On the estimation of ultimate tensile stress from small punch testing Altstadt, E.; Houska, M.; Simonovski, I.; Bruchhausen, M.; Holmström, S.; Lacalle, R.; Originally published: February 2018 International Journal of Mechanical Sciences 136(2018), 85-93 DOI: https://doi.org/10.1016/j.ijmecsci.2017.12.016 Perma-Link to Publication Repository of HZDR: https://www.hzdr.de/publications/Publ-26303 Release of the secondary publication on the basis of the German Copyright Law § 38 Section 4. CC BY-NC-ND # On the estimation of ultimate tensile stress from small punch testing E. Altstadt a,1, M. Houska a, I. Simonovski b, M. Bruchhausen b, S. Holmström b, R. Lacalle c - a) Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany) - b) European Commission, Joint Research Centre (JRC), Westerduinweg 3, 1755 LE Petten, The Netherlands - c) Universidad de Cantabria, INESCO Ingenieros, Avda. de los Castros, 39005 Santander (Spain) - 1) Corresponding author, e-mail: e.altstadt@hzdr.de #### **Abstract** Finite element simulations of the small punch test are performed in order to critically evaluate and improve empirical correlations for the estimation of the ultimate tensile stress from force-deflection and force-displacement curves. For this purpose, generic elastic-plastic material properties are used. A systematic variation of the ultimate tensile stress and total uniform elongation is performed to investigate the effects of these parameters of the uniaxial stress-strain curve on the characteristics of small punch test curves. It is shown, that the maximum force $F_{\rm m}$ of the small punch test curve is not the appropriate parameter for the estimation of the ultimate tensile stress. Instead, the force $F_{\rm i}$ at a punch displacement of 1.29 times the specimen thickness (or alternatively at bottom deflection of 1.1 times the specimen thickness) should be used. This force is associated with the onset of plastic instability. A correlation between the force $F_{\rm i}$ and the ultimate tensile strength is proposed and validated by more than 100 small punch tests of nine different steel heats. ### **Keywords** small punch test; finite-element analysis; plasticity; hardening; ultimate tensile stress ### **Nomenclature** $A_{\rm gt}$ total uniform elongation (percentage) *d* punch diameter D diameter of the receiving hole in the lower die *E* elastic modulus*F* punch force $F_{\rm i}$ punch force at onset of plastic instability $F_{\rm m}$ maximum punch force h_0 initial thickness of the small punch specimen n material parameter $R_{\rm m}$ ultimate tensile stress R_{p02} yield stress (0.2% proof strength) R^2 coefficient of determination r_1 material parameter T temperature u central bottom deflection of the small punch specimen u_i central bottom deflection at onset of plastic instability $u_{\rm m}$ central bottom deflection at maximum force *v* punch displacement v_i punch displacement at onset of plastic instability *v*_m punch displacement at maximum force α material parameter $\beta_{\rm Rm}$ correlation factor for the estimation of $R_{\rm m}$ $\overline{\varepsilon}$ nominal strain ε true strain $egin{array}{ll} arepsilon^{ m el} & { m true\ elastic\ strain} \ arepsilon^{ m pl} & { m true\ plastic\ strain} \ \overline{\sigma} & { m nominal\ stress} \end{array}$ σ true stress σ_{v0} material parameter (initial flow stress) ## 1 Introduction The small punch (SP) test has long been recognized as a supportive means for the development and monitoring of structural materials [1–6]. As a screening procedure, the SP test is intended to provide estimations of the material properties with as small amounts of material as possible, allowing for example a quick evaluation of ageing mechanisms such as radiation induced hardening and embrittlement or thermal ageing. The SP test has been used to estimate the ductile-to-brittle transition temperature [1,2,4], yield stress [7,8], ultimate tensile stress (UTS) [9,10], fracture toughness [11,12] and creep properties [13–17]. Detailed analyses of stress and strain in the SP disc have been performed by means of analytical elastic-plastic modelling [18,19] and by finite element calculations to underpin the empirical correlations [8,11,20]. A combination of finite element modelling, SP testing and neural networks was used to identify the parameters of the Gurson–Tvergaard–Needleman model for ductile damage [11] and of the Beremin model for brittle fracture [12]. A code of practice on SP testing was established in order to harmonize the various test set-ups and to achieve a better comparability of the results of different labs [21]. An EN standard on SP testing of metallic materials is currently being developed under the auspices of ECISS TC 101 WG1. The following correlations have widely been used for the estimation of the ultimate tensile strength $R_{\rm m}$ [8,9,22–24]: $$R_{\rm m} = \beta_{\rm Rm} \cdot F_{\rm m} / h_0^2 \tag{1}$$ $$R_{\rm m} = \beta_{\rm Rm} \cdot F_{\rm m} / (h_0 \cdot u_{\rm m}) \tag{2}$$ with $F_{\rm m}$ being the maximum force and $u_{\rm m}$ the corresponding deflection (measured at the centre of the surface of the SP disc opposite to the punch), h_0 the initial specimen thickness and $\beta_{\rm Rm}$ an empirical coefficient. Instead of $u_{\rm m}$ the corresponding punch displacement $v_{\rm m}$ can be used in Eq. (2). An analysis of the differences between displacement v and deflection u can be found in [25]. A large number of comparative studies showed that Eq. (2) is more reliable as compared to Eq. (1), cf. e. g. [23,24,26,27]. Moreover, Kumar et al. [23] recently suggested that points of the force-deflection curve prior to $(u_{\rm m}, F_{\rm m})$ are even more suitable for the estimation of $R_{\rm m}$. In our paper, we follow this idea and present the results of finite element analyses with a systematic variation of the underlying plastic material properties. An improved correlation is proposed and validated with experimental data from nine different steels heats. # 2 Finite element (FE) simulations #### 2.1 Details of the FE-models The basic geometry of a SP set-up is shown in Figure 1. Two sets of geometrical parameters were used, G1 and G2 (cf. Table 1). Table 1: Geometry parameters of the analysed SPT set-ups | | | | - - - - | | | |-----|----------------|-----------------|-----------------------|-----------|-----------| | Set | Punch diameter | Receiving hole | Specimen | Edge size | Edge type | | No. | d = 2r (mm) | diameter D (mm) | thickness h_0 (mm) | (mm) | | | G1 | 2.5 | 4.0 | 0.5 | 0.2 | Chamfer | | G2 | 1.0 | 1.75 | 0.25 | 0.2 | Chamfer | The finite element simulations were done with models including contact and friction. The commercial codes ANSYS® 14.5 (HZDR) and ABAQUS® (JRC) were used. In case of HZDR simulations, axisymmetric elements with 8 nodes, elastic-plastic material and large deformation and finite strain capability were used for the SP specimen. The element size was 50 μ m. The lower die, the punch and the downholder were modelled by means of rigid lines interacting with the contact elements attached to the specimen surface. The friction coefficient for the contact areas between disc and punch was μ = 0.2. The SP disc was fully clamped, i.e. relative motion between SP disc and lower die was prevented. Figure 1: (a) Scheme of a SP test setup the edge of the receiving hole can either be a chamfer or a radius; (b) FE mesh (right). Figure 2: FE-mesh of JRC JRC used a full 3D mesh with a quarter symmetry as shown in Figure 2. It was checked, that both the axisymmetric and the 3D mesh provided comparable results. The maximum difference of the simulated force-deflection curves was less than 5% for the maximum force $F_{\rm m}$ and less than 1% for the deflection at maximum force $u_{\rm m}$. In section 2.2, the results for geometry set G1 are based on HZDR calculations and the results for set G2 are based on JRC calculations. The plastic deformation was based on the following constitutive equation: $$\sigma(\varepsilon^{\rm pl}) = \sigma_{\rm v0} + r_1 \cdot \left[\alpha \cdot \varepsilon^{\rm pl} + 1 - \exp(-n\varepsilon^{\rm pl})\right]$$ (3) where σ is the true equivalent stress and $\varepsilon^{\rm pl}$ the true plastic equivalent strain. $\sigma_{\rm y0}$, $r_{\rm 1}$, α and n are material parameters. The parameter α represents the ratio of linear and exponential hardening. In this study $\alpha=0$ was chosen. However, it was double-checked that the conclusions of the simulations also hold for $\alpha > 0$. The corresponding uniaxial engineering (nominal) stress-strain curve $\overline{\sigma}(\overline{\varepsilon})$ is obtained by: $$\overline{\varepsilon} = \exp\left[\varepsilon^{\text{pl}} + \varepsilon^{\text{el}}\right] - 1 = \exp\left[\varepsilon^{\text{pl}} + \sigma/E\right] - 1$$ $$\overline{\sigma} = \sigma/(1 + \overline{\varepsilon})$$ (4) with E being the elastic modulus. The overbar indicates engineering (nominal) values. In our simulation we used a generic material behaviour with a constant initial flow stress σ_{y0} = 570 MPa, constant elastic modulus E = 212 GPa, and a systematic variation of the hardening. In particular, the parameters r_1 and n were varied in such a way that specific values for the ultimate tensile stress, $R_{\rm m} = Max[\overline{\sigma}(\overline{\epsilon})]$, and the total uniform elongation, $A_{\rm gt} = \overline{\epsilon}|_{\overline{\sigma}=R_{\rm m}}$, were obtained. The parameter variations are listed in Table 2. There are four levels of ultimate tensile stress ($R_{\rm m}$ = 650, 700, 800, 900 MPa) and for each $R_{\rm m}$ four levels of total uniform elongation ($A_{\rm gt}$ = 3%, 6%, 10%, 20%). The stress-strain curves for $R_{\rm m}$ = 900 MPa are shown in Figure 3. In addition, the non-hardening case was analysed (ideal plasticity), i.e. $R_{\rm m}$ = $\sigma_{\rm y0}$ = 570 MPa. In this case, the true stress vs. true plastic strain curve is a horizontal line at 570 MPa. **Table 2: Material parameters** | Tuble 2. Place for parameters | | | | | | | | | |-------------------------------|-------------|-------|------------------------|----------------------|---------------------|--|--|--| | Code | r_1 (MPa) | n | R _{p02} (MPa) | R _m (MPa) | A _{gt} (%) | | | | | UTS_00 | 0 | n. a. | n.a. | 570 | 0.27 | | | | | UTS_11 | 103.7 | 106.1 | 589 | 650 | 3 | | | | | UTS_12 | 133.3 | 34.62 | 578 | 647 | 6 | | | | | UTS_13 | 189.6 | 15.18 | 575 | 650 | 10 | | | | | UTS_14 | 391.5 | 4.22 | 572 | 650 | 20 | | | | | UTS_21 | 154.3 | 126.0 | 603 | 700 | 3 | | | | | UTS_22 | 186.3 | 43.85 | 584 | 700 | 6 | | | | | UTS_23 | 236.3 | 19.62 | 578 | 700 | 10 | | | | | UTS_24 | 406.6 | 5.982 | 574 | 700 | 20 | | | | | UTS_31 | 256.3 | 149.7 | 635 | 800 | 3 | | | | | UTS_32 | 290.4 | 53.72 | 598 | 800 | 6 | | | | | UTS_33 | 341.5 | 24.94 | 585 | 800 | 10 | | | | | UTS_34 | 501.8 | 8.230 | 577 | 800 | 20 | | | | | UTS_41 | 358.6 | 165.1 | 669 | 900 | 3 | | | | | UTS_42 | 395.6 | 59.77 | 613 | 900 | 6 | | | | | UTS_43 | 450.4 | 28.19 | 594 | 900 | 10 | | | | | UTS_44 | 615.9 | 9.649 | 581 | 900 | 20 | | | | Figure 3: Generic stress-strain curves for R_m =900 MPa and varying A_{gt} (cases uts_4x); left: nominal stress vs. total nominal strain; right: true stress vs. true plastic strain ### 2.2 Simulation results The force-deflection curves F(u) and force-displacement curves F(v) for the two geometry sets G1 and G2 are shown in Figure 4 and Figure 5. For each curve in a single diagram, the ultimate tensile stress $R_{\rm m}$ and $\sigma_{\rm y0}$ are the same, while the $A_{\rm gt}$ is varying ($A_{\rm gt}=3\%$, 6%, 10% and 20%). It can be seen that the maximum forces $F_{\rm m}$ are significantly different, while the deflections at maximum force $u_{\rm m}$ are in a similar range. It can also be noticed that the curves in a single diagram exhibit a common pseudo intersection point. This intersection point, however, depends on the ultimate tensile stress $R_{\rm m}$ and also on the curve type (force-displacement or force-deflection). The locations of the intersection points $u_{\rm i}$ and $v_{\rm i}$ are summarized in Table 3. **Table 3: Parameters of intersection points** | | Standard | geometry (s | et G1) | | Miniature | ture geometry (set G2) | | | | |----------------------|-----------------------|--------------|---------------------|--------------|--------------|------------------------|--------------|--------------|--| | R _m (MPa) | $u_{\rm i}({\rm mm})$ | $F(u_i)$ (N) | v _i (mm) | $F(v_i)$ (N) | u_{i} (mm) | $F(u_i)$ (N) | v_{i} (mm) | $F(v_i)$ (N) | | | 650 | 0.447 | 762 | 0.535 | 819 | 0.206 | 171 | 0.239 | 178 | | | 700 | 0.509 | 875 | 0.598 | 940 | 0.263 | 207 | 0.302 | 217 | | | 800 | 0.600 | 1107 | 0.686 | 1173 | 0.314 | 262 | 0.353 | 271 | | | 900 | 0.651 | 1318 | 0.759 | 1423 | 0.346 | 312 | 0.386 | 320 | | | Average | 0.552 | | 0.645 | | 0.282 | | 0.320 | | | Figure 4: Force-deflection curves (left) and force-displacement curves (right) obtained from FE simulations, standard geometry (set G1) Figure 5: Force-deflection curves (left) and force-displacement curves (right) obtained from FE simulations, miniature geometry (set G2) ## 2.3 Simulation based correlations In view of the results in section 2.2 it seems reasonable to use the force F_i instead of F_m for the correlation with the ultimate tensile stress in order to avoid a strong dependence of the correlation factor β_{Rm} on the tensile properties of the material. We propose the following equations to estimate the ultimate tensile stress: $$R_{\rm m} = \beta_{\rm Rm,u} \cdot F(\overline{u}_i) / h_0^2$$ $$R_{\rm m} = \beta_{\rm Rm,v} \cdot F(\overline{v}_i) / h_0^2$$ (5) The average locations of the pseudo intersections in the SPT curves, \overline{u}_3 and \overline{v}_3 , shall be used to obtain the force F_i (cf. Table 3). For the sake of clarity it should be mentioned, that the division by h_0^2 is performed in order to get a dimensionless coefficient $\beta_{\rm Rm}$. It does not mean that that we would get the same $\beta_{\rm Rm}$ for specimen thicknesses other than $h_0=0.5$ mm or $h_0=0.25$ mm respectively; $\beta_{\rm Rm}$ is a function of all geometry parameters of the SPT set-up, including the specimen thickness. The correlation of the intersection force F_i with the ultimate tensile stress is shown in Figure 6. The resulting correlation factors and coefficients of determination are listed in Table 4. Table 4: Coefficients for the estimation of ultimate tensile stress from numerical simulations according to Eq. (5) | 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | | | | | | |-----------------------------------------|-----------------------|--------------------------------|--------------------------|-------|--| | Geometry | Curve type | $u_{\rm i} \mid v_{\rm i}$ | $oldsymbol{eta_{ m Rm}}$ | R^2 | | | Standard (set G1) | F(u) | $u_{\rm i} = 0.55 \; {\rm mm}$ | 0.192 | 0.97 | | | Standard (set G1) | <i>F</i> (<i>v</i>) | $v_{\rm i} = 0.65 \; {\rm mm}$ | 0.179 | 0.97 | | | Miniature (set G2) | F(u) | $u_{\rm i} = 0.28 \; {\rm mm}$ | 0.205 | 0.96 | | | Miniature (set G2) | <i>F</i> (<i>v</i>) | $v_{\rm i} = 0.32 \; \rm mm$ | 0.197 | 0.96 | | Figure 6: Correlation between intersection force F_i (from numerical simulations) and R_m , left: for bottom deflection, right: for punch displacement (set G1) Now we analyse the thickness reduction in the specimen centre, $\Delta h = v - u$. It can be expected that the thickness reduction depends on the yield stress ratio $s = R_{p02}/R_m$ and the uniform strain $\bar{\epsilon}_{un}$. In Figure 7, the thickness reduction is shown in dependence on the punch displacement v for the cases UTS_4x and UTS_x3. It can be seen that $\Delta h(v)$ exhibits a steep slope in the beginning of the test which is due to the indentation of the punch into the SP specimen. After the initial increase the slope of $\Delta h(v)$ is small until the displacement reaches a value $v \approx 0.6$ mm. At this point the slope is significantly increasing again. The position of this point is approximately the same as v_i (cf. Table 4). This means, that at the intersection point (v_i, F_i) the onset of necking of the SP specimen occurs. Figure 7: Central thickness reduction as a function of punch displacement for cases UTS_4x (left) and UTS_x3 (right), standard geometry (set G1) # 3 Experimental validation ### 3.1 Materials Three ferritic-martensitic (f/m) Cr-steels and two bainitic reactor pressure vessel steels were used for the experimental validation of the correlations Eqs. (2) and (5). Information on the materials and product forms are given in Table 5. The chemical compositions and the uniaxial tensile properties are listed in Table 6 and Table 7 respectively. The P92 was available in the as received condition and in four different heat treatments. In Table 7, the exponential fits are valid for the temperature range -200 °C < T < 300 °C, while the polynomial fits hold for 300 °C < T < 650 °C. **Table 5: Materials overview** | Material | Туре | Product form | Heat treatment | Reference | |---------------|----------------|-------------------------|-----------------------------------------|-----------| | P91 | f/m steel | hot rolled pipe | normalization 1040-1100 °C / 30 min | [28] | | | | Ø360 x 50 mm | tempering 730-780 °C / 60 min | | | P92 | f/m steel | hot rolled pipe | AR: standard normalization + tempering | [29] | | | | Ø219 x 22 mm | HT1: AR + 800 °C / 2h | | | | | | HT2: AR + 760 °C / 2h | | | | | | HT3: AR + 750 °C / 2h | | | | | | HT4: AR + 740 °C / 2h | | | Eurofer97 | f/m steel | hot rolled plate | normalization 980 °C/27 min/air cooling | [30,31] | | | | 14.5 mm | tempering 760°C/90 min/air cooling | | | 22 NiMoCr 3 7 | bainitic steel | reactor pressure vessel | 890°C/4h/water quenching | [32] | | | | Biblis C | 650°C/7h/air cooling | | | 15Kh2MFA | bainitic steel | reactor pressure vessel | original RPV manufacturing technology | [33] | | | | Greifswald unit 8 | | | Table 6: Chemical compositions in wt% | Material | С | Si | V | Cr | Mn | Ni | Mo | Al | P | S | Cu | Nb | W | |---------------|-------|-------|-------|------|-------|------|------|--------|--------|--------|--------|-------|------| | P91 | 0.116 | 0.464 | 0.23 | 9.50 | 0.507 | 0.09 | 0.91 | 0.0195 | 0.0085 | 0.0006 | n.a. | 0.09 | n.a. | | P92 | 0.12 | 0.24 | 0.19 | 8.56 | 0.53 | 0.13 | 0.43 | 0.009 | 0.012 | 0.009 | 0.050 | 0.062 | 1.63 | | Eurofer97 | 0.11 | 0.04 | 0.2 | 8.82 | 0.47 | 0.02 | n.a. | n.a. | 0.005 | n.a. | 0.0016 | n.a. | 1.09 | | 22 NiMoCr 3 7 | 0.215 | 0.20 | 0.007 | 0.42 | 0.91 | 0.88 | 0.53 | 0.018 | 0.008 | 0.007 | 0.04 | n.a. | n.a. | | 15Kh2MFA | 0.15 | 0.30 | 0.31 | 2.86 | 0.45 | 0.10 | 0.79 | n.a. | 0.008 | 0.009 | 0.05 | n.a. | 0.01 | Table 7: Tensile properties at room temperature and temperature fit of $R_{\rm p02}$ and $R_{\rm m}$ | Tubio :: Temone properties at room temperature and temperature in or npoz and nm | | | | | | | | | | |----------------------------------------------------------------------------------|---------------|------------------|-------------|------------------|----------------------------------|---------------------------------|--|--|--| | Material | $R_{ m p0.2}$ | R_{m} | $A_{ m gt}$ | A_{t} | $R_{\rm p0.2}(T)^{(1)}$ | $R_{\rm m}(T)$ ⁽¹⁾ | | | | | | (MPa) | (MPa) | (%) | (%) | (MPa) | (MPa) | | | | | P91 | 538 | 686 | 9.4 | 19.9 | 466+658*exp(-0.0072*T) | 557+675*exp(-0.0054* <i>T</i>) | | | | | P92-AR | 679 | 808 | 6.1 | 18.0 | polynomial ⁽²⁾ | polynomial ⁽³⁾ | | | | | P92-HT1 | 502 | 675 | 11.4 | 26.8 | n.a. | n.a. | | | | | P92-HT2 | 541 | 707 | 9.6 | 24.4 | n.a. | n.a. | | | | | P92-HT3 | 574 | 726 | 7.8 | 21.4 | n.a. | n.a. | | | | | P92-HT4 | 584 | 733 | 7.7 | 21.6 | n.a. | n.a. | | | | | Eurofer97 | 544 | 662 | 6.6 | 25.1 | 456+644*exp(-0.0067* <i>T</i>) | 413+485*exp(-0.0022* <i>T</i>) | | | | | 22 NiMoCr 3 7 | 424 | 591 | 10.9 | 23.9 | 349+571*exp-(0.0069*T) | 515+572*exp-(0.0068* <i>T</i>) | | | | | 15Kh2MFA | 532 | 649 | 7.2 | 20.3 | 512+2026*exp(-0.0159* <i>T</i>) | 553+770*exp(-0.0071* <i>T</i>) | | | | ⁽¹⁾ T in K ## 3.2 Small punch tests A number of 115 small punch tests were performed at HZDR with the standard geometry (Table 1, set G1). The test data for P92 is stored in an online database [29]. Additional sixteen high temperature SP tests on the P92-AR steel were performed at JRC. The specimens were cut to a thickness of 0.6 mm by means of an electrical discharge machine and subsequently ground with grit 2500 to final thickness. The individual final thickness of each specimen was measured. The maximum accepted thickness tolerance was $\pm 5 \,\mu\text{m}$. All tests were performed at a displacement rate of 0.5 mm/min. The displacement v was measured by an inductive sensor with an accuracy of $\pm 1 \,\mu\text{m}$. A correction for the compliance of the punch was applied ($C_p = 4.98 \cdot 10^{-5} \, \text{mm/N}$). Table 8: Overview of small punch tests | Material | Number of tests | Test temperatures (°C) | |---------------|-----------------|---------------------------| | P91 | 23 | -177 +331 | | P92-AR | 3 + 16 | room temperature, 300 650 | | P92-HT1 | 5 | room temperature | | P92-HT2 | 4 | room temperature | | P92-HT3 | 3 | room temperature | | P92-HT4 | 5 | room temperature | | Eurofer97 | 8 | -24 + 250 | | 22 NiMoCr 3 7 | 31 | -151 +332 | | 15Kh2MFA | 33 | -150 +332 | The force-displacement curves F(v) of SP tests at room temperature are shown in Figure 8 (one curve per material as listed in Table 8). The F(v) curves of the material P91 for different temperatures are shown in Figure 9. The curve for T = -173 °C represents a brittle failure, the other test curves represent ductile failure. By using 9 different materials and heats, and by testing selected materials at different temperatures, a wide variation of tensile properties is obtained. ⁽²⁾ $-118 + 2.92*T - 2.91*10^{-3}*T^2 + 1.56*10^{-7}*T^3$ (valid for 573 K \leq T \leq 923 K) ⁽³⁾ $678 + 0.269*T + 2.69*10^{-4*}T^2 - 1.06*10^{-6*}T^3$ (valid for 573 K \leq T \leq 923 K) Figure 8: Force-displacement curves from SP tests at room temperature for the materials listed in Table 8 Figure 9: Force-displacement curves from SP tests at different temperatures for the material P91 ### 3.3 Results and correlations The evaluation of the SP tests is based on the force-displacement curves F(v). The characteristic parameters v_m , F_m and F_i were determined for all tests. This is illustrated for a test of material 15Kh2MFA in Figure 10. In accordance with the given geometry and the curve type, the location of F_i is $v_i = 0.65$ mm (cf. Table 1 and Table 4). Figure 10: Force-displacement curve of the material 15Kh2MFA tested at room temperature (test no. 06) with indication of the characteristic parameters F_i = 831 N (at v_i = 0.65 mm) v_m = 1.67 mm F_m = 1727 N Based on this analysis, we correlate the ultimate tensile stress from the uniaxial tensile tests $R_{\rm m}$ (cf. Table 7) with $F_{\rm m}/(h_0^*v_{\rm m})$ and $F_{\rm i}/h_0^2$ from the SP tests. This provides experimental values for the correlation factor $\beta_{\rm Rm}$. The coefficient of determination R^2 gives a quantitative measure of the goodness of the SP based estimation of the ultimate tensile stress. Moreover, in case of the F_i based correlation Eq. (5), the experimental correlation factor $\beta_{\rm Rm}$ can be compared with the one obtained from the FE simulations (cf. section 4). The correlations are shown in Figure 11 and Figure 12. The slopes of the regression lines (with forced intercept at zero) correspond to the coefficient $\beta_{\rm Rm}$ in Eq. (2) and Eq. (5) respectively. This regression analysis includes all SP tests (all materials). We also analysed these correlations per material. The results are listed in Table 9. Table 9: Slopes β_{Rm} and coefficients of determination R^2 per material | | R _m versus | $F_{\rm m}/(h_0^*v_{\rm m})$ | R _m vers | us $F_{\rm i}/h_0^2$ | |-------------------|--------------------------|------------------------------|--------------------------|----------------------| | Material | $oldsymbol{eta_{ m Rm}}$ | R^2 | $oldsymbol{eta_{ m Rm}}$ | R^2 | | P91 | 0.277 | 0.706 | 0.193 | 0.958 | | P92 (AR, HT1-HT4) | 0.287 | 0.951 | 0.171 | 0.964 | | Eurofer97 | 0.299 | 0.555 | 0.181 | 0.728 | | 22 NiMoCr 3 7 | 0.254 | 0.528 | 0.175 | 0.875 | | 15Kh2MFA | 0.291 | 0.661 | 0.193 | 0.913 | | All materials | 0.278 | 0.747 | 0.183 | 0.870 | Figure 11: Correlation between $R_{\rm m}$ from uniaxial tensile tests and $F_{\rm m}/(h_0*v_{\rm m})$ from the SP tests according to Eq. (2) Figure 12: Correlation between $R_{\rm m}$ from uniaxial tensile tests and $F_{\rm i}/h_0^2$ from the SP tests according to Eq. (5) Figure 13 shows an example of the central thickness reduction $\Delta h(u)$ for P92-AR obtained from simultaneous measurements of displacement v and deflection u. The displacement value of v_i = 0.65 mm proposed in the correlation Eq. (5) is also included in the figure. It can be seen, that this value is close to the onset of plastic instability (rapid increase of the slope the curve) which is the phenomenon linked to $R_{\rm m}$ in uniaxial tensile tests. Figure 13: Central thickness reduction, Δh , as a function of punch displacement, v, for the P92-AR steel ### 4 Discussion As shown in section 2.2, the maximum forces $F_{\rm m}$ strongly depend on the hardening behaviour of the material. For generic materials with identical ultimate tensile stress $R_{\rm m}$, the $F_{\rm m}$ values significantly increase with increasing uniform strain, while the deflections at maximum force $u_{\rm m}$ are in a similar range. This is due to the fact that the plastic strain in the SP specimen at maximum force is by far larger than the uniform strain in a tensile test [11,23,27]. This means that neither Eq. (1) nor Eq. (2) are appropriate for the estimation of $R_{\rm m}$. This is additionally substantiated by the work of Foulds et al. [34]. They found that the "crack initiates well in advance of the peak load, undergoing stable growth up to the peak load". In contrast, the force F_i can be associated with the onset of plastic instability and is therefore better suited for a correlation with the ultimate tensile stress $R_{\rm m}$ of the uniaxial tensile test. The correlations between $R_{\rm m}$ and $F_{\rm m}/(h_0^*v_{\rm m})$ on one hand and between $R_{\rm m}$ and $F_{\rm i}/h_0{}^2$ on the other hand, which are based on experiments on five different steels (nine heats), confirm the findings of the FEM simulation with generic material properties. We put emphasis on the fact that the F_i based correlation coefficient $\beta_{\rm Rm}$ obtained from the experiments (0.183) agrees very well with the one obtained from the simulations (0.179) even though the tensile properties of the real materials (section 3.1) and those of the generic materials (section 2.1) are different. This underpins the assumption that the correlation Eq. (5) is only weakly dependent on the tensile properties of the investigated material. Finally, the F_i based correlation Eq. (5) is also valid for brittle failure in the SP test since the specimen fails at a displacement $v > v_i$ (cf. Figure 9, test at -173 °C). In contrast, the $F_{\rm m}$ based correlation Eq. (2) leads to a systematic overestimation of $R_{\rm m}$ as it can be seen from Figure 11 where the three rightmost data points originate from SP tests with brittle failure. ## 5 Conclusions Correlations based on the maximum force F_m of the small punch test and the uniaxial ultimate tensile stress cannot be independent of the material properties. In contrast, correlations based on the small punch force F_i are only weakly dependent on the tensile properties and should therefore be preferred for the estimation of the ultimate tensile stress. The location of the characteristic force F_i depends on the geometry of the small punch test set-up and on the curve type (force-deflection or force-displacement). ## 6 References - [1] J. Kameda, A kinetic model for ductile-brittle fracture mode transition behavior, Acta Metall. 34 (1986) 2391–2398. doi:10.1016/0001-6160(86)90142-2. - [2] T. Misawa, T. Adachi, M. Saito, Y. Hamaguchi, Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels, J. Nucl. Mater. 150 (1987) 194–202. doi:10.1016/0022-3115(87)90075-4. - [3] G.E. Lucas, Review of small specimen test techniques for irradiation testing, Metall. Trans. A. 21 (1990) 1105–1119. doi:10.1007/BF02698242. - [4] J. McNaney, G.E. Lucas, G.R. Odette, Application of ball punch tests to evaluating fracture mode transition in ferritic steels, J. Nucl. Mater. 179–181 (1991) 429–433. doi:10.1016/0022-3115(91)90116-0. - [5] J.S. Ha, E. Fleury, Small Punch Tests on Steels for Steam Power Plant (I), KSME Int. J. 12 (1998) 818–826. - [6] X. Jia, Y. Dai, Small punch tests on martensitic/ferritic steels F82H, T91 and Optimax-A irradiated in SINQ Target-3, J. Nucl. Mater. 323 (2003) 360–367. doi:10.1016/j.jnucmat.2003.08.018. - [7] J. Kameda, X. Mao, Small-punch and TEM-disc testing techniques and their application to characterization of radiation damage, J. Mater. Sci. 27 (1992) 983–989. doi:10.1007/BF01197651. - [8] E.N. Campitelli, P. Spätig, R. Bonadé, W. Hoffelner, M. Victoria, Assessment of the constitutive properties from small ball punch test: experiment and modeling, J. Nucl. Mater. 335 (2004) 366–378. doi:10.1016/j.jnucmat.2004.07.052. - [9] X. Mao, H. Takahashi, Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests, J. Nucl. Mater. 150 (1987) 42– 52. doi:10.1016/0022-3115(87)90092-4. - [10] R. Hurst, K. Matocha, Where are we now with the European Code of Practice for Small Punch Testing?, in: Proc. 2nd Int. Conf. SSTT "Determination Mech. Prop. Mater. Small Punch Miniat. Test. Tech., Ostrava, Czech Rep., 2012: pp. 4–18. - [11] M. Abendroth, M. Kuna, Identification of ductile damage and fracture parameters from the small punch test using neural networks, Eng. Fract. Mech. 73 (2006) 710–725. doi:10.1016/j.engfracmech.2005.10.007. - [12] T. Linse, M. Kuna, J. Schuhknecht, H.-W. Viehrig, Usage of the small-punch-test for the characterisation of reactor vessel steels in the brittle-ductile transition region, Eng. Fract. Mech. 75 (2008) 3520–3533. doi:10.1016/j.engfracmech.2007.03.047. - [13] M.L. Saucedo-Muñoz, S.-I. Komazaki, T. Takahashi, T. Hashida, T. Shoji, Creep property measurement of service-exposed SUS 316 austenitic stainless steel by the small-punch creep-testing technique, J. Mater. Res. 17 (2002) 1945–1953. doi:10.1557/JMR.2002.0288. - [14] P. Dymáček, K. Milička, Creep small-punch testing and its numerical simulations, Mater. Sci. Eng. A. 510–511 (2009) 444–449. doi:10.1016/j.msea.2008.06.053. - [15] G. Chen, P.C. Zhai, Q.J. Zhang, Creep Properties of SUS304 Steel by Small Punch Creep Tests, Mater. Sci. Forum. 631–632 (2009) 387–392. doi:10.4028/www.scientific.net/MSF.631-632.387. - [16] D. Blagoeva, Y.Z. Li, R.C. Hurst, Qualification of P91 welds through Small Punch creep testing, J. Nucl. Mater. 409 (2011) 124–130. doi:10.1016/j.jnucmat.2010.09.015. - [17] B. Gülçimen, P. Hähner, Determination of creep properties of a P91 weldment by small punch testing and a new evaluation approach, Mater. Sci. Eng. A. 588 (2013) 125–131. doi:10.1016/j.msea.2013.09.029. - [18] J. Chakrabarty, A theory of stretch forming over hemispherical punch heads, Int. J. Mech. Sci. 12 (1970) 315–325. doi:10.1016/0020-7403(70)90085-8. - [19] T.S. Byun, E.H. Lee, J.D. Hunn, K. Farrell, L.K. Mansur, Characterization of plastic deformation in a disk bend test, J. Nucl. Mater. 294 (2001) 256–266. doi:10.1016/S0022-3115(01)00484-6. - [20] I. Simonovski, S. Holmström, M. Bruchhausen, Small punch tensile testing of curved specimens: Finite element analysis and experiment, Int. J. Mech. Sci. 120 (2017) 204–213. doi:10.1016/j.ijmecsci.2016.11.029. - [21] European Committee for Standardization (CEN), CWA 15627: Small Punch Test Method for Metallic Materials, (2007). - [22] P. Dymáček, F. Dobeš, P. Král, J. Dvořák, INVESTIGATION OF FRACTURE IN PURE ALUMINIUM AFTER ECAP BY MEANS OF SMALL PUNCH TEST, Acta Metall. Slovaca Conf. 3 (2013). doi:10.12776/amsc.v3i0.107. - [23] K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, R.S. Shriwastaw, B.K. Dutta, R.K. Sinha, Evaluation of ultimate tensile strength using Miniature Disk Bend Test, J. Nucl. Mater. 461 (2015) 100–111. doi:10.1016/j.jnucmat.2015.02.029. - [24] M. Bruchhausen, S. Holmström, I. Simonovski, T. Austin, J.-M. Lapetite, S. Ripplinger, F. de Haan, Recent developments in small punch testing: Tensile properties and DBTT, Theor. Appl. Fract. Mech. 86 (2016) 2–10. doi:10.1016/j.tafmec.2016.09.012. - [25] M.F. Moreno, G. Bertolino, A. Yawny, The significance of specimen displacement definition on the mechanical properties derived from Small Punch Test, Mater. Des. 95 (2016) 623–631. doi:10.1016/j.matdes.2016.01.148. - [26] T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, Estimation of the mechanical properties of metallic materials by means of the small punch test, J. Alloys Compd. 582 (2014) 708–717. doi:10.1016/j.jallcom.2013.08.009. - [27] E. Altstadt, H.E. Ge, V. Kuksenko, M. Serrano, M. Houska, M. Lasan, M. Bruchhausen, J.-M. Lapetite, Y. Dai, Critical evaluation of the small punch test as a screening procedure for mechanical properties, J. Nucl. Mater. 472 (2016) 186–195. doi:10.1016/j.jnucmat.2015.07.029. - [28] S. Kohlar, Gefüge und Eigenschaften des warmfesten Chromstahls P91, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 2009. http://nbnresolving.de/urn:nbn:de:bsz:d120-qucosa-229778. - [29] M. Houska, E. Altstadt, SP tests on P92 (T70175) at RT, version 1.0, European Commission JRC, [Catalog], (2017). http://dx.doi.org/10.5290/24. - [30] C. Heintze, C. Recknagel, F. Bergner, M. Hernández-Mayoral, A. Kolitsch, Ionirradiation-induced damage of steels characterized by means of nanoindentation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267 (2009) 1505–1508. doi:10.1016/j.nimb.2009.01.122. - [31] A.A.F. Tavassoli, A. Alamo, L. Bedel, L. Forest, J.M. Gentzbittel, J.W. Rensman, E. Diegele, R. Lindau, M. Schirra, R. Schmitt, H.C. Schneider, C. Petersen, A.M. Lancha, P. Fernandez, G. Filacchioni, M.F. Maday, K. Mergia, N. Boukos, N. Baluc, P. Spätig, E. Alves, E. Lucon, Materials design data for reduced activation martensitic steel type EUROFER, J. Nucl. Mater. 329–333 (2004) 257–262. doi:10.1016/j.jnucmat.2004.04.020. - [32] C. Zurbuchen, Influence of Specimen Type, Crack Length and Evaluation Method on Quasi-Static and Dynamic Fracture Toughness Properties, in: Proceedings of the ASME 2009 Pressure Vessels and Piping Conference, Prague, 2009: pp. 511–517. doi:10.1115/PVP2009-77796. - [33] H.-W. Viehrig, M. Scibetta, K. Wallin, Application of advanced master curve approaches on WWER-440 reactor pressure vessel steels, Int. J. Press. Vessels Pip. 83 (2006) 584–592. doi:10.1016/j.ijpvp.2006.04.005. - [34] J. Foulds, P. Woytowitz, T. Parnell, C. Jewett, Fracture Toughness by Small Punch Testing, J. Test. Eval. 23 (1995) 3. doi:10.1520/JTE10392J.