forthcoming experiments, which make accessible the precise values of b, e,
would be of paramount importance. In the subsequent theoretical analysis, it would be
also plausible to use somewhat more complete information on = mesons and consider
the = and K mesons together in the framework of the SU(3)xSU(3) symmetry. In the
absence of detailed investigation of this problem at present we use the simplest choice of
interactions (15, 16, 21, 24, 32) which are compatible with the KN scattering data. In
our analysis we obtain the explicit frequency dependence of the regular part of the KN
scattering amplitude on the neutron and proton, see egs. (15, 16, 21). Accordingly to
this the coefficients b, &' and ¢™® in eq. (37) can be considered as functions of frequency
and isotopic composition. Thus to take into account the Adler consistency condition

we have to add to the resulting polarization operator the extra term

/ .72 kz
SII7% = \p <w2 — m%f - k ; ) , (38)
where o
A=b — —.
my

In our notation we have b ~ —TI~(w = 0,k = 0,p)/p and the parameter b remains
undefined. Below we assume that the main contribution to the p-wave part of the
polarization operator is given by the loops (6), i.e., we put & = 0. One should note
here that even without extra graphs (6), which we have derived in the above analysis,
the expression (21) together with the condition (36) lead to a substantial change of
the polarization operator at w < my, k — 0. As result (see below) a s-wave K~
condensation seems not to appear, at least up to rather high nuclear densities p ~ 10,00
Finally we mnote that (i) the expression for the s-wave term of the
polarization operator of K~ meson is model dependent, and (37) with the extra
graph considered above and by taking into account Adler’s condition (36) the
polarization operator of K~ mesons at w = k = 0 changes substantially in such a
way that the conclusions about the K~ condensation with k = 0 remain unsettled.

4  Spectrum of kaons in nuclear matter
The spectrum of K~ quasi-particles is defined by the dispersion equation

o —mi — B~ (w, k,p) =0, S (39)
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where we have finally

U (w,k,p) = — dp—a(l+v)pw—(B+Bv)p(w’ — k) + 811°(p,v) (40)
Ao(k? —w?) + AlwwA(t) oL, P
+ { oot T2 }'po

By(F — &) + Buoois(2)
* { w —ax(t)

+ g’ = = k) 4+ dp (P —mi — k),

with .., .,
d:g}—\’—;\j—, o:,:i%a, lB:-——————D;QD, ,5_,.,7;2, __391{}'}{(:1/1
as the total polarization operator of the K~ meson obtained by combining the expres-
sions (15, 16, 21, 24, 32, 38). |
First of all let us analyze a part of the p-wave contribution. Therefore, just for
illustration, we consider the simplest form of the s-wave term and also use the simple
form of the p-wave part given by the expression (13) (by neglecting the small KX and

K interaction). Thus equation (39) obtains the form

' 5 Aok?vp/,
2 12y 52 R VP[P0 41
o — ) — 1 w — &p(t = £2) 0, ‘ (41)

where )

k
wA(t ~ kz) -l (UA + N AO 1. lm,,, ~‘ o~ 1. 47717,
2mpy

The value g is determined as follows. Without taking the s-wave terms of the po-
larization operator into account we have o = 1 and 7?2 = m3 %. The contribution of
the s-wave interaction to the polarization operator can be simply involved by adding
to m} an extra term II~(w = 0,k = 0, p) given by eq. (35). However, as discussed
above, it seems to be natural to take into account Adler’s condition. Then we obtain
the dispersion equation (41) with the values

a1 —Ap, {42)

9H“(w»0 k= ﬂ,p)
P mi

A=

and 5

instead of o = 1 and fhg = mg.



As can be seen from (41), the spectrum of the charged kaons has three branches of

excitations, namely
k2
kY = m; —,
wl( ) Mg +¢ om
E? Aok?vp/ po

2my m;\? — G}i ’
. K
ws(k) ~ —mk — C+2~n?;7

~

Ldg(k) R op +

(43)

where
Aovp/po 2. 2 —510 P Ao
= - Eo A = ‘
wEIF T TETTEI Dy PTIOR
‘mKiwA:F2m

The sele¢tion of the branches is performed in accordance with the sign of the factor

~

I'=2w-— om on the branch ref. [1]. When the sign of ' is positive, we deal with
branch of K S , whereas it is negative, we get the branch of K™ after the replacement
w — —w, k — —k. As result, branches 1 and 2 conespond to the K~ meson quasi-
particles. The upper branch w;(k) transforms into the vacuum one at p — 0. The
second branch w;(k) consists mainly of the mixed states of A particles and p-holes
having the quantum numbers of the K~ meson. It is analogous to the A isobar branch
of excitations in the spectrum of 7~ mesons [3]. The main difference is that in our
case branch 2 lies below branch 1. Branch 3 becomes the branch of K* mesons after

changing w — —w, k — —k.

The existence of the extra low-lying branch of the excitations is important for the
description of (7} the K~ nucleus scattering, (¢2) the kaon yields in the heavy ion colli-
sions, since this branch is occupied with the maximal probability (x exp(—wa(k)/ T)),
and (771} the possibility of the kaon condensation in dense nuclear matter. ‘

The value m¥ is an effective kaon mass in medium. At low densities we get the

density dependence similar to that in refs. {16, 21, 22], 1.e.,
mi{p— 0) = mz.-(l _ _p_) P = —.
K K ﬁc ’ A
On the other hand the effective mass tends to the constant value at high densities
milp > peo) =~ mx/V2.

From the estimate (35) for proton matter (v = 1) we have A & —0.11/p, (for gy =
2m.,}. For the somewhat different parameter choice used also in [20] (Zxny = 1.4m.;)
we have A & . Notice that for this particular choice the result becomes independent
on the procedure of going off-shell, because Adler’s condition (36) is fulfilled identically.

16




In fig. 1 we present the exact solution of eq. (41) for two nuclear matter densities.
As it is seen from eq. (43) at the condition

~2
pr/po Z_E_ﬂ

S (44)

a minimum with k& = k, # 0 appears in the low-lying branch of K~ mesons (see fig. 1a).
The minimum value w,(k,) decreases with the growth of the proton density and equals
zero (see fig. 1b) at some value vp = p; (p = 5.8p, for Exn = 2m, and p; =~ 4p, for
Yk~ = 1.4m;). The dependence ws(k) in the vicinity of the minimum and at p nearby
p: can be obtained from eq. (41) as |

k2 Aok?vp/p,

‘ ‘wz(k) = + 5

k2+mig
At k ~ ko this expression can be rewritten as
£\
wo(k) & w, + 4 <1 — ﬁ) , (45)

where

2
[~ - ’ m*2 )
AOVP/PO — 4 5‘177%; 3 (46)

w, =

k2 = \/2melov(p/po)mK«—mK>0 (47)
2

y = & (49)

4m, N‘m}{\/ 2me101/(P/ Po)m;?

From eq. (46) we obtain that w, < 0, if the condition

: 2
*2
Aovp/po 2 4 V/Bx +4] 52 1 {49)
. 2my

5 Nuclear matter with kaons at high density

1s Tulfilled.

Now let us tum to the question of the possibility of a K~ condensation in dense nucle-
onic matter. We write the total energy density of nuclear matter with K~ mﬁdeﬁsat@
in the form

E4pt = Eg + By — p;.;V e ﬁr (50}
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where ep is the energy density of the nucleon subsystem,

OLk-(w—V,k)

o — Ly—(w =V, k) (51)

Ep— =W
is the energy density of the K~ condensate, and
- 1 .
Lx- = {0 = V) = B ~ (0 = V, )} ol = 54 o (52)

is the Lagrangian density of the classical K ~ field. In order to take into account the
electromagnetic interaction we make the replacement w - w — V in the Lagrangian of
the K~ mesons, where V is electric potential. The constant A describes the kaon self-
interaction (see eq. (33)). Further we will consider rather extended systems in which
the electric neutrality condition

0Ly~ ‘
Pr = PK‘- = S (53)

is supposed to be satisfied. Therefore the last term in eq. (50) gives a negligible
contribution. Besides the charge neutrality condition the expressions (50-52) have to

be completed by the equation for the kaon field
{lw=VP =K —mk - (w=V,E)}p—Alg| o =0. (54)

For the sake of simplicity let us assume that A is equal to zero. (Finite value of A will
slightly shift the critical density.) Then from egs. (50-54) we obtain

szeBJ}(w—V)pp. : . (5%)

Finally, we must minimize the value ¢ as function of the kaon momentum %. Noticing
that the value (w — V) as a function of % is determined by eq. (54) with A = 0 and

therefore its minimum with respect to k equals the value w,, given by eq. (46), we

c=egtd i, — /Aoyﬁ_,‘/fﬂ\_(.ﬂ) VLA (56)
po 2mN ) pO .

The energy density of the baryon subsystem €p can be calculated via one of the nuclear

obtain

matter models.. ‘
In order to verify an opportunity of a phase transition with the change of the iso-
topic composition, caused by the appearance of the K~ condensate, we should extract

the isotopica]ﬂiy dependent part of the ep value. Thereby we have

=@, 6]
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where e%(p) is isotopically independent part of the baryon energy density, while the
value of e5(p,v), in the simplest parametrization, is given by

1 P
v Efg ~ 463ymp(1/ - 5)2 ~ (08)
The value esym = 40 MeV can be taken, e.g-, from the nuclear matter calculation by
Fridman and Pandharipande [35].

In fig. 2 we show the values of the isotopic part of the total energy density in the
presence of the K~ condensate

Ae(p,v) = stot — €5(p) (39)
2
1 _ ] ” *3J, ]
= 4ssymp(z/ — 5)2 4+ @a — [\ Aovp/po — In#{n—(];i) , V'—Op;

as function of the density p for pure neutron matter (v = 0), isospin symmetric nuclear
matter (v = 1) and proton matter (v = 1). As seen from fig. 2 at p > p7 (w.(pz,v =
1) = 0) the isotopic phase transition

v=0= =1 o (60)

becomes energetically favorable (i.e., the curve with ¥ = 1 is below the curve with
v = 0). This result is the direct consequence of the v-proportionality of the p-wave
part of the polarization operator.

Thus neutron star matter may undergo a first-order phase transition at p > pJ
into proton matter with the charge compensated by the negative inhomogeneous (% =
ko # 0) kaon condensate.

6 Polarization operator of kaons at finite temper-
~ature

Having" in mind the application of our results to neutron star matter and to heavy-
lon- collisions we will consider only the temperatures 7' < m,. Then we can suppose
that the s-wave part of the polarization operator does not depend too strongly on
the temperature, because the corresponding diagrams consist of heavy particles in
the intermediate states. The temperature dependence of the Lindhard function is
connected only with recoil effects (i.e. kp/my # 0 in the nucleon Greens function, cf.
ref. [28]). With the simplified representation of the Lindhard function we have

w2 (T 3 5}7 )2 |

' Vo ) )
Oy (0, &, T) = am(t) )

— 1o (61)
Dy —w + 12 ‘ w = &ywy(t) _ BN _
. kok 2
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The contribution of the term « A, in egs. (15,16) is proportional to the density, i.e. it
is independent of the temperature. As it is seen from eq. (61) the growing temperature
amplifies the p-wave attraction in a wide region of frequencies and momenta for w <
@a(xy and enlarges the repulsion at w > Wy(x). Since the K~ condensate arises at w, =
0 < @a(x), the value of the critical density p; (T) decreases with growing temperature.

To avoid possible misunderstanding we have to note that eq. (61) obtained in the
framework of the perturbation theory is applicable only if the temperature dependent
term in the brackets of eq. (61) is smaller than unity. In assuming w ~ 0 k ~ pr one
can see that the parameter of the expansion is indeed 477 /m?2 < 1. Of course, in the
opposite limit 472 /m2 >> 1 one has ‘I’j\(z) — 0.

The graphs, which are related to the pion fluctuations, display the most sensitive
dependence on temperature (see eq. (27)). Eq. (31) at T # 0 becomes (see ref. [28])

Ar = T Z /(9 E D.(p,wy, = 2minT, k) (62)

nN=—0oo

—‘,D'rr(pcl;wn. = ‘)7TZ7’ZT, k)}a(p - Pcl)- '

It is simply calculated in the limiting case T' > &, (kor), when only one term n = 0

remains in the sum in eq. (62). As result we get
C = _For -
27\ /=

Bearing this in mind from egs. (40, 63) we can conclude that a growing temperature
. promotes the attraction in the polarization operator. Near the critical point of the =
condensation, when &, becomes rather small, the contribution of |II .| to the K~
polarization operator increases sharply. Thus when T' # 0, the pion softening may
promote the kaon condensation. If one supposes a second-order phase transition into
a 7 condensate state, then @(p — p.r) — 0 and hence II_.(w = 0, k) — —oo, that
means the possibility of the growth of the classical kaon field. Therefore the K~ and
pion condensation can arise at the more or less same critical density. What kind of
condensate arises in reality at p > p(T), p > p; (1) depends on the values of the K~
and 7 condensate energies and on the interaction between the condensate fields.

As we have mentioned, another temperature dependent term is connected with the
kaon fluctuations. Its contribution is determined by the closeness of the effective kaon

gap of the kaon propagator at w = 0 , k =~ ko # 0 to zero.

T
Az = Cz-b(p = pa), (63)

7 The K° meson condensation

As mentioned in sect. 2, the polarization operator of K° mesons can be easily obtained
from the polarization operator of K~ mesons by performing the replacement v — 1—v.
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This means that the spectrums of K~ mesons presented in fig. 1 for the case of proton
matter (v = 1) can also be interpreted as the spectrum of K° for neutron matter
(v = 0) at the same baryon density. The vanishing of wy(ko, p) at the density p = p
is now the reason for the instability of the K° field with respect to the reaction

‘n = n+EKe (64)
In the mean field approximation the phase transition to the K°-condensed state is
expected to be of a second-order. With taking into account the kaon fluctuations it
becomes a first-order, but at 7' = 0 the fluctuation contribution is rather small and
can be neglected. ‘
~ The value of the condensate field can be found from eq. (54) at w —V — w =0,
k= ko, T~ (w — V, k) — T1°(0, ko). Making use of the expansion of the K° condensate
field ¢%, in the vicinity of the critical point in analogy to ° case ref. [1] we have

1 /om°\ - : : ,
2 —
= (_> (on — 57)- (65)
AN ),
The energy density gain is given by

Bego s —pln b (66)

: 1 /o1’
P="m ('a?),,;- |

As for the case of 7° condensation [1], the system with K° condensate becomes stable
only due to the repulsion A # 0, whereas in the case of K~ mesons the system is
stable even at A = VO’ because of the electromagnétic coupling. Therefore if the values
Ago and Ag- are ésséntially the same, then the K° condensate would be energetically
favorable. Besides, the transition to K* state takes probably the shorter time, since in
the mean field approximation it arises by a second-order transition, whereas the K~
transition is of a first-order. Nevertheless in order to draw more definite conclusion
one has to calculate carefully the values Ag. and Ax- and o investigate thoroughly
the dynamics of both phase transitions. This is, however, rather complicated problem.
Thus, despite that the energy of a £° neutron core may be indeed a bit smaller than
the one of the K~ proton core, both phase transitions may manifest themselves in the
neutron star dynamics [36] in dependence on the initial configuration and on the time
evolution scenario. |

8 Concluding remarks

In summary, we calculate the K, K° K° polarization operators in a dense nuclear
matter medium of various isotopic compositions by taking into account the s-and p-
wave interactions and also the residual KN interaction obtained by some procedure
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of going off-shell. The low-energy theorem for the meson-nucleon scattering has been
applied in the framework of a chiral Lagrangian. Some new extra graphs are explicitly
calculated such as hyperon - particle-hole - loops and graphs with pionic intermediate
states. Thereby an extra s-wave repulsion and p-wave attraction are obtained. We
argue that a temperature increase enforces the KN attraction in a rather wide range
of temperatures. Although, because of a lack of more detailed experimental data,
the polarization operator which we obtain remains model dependent, some essential
conclusions can nevertheless be drawn.

A new low-lying branch of excitations is found in the spectrum of K~ and K°
mesons. We have reconsidered the possibility of the kaon condensation with respect
to the new particularities mentioned above. We show that kaon condensation is likely
to arise not due to the s-wave interaction but mainly due to the p-wave interaction.
We show that at p > p7 ~ (4 — 6)p, (at T = 0) neutron matter may undergo a first-
order phase transition to proton matter with electric charge compensated by the K~
field. At nearby the same density p; the neutron matter may also undergo a phase
transition into a K° condensate state. This transition is of first-order at T' = 0 and can
be considered approximately as a second-order transition at vanishing temperature.
Some arguments are given that the K° condensate is energetically more favorable than
 the K~ condensation. At 7" 5 0 a pion softening may promote the kaon condensation.

The particularities of the KN interaction that we find can manifest themselves in
(3) experiments on kaon-nucleus scattering, (4%) kaonic atoms, (#é4) heavy-ion collisions,
and (7v) in different neutron star phenomena.

Indeed the strong p-wave attraction obtained in the above analysis as well as the
presence of the extra low-lying branch in the K~ spectrum can result in an enhancement
of the K~ nucleus cross-section at the corresponding frequencies and momenta. It also
modifies the description of the K~ atoms., In forthcoming investigations one should
focus on the possibility to extract from experiments the coefficient (.. proportional to
k% for the upper branch of the K~ slﬁectrum, Le., w1 (k) > mj + C-E?%: (see eq. (43)
as well as on manifestations of the low-lying K~ branch wy(k).

Also from our p-wave propagator one can extract the imaginary part of the kaon
frequency and compare it with that given by eXperiments on the K*-nucleus scattering.

In heavy-ion collisions the presence of the low?lying branch as well as the in-medium
modification of the upper branch can manifest themselves in an enhancement of the
K-, R° yields. V |

New possibilities of the kaon condensate formation may affect the neutron star dy-
namics so that a newly born neutron star undergoes either a first-order phase transition
into the X~ condensate state with a proton-dominated core or a first-order (T # 0)
phase transition into a K° condensate state with a neutron-enriched core. The final
state depends on the dynamical features of the corresponding phase transitions and on
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the time evolution scenario. Such transitions may result in an extra heating-up of the
star core and in a neutrino burst. In addition, rather old neutron stars might undergo
a K condensation phase transition, when its interior density would be enlarged up to
o> given by the corresponding Maxwell construction for the phase equilibrium curve.
This value p} is somewhat smaller then p;. The interior density may increase because
of the accretion of the matter in binary systems or by some other processes.

A more detailed theory of kaon-nucleon interaction as well as its manifestations in
different physical phenomena are planned to be considered in subsequent work.
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rended to him at Rostock University and GSI Darmstadt.
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Figure captions

Fig. 1: The spectrum of branches of K~ excitations w;(k), 1 = 1,2,3 (a: ¥p = 3p,,
b: vp = 5.8p,) for Txny = 2m,.

Fig. 2: Isotopic part of the energy density per nucleon with K~ condensate plotted

as Tunction of nucleon density for different isotopic compositions of the nuclear matter
(Bxn = 2m,). ' ‘
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