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Abstract 

A model for the description of an open quantum mechanical many- 
particle system is formulated. It starts from the shell model and treats 
the continuous states by a coupled channels method. The mixing of 
the discrete shell model states via the continuum of decay channels 
results in the genuine decaying states of the system. These states 
are eigenstates of a non-Hermitean Hamilton operator the eigenvalues 
of which give both the energies and the widths of the states. M 
correlations between two particles which are caused by the two-pa~ticle 
residual interaction, are taken into account including those via the 
continuum. 

In the formalism describing the opea quantum meclkanical system, 
the coupling between the system and its environment appears nonlin- 
early. If the resonance states start to overlap, a redistribution of the 
spfectroscopic values ("trapping effect") takes place. As a resdt, the 
complexity of the system is reduced at high level dens'nty, structmes 
in space and time are formed. This redistribution describes, OXI the 
on~e hand, the transition from the weU-hox*n nuclear p~operties at 
low level density to those a t  high level density and fits, an the other 
hand, into the concept of se1forganization. 



1 Introduction 

As is well known, the states of many quantum systems have a finite lifetime: 
An example are the states of nuclei most of which decay. In older papers, 
either the discrete states of the system or the decay products are described 
explicitely while the respective other part of the configuration space is taken 
into account in a much worse approximation. An example is the description 
of nuclear reactions in the framework of the shell model together with the 
R-matrix theory. In these calcul&ions, the nuclear structure of the discrete 
states is relevant. There is no feedback at all of the decay products onto 
the shell model states. Another example is the unified theory of nuclear 
reactions in which the open decay channels are the relevant part while the 
nuclear structure is described by means of statistical assumptions. 

Recently, the properties of quantum systems with decaying states are in- 
vestigated with a renewed interest in the framework of different models by 
taking into account the feedback of the decay products onto the discrete 
states [l - 141. In most cases studied, the number N of resonance states is 
much larger than the number K of open decay channels. One of the results 
obtained is the trapping effect which appears if the average width f of the 
resonances is of the same order of magnitude as the average distance B of 
two neighboured resonance states,. In this case, a redistribution takes place 
inside the nucleus which results in the formation of K short-lived resonance 
states together with N - K long-lived ones. The time-scales of both types 
of states are well separated from each other. 

The trapping effect has been observed theoretically in different models. 
It is shown [l - 141 to occur in realistic many-body quantum systems such 
as nuclei and also, e.g., in problems of quantum chemistry. In nuclei at 
low level density, the nuclear spectroscopic properties are relevant, while at 
higher level density, the properties of nuclei are described well by the unified 
theory of nuclear reactions where the open decay channels are relevant. It is 
exactly this transition which is described by the redistribution taking place 
inside the mcleus a t  the critical degree r / B  W 1 of resonance overlapping [5]. 

The trapping effect is the resnlt of the interference between N overlapping 
resonances. The physical iiTLeerpretation of the trapping effect as the fonna- 
tionr of "structures in space and time" by selforganization is traced in some 
papas 15, 13, 141. It seems to be supported by many results obtained. In 
any ease, the number of relevant degrees of freedom of the system is reduced 
as a consequence of the trapping (effect. The system becomes less complex. 



Selforganization in classical systems appears due to nonlinearities in the 
rate equations by which the coupling of the system to its environment is- 
characterized. As a consequence, the superposition principle does not hold 
and the decay occurs according to a power law [15]. 

In quantum mechanical systems embedded into the environment of decay 
channels, selforganization is the result of non-trivial interferences [5, 8, 131. 
The relation to non-linearities in the basic equations is not investigated thor- 
oughly, up to now. 

It is the aim of this paper to write down the formalism for the description 
of an'open quantum mechanical system. In section 2, the method is desribed 
for solving the original Schrodinger equation with an ansatz containing both 
discrete and continuous states. This method ("continuum shell model'" is 
formulated several years ago [l61 in order to describe experimental nuclear 
reaction data at low energy. In section 3, the properties of the wavefunctions 
describing the nucllear states embedded in the continuum of decay chan~iels 
are investigated analytically. The extraction of rate-like equations and their 
relation to the original Schrijdinger equation is performed in section 4. In 
section 5, the equation for the motion of one particle of the many-body sys- 
tem is written down. Hese, all correlations between two particles which are 
caused by the two-particle residual interaction are taken into account. In 
section 6, the n h b e r  of degrees of freedom in an open quantum system is 
investigated. It is reduced by selforganization at a certain critical value of 
the degree of overlapping of the resonances. The transition from low to high 
level density in nuclei is traced in section 7. It is described not or& by the 
model formulated in section 2 but fits also into the concept of seKorganiza- 
tion. Some conclusions on the question of the origin of selforganization in 
the quantum mechanical equations are drawn in section 8. 

2 Solution of the time-independent many- 
particle Schrodinger equation 

In the continuum shell model of the nudeus, the Schr6dinger equation 



is solved with the ansatz 

containing both discrete and cantinuous states. The N discrete states are de- 
scribed by the @g) which are antisymmetrized products of A single-particle 
wavefunctions in bound states (Slater determinants) while the A wavefunc- 
tions X% are the channel wavefunctions with A - 1 particles in bound states 
of the target (or residual) nucleus and 1 particle in a scattering state. The 
sum runs over open as well as closed channels. The Hamilton operator is 
H = H. + V where V is the two-particle residual interaction and H. de- 
scribes the central potential in which the particles move. The target nucleus 
is described by the same Hamilton operator, i.e. the channel wavefunctions 
X% contain the residual interaction V between the A - 1 particles bound 
in the target nucleus. The residual interaction between the different decay 
channels is not included into the channel wavefunctions X&. 

A special problem of nuclear physics is the existence of single-particle 
resonances. They have a large amplitude inside the nucleus like bound states 
but behave asymptotically like scattering states. In order to make possible 
spectroscopic investigations, a "cut-off technique" is used for them by sub- 
dividilzg them into two parts: The part from R = 0 up to the cut-off radius 

is treated together with the wavefunctions of the bound states while 
the part for R > Rmt is included into the set of scattering states [16]. RCut 
is about a factor 2 larger than the nuclear radius. The basic set of single- 

wavefunctions obtained in such a manner is orthogonalized [16]. 

Then, the total function space is subdivided, by using the projector op- 
erator techiqxe, into the two orthogonal subspaces P and Q under the 
condition 

P + Q = L .  (3) 

The sabspace Q contains the many-body states of A nucleons formed by 
pmducts of the wavefunctions of the single-particle bound states and of the 
si~agle-padicle resonames up to the cutofE radius Rat. Therefore, the struc- 
tmal part in the sontinuum shell model is the same as in the standard shell- 
nodel a;pp~aacfn, 



The eigenstates @gM of the Q-projected Hamiltonian HQQ, 

are called [l61 "quasibound states embedded in the continuum"(QBSEC). 
These QBSEC's differ from the "bound states embedded in the continuum'" 
(B SEC) introduced1 by Mahaux and Weidenmiiller [l71 by the contribution 
of the single-particle resonance3 in the interior of the nucleus (''cut-off pro- 
cedure"). 

The subspace P contains the many-body states with A - 1 nucleons in 
bound orbits and one nucleon in a scattering state as well as the part of the 
single-particle resonance wavefunctions beyond the cut-08 radius RCut. The 
coupled-channel wavefunclions [g follow from 

(Hpp  - E")) (S+) = 0 , (6) 

where Hpp is the P projected part of the Hamiltonian H. It is 

In the following, the method for the solution of eq. ( 1 )  is represented, 

By multiplying ( 1 ) with B and Q, respectively, from the left, it follows 

and 

TIere, Hp* PHQ and so on. By using the definition ( 6 )  of the coupled- 

channel wavefunctions [$') and the G~een function G$" in the P subspace, 

c(p+' = P(E(+) - H ~ ~ ) - ~ P  , ill01 

one obtains from ( 18 ) 

pe$+I = {$+l + cb*ju,, ~~21.  W1 
From (9) and (31 1 , 

.[+l - E)  Q@$+) - H ~ ~ ~ $ + I  - aPP ~ $ 9  (121 



and 

c(+) (HQQ f HQp GP) HpQ - E )  QV$+) = -HQptE . (13). 

Defining the operator 

H;: HQQ + HQP G$!' HPQ 

= HQQ + VQP GP) VpQ , (14) 

eq. ( 13 ) can be written as follows 

The ansatz 

with the shell model wavefunctions @gM obtained from ( 5 ) leads to 

and 

From ( 1 1 ) ,  

c(+) = pQ$+) + QV$+) 
@B 

= [$+l + ( G ~ + ) H ~ ,  + 1) QV$+) (19) 

and with ( 16 ) , 

@p' = [p' + z(l+ G ~ ' H ~ ~ ) B F ' @ ; ~  . 
R 

(20) 

We define now the wavefunctions UR as solutions of the coupled channel 
eqaations with source term 

Then, 



where 

fig' = R +G) 
= (1 + GP) B p Q )  @:M . (23) 

The diagonalisation of the operator H;?, 

with the orthogonal matrix 0 leads to 

where the identity 

sy ~ e f i  -1 @S") (~~~~O-'(UH;~O-')-~OIQ,~~) = (mR I (  I R (26) 

is used. Further, 

is the wavefunction of the resonance state R while ER and fR determine the 
energy and width of it. fig) as well as BR and fR  are energy dependent 
functions. The identification of ER = & R ( ~  = ER), I'R = f R ( ~  = ER) and 

- (+l flR = QR ( E  = ER) with the spectroscopic values energy, width and wave- 
function of the resonance state R is meaningful since the cut-off technique 
for the single-particle resonances is used in the continuum shell model [16]. 

The wavefunctions 6k+) can be represented as 

+ SM = C a ,  mR, 
&R' 

428) 

with complex energy dependent coefficients aRRl and a&Rt = 1. 

It is 

Together with ( 2 3 )  and (27 9, it follows 1181 



and 

The matrix elements 

are energy dependent complex functions. The values = ?;?(E = E R )  
are the amplitudes of the partial widths. They are complex if the resonances 
overlap. 

The S-matrix reads [5] 

where eqs. ( 25 ), ( 31 ) and ( 32 ) are used. In ( 33 ), the ?A?, f R as well as 
ER are energy dependent functions. 

The representation of @g in eqs. ( 2 2 )  and ( 2 5  ) is the solution of eq. 
( 1). In (22 ), it is represented in terms of three sets of wavefunctions { @ S M ) ,  
(65) and {mR}. All three sets are obtained by solving standard equations: 
The {@SM} are solutions of the shell model equations ( 5 ) while the {(E) and 
(wn}  follow from the solution of coupled channel equations without and with 
source term, eqs. ( 6 ) and ( 21 ), respectively. The coupled channel equations 
are solved in the channel representation. The corresponding equations read 

and 

Here, it) is the wavefunction of the target (residual) nucleus, (t&) is the 
scattering wavefunction in coupled channel representation (target+nucEeon), 
and ( t /Hppl ty  is the corresponding one-particle Hamilton operator in the P 
subspace. Eqs. ( 34 ) and ( 35 ) are solved by using the relation P = 1 - Q. 
To that purpose, the channel representation of the shell model wavefunctions 
@gM in the Q-subspace is needed, 



Here and in the following, the (+) and (-) at the wavefunctions are omitted. 

Details of the numerical solution of the equations given above can be 
found in [16]. Here, the approximations underlying the solution method 
(" continuum shell model") are summarized. 

1. The existence of a central potential in which the nucleons move. 
The shape of the potential is not calculated in a selfconsistent manner 
but assumed to  be of Woods-Saxon type. It is assumed to be indepen- 
dent of the excitation energy of the nucleus. The parameters of the 
potential are fitted to experimental data. They are assumed to be the 
same for the compound nucleus consisting of A nucleons and for the 
target (residual) nucleus consisting of A - 1 nucleons. 

2. 9 = P 9  + &Q is assumed to be the full function space. 
That means, no other decay channels as those described by P 9  with 
one nucleon in relative motion to the residual nucleus consisting of A- l 
nucleons are considered. The states of the residual nucleus are assumed 
to be stable. Due to the assumption P  + Q = 1, the unitarity condition 
of the decay process is fulfilled. 

3. The residual interaction V between two nucleons is of the same type 
for bound and unbound nucleons. 
In the numerical calculations of the continuum shell model, V is spin 
and isospin dependent and V cc S(r - r'). 

4. Truncation of the configuration space. 
In the numerical calculations, the configuration space is truncated in 
the same manner as in shell model calculations. In every calculation, 
the number N of resonances of the many-partide system and the num- 
ber A of open and closed decay channels is fixed. N and A can be 
varied independently of each other. 

In the continuum shell model, the equations ( 5 ) , ( 6 ) and ( 21 ) are solved 
numerically without further approximations. Some specific features d the 
calculatisns are the following. 

l. The energy dependence of the coupling matrix elements (firstVI~2) 
= ( @ ~ M j ~ ~ [ ~ )  (amplitudes of the partia1 widths of isolated states) is 
taken into account. 

. 
2. The energy dependence of the eigenvalues .??R = BR - :m of 

(energies and widths of the resonance$) is taken ink0 accaunt, Therefore, 
deviations from the Breit-Wignes line shape appc3a;r. 



3. The calculations are performed with non-vanishing energy dependent 
channel-channel coupling (X'& I V  1 X $ i )  where V is the residual interac- 
tion. 

4. Due to  the cut-off technique used for the single-particle resonances, the 
number of shell model states is exactly equal to the number of resonance 
states. The eigenvalues ER = BR- I'R of H;T at the energy E = ER 
of the system can be interpreted as the energies ER = ,@R(E = ER) 
and widths I?R = p B ( ~  = ER) of the resonance states R [16]. 
The cut-off technique for single-particle resonances leads to QBSEC 
(l' quasibound states embedded in the continuum") instead of the BSEC 
("bound states embedded in the continuum1') [16]. The cut-off tech- 

' nique for single-particle resonances has no influence on the calculated 
cross section. The only aim of doing the cut-off technique is to make 
possible nuclear spectroscopic investigations. 

5. The level distribution follows from a shell model calculation. The en- 
ergy shifts A E  = E ~ ~ - E ~ ( E  = ER) due to the coupling of the system 
to the continuum of decay channels are of the order of magnitude of 
the widths, as a rule. 

3 Nonlinearit ies 

Nonlinearities occur in the equations of the continuum shell model at differ- 
ent places. 

The internal mixing of two basic states with the wavefunctions Q$) and 
m$? (Slater determinants) is linear in the residual interaction V, 

It is contained in the @RM according to ( 5 ) . The external mixing is nonlinear 
in V, 

The difh:erence between the @gM and is caused by TVmt according to (5 ), 
L4 ji and (24). The value of West is a measure for the degree T/'B of over- 

Bapping of the resonmcm where % is the average valve of the f ' ~  a.nd D the 



average distance of two neighboured resonances. The larger f'/D, the larger 
Wext, i.e. the larger the overlap region of the resonances where the nucleons 
do not clearly belong to exactly one of the resonance states. 

The external mixing is most important for the redistribution processes 
and the trapping effect occuring in nuclei at high level density 851. A part of 
it can, of course, be simulated by an additional part to the residual interac- 
tion in a typical nuclear structure calculation which is performed in a closed 
system with only bound states. In such a case, the energy shift according to 

is effectively taken into account by a phenomenological residual interaction 
( P  is the principal value of the integral [17]). 

The behaviour of the nuclear system is investigated in several papers as 
a function of the strength of the mixing matrix elements W. In [l, 51, the 
distance D between the resonance states is variied by hand while all the other 
values are fixed. By this, the average degree of mixing F/D of the resonances 
and therefore Wext is changed. The same is achieved in [6, 7, 11, 13, 141, 
where the mixing West via the residual interaction V between an unbound 
and a bound particle as well as between two unbound particles is varied while 
the mixing IVint.via V between two bound particles is fixed to its realistic 
value. The external mixing Wext, eq. ( 38 ) ,  of two states R and R' contains 
the residual interaction V in a nonlinear manner. 

In another paper [10], %Vext is fixed while Win' is varied. The internal 
mixing Win' depends linearly on V, eq. (37). The external mixing Wext 
is, however, nonlinearly in Writ because both matrix elements in eq. (38 ) 
depend on writ via the wavefunctions @gM and @g?. Thus, the behaviour 
of the system described as a function of Wxt or as a function of writ is 
expected to show the same general behaviour. In both types of ca~eulations, 
the trapping effect is observed, indeed, 

Further, the Schrodinger equation ( B  - E)qj$ is s o h d  in Section 2. This 
is, of course, a linear equation ffor Q&. Investigating tbe proper%ks of i%n open 
quantum mechanical system, we are, however, intexested not in the @g but in 
the wavefunctions of the resonance states. These yvavefuns;tions are given by 
the ~ R ( E )  at the energy E = .ER of the reswanas. Fox isolated xesoaances, 
nR = nR. 



The fin and ClR are proportional to the BR and @gM, respectively. The 
@gM are solutions of a Schrodinger equation in the Q subspace (Q < l), 
eq. (5 ) ,  while the 6~ are solutions of an equation the Hamilton operator 
of which is non-Hermitean, eqs. ( 14 ) and ( 24). The eigenfunctions are 
complex and orthogonal, 

Since the @F in (38) are real, it follows W;%, = WE; and 

eff - H Q Q @ ~  = & B R ,  (41) 

H;$+&:, = &B:, . (42) 

From (40 ), one obtains 

Eqs. ( 24) and (43 ) lead to 

Therefore, the superposition principle does not hold for the BR, generally. 
The eq. ( 24 ) can be rewritten in the following form 

where 

Eq. (45 is a Sckrodinger equation with source term. The are functions 
of the & subspace while the source term has components in both subspaces 
with monkisear coupling. If & = 1 or HPQ = I ~ Q P  = O7 eq. (45 ) turns into a 
usual Sehrodinger equation without any source term and with real eigenval- 
ues. 

As f d b w s  from (22 ) together with ( 14 ), the relation between P5 and a 
special @gM contains the coup11ing ( Q ~ ~ ~ V ~ J ~ )  = (RRIVBX~) between the 
two subspaces via H:$ in a nonlinear manner, in general, 



If (@gM lVI&) K 6~~ for K states and (@gMIVI&) 0 for the remaining 
states, then the relation is (almost) linear in the coupling matrix elements 
for K states. 

The relation between &R and Qg is given by 

according to (25) .  If ((PR/*R) M l then the relation between 6~ and @S is 
(almost) linear. This happens for the K broad states in the strong coupling 
regime with I< open decay channels [13]. 

According to (44), the widths PR follo~v from the relation 

It holds 

and 

I ~ { ( ~ S ~ ~ H ; ~ I @ ~ ) }  = - X C(@:M 1 ~ 1 ~ )  (Givi@y) . (51) 
C 

Therefore, 

by using the definition ( 32). From (49 ) and ( 52 ), it follows 

That means, only if (gR1(PR) " 1, the width FR of the state R is (ntllarly) 
equal to the sum of the partial widths Such an assmptian is basic to the 
method of calculation of widths in the frame of the shell medel $- R matrix 
formalism. It is justified for non-ovedapping reonance states as well as for 
the short-lived states formed ak high level density numerical caIculations 
have shown 1131 (see also sedion 7')- 



4 Coupling between system and environment 

The three basic equations ( 5 ), ( 6)  and ( 21 ) can be rewritten in the following 
manner. Eq. ( 5 ) reads 

The @;M are functions of the Q-subspace while the source term satisfies the 
relation Q . HpQ@gM = 0. 

From ( 21 ) it follows 

It holds Q - WR = 0 while the source term has components in both subspaces. 
Eqs. ( 54 ) and ( 55 ) together lead to 

In an analogous manner, one gets from ( 6 ) 

The are functions of the P subspace while the source term satisfies 
P ' HQp& = 0. 

Using the expression (22 ) for the solution of ( 1 ), we obtain 

( H - E ) B g  = 0 

= ( I I -E ) {Ek+  C ( @ i M - I - w ~ )  X 
R,R1 

( @ s ; ~ I J E ( + I  - ~ e f f  QQ ) -1 /@F) ( @ ~ ~ l v l ~ k ) >  . (58) 

By using ( 56 ) and ( 57 ), it follows 

MuBtipPication ( 59 ) by @$F from left leads to 



Due t,o the relation ( 30 ), ( @ ; M I ~ I [ ; )  describes the direct coupling of 
a discrete state R"to the channel c. The r.h.s. of eq. (60)  describes the 
coupling between Ri'and c via other states and other channels. The sum of 
both parts vanishes in accordance with the fact that the @zw are discrete 
non-decaying states: The direct coupling between the discrete state R and 
the channel c is compensated by the coupling of this state via other states 
and other channels to the channel c. The square of eq. ( 60 ) plays therefore 
the role cof a rate equation. 

Eq. ( 60) follows from our basic assumption according to which we re- 
strict ourselves to the solution of the equation (H - E)qg= 0 without any 
source term and with Q& = Q9k + PQ&. The environment (P subspace) of 
the system (Q subspace) is well defined. It holds P = 1 - Q. 

The definition of P@% as an environment differs from the usual definition 
of an environment which is supposed to be a thermal bath in which the sys- 
tem is assumed to be embedded. The thermal bath is infinite, but it holds 
P = l - Q .  

Due to  the uncertainty relation in quantum mechanics, the shord-time be- 
haviour of the system is determined by the states which are strongly coupled 
to the continuum. In other words, if the coupling matrix element (@g?[ V1&) 
at E = ER" is large, then the decay is determined by this matrix element. 
If it is small, the time scale may be determined by a few fast transitions in 
the chain R'" c' j fZ +- c" + R' 3 c in the r.h.s. of (60). Deviations 
from the exponential decay law holding for an isolated resonance state may 
occur (see section 7). The corrections to the Breit-Wigner line shape can be 
written down analytically due to the relations (31 and ( 33 ) [M]. Threshold 
effects are considered numerically in [19] for one (isolated) resonance and two 
channels. 

Further, the different long-lived states are coupled to the conti~puum by 
more or less the same strength due to the 1.h.s. of (60) .  As a consequence, 
the conditions of equilibrium are fulfilled in the long-time scale (formation 
of a "compound nucleus"). 

As follows from eq. ( 31 ), the coupling matrix element (BR~v1~) = 
( ~ ~ R I v ~ ~ H )  is the amplitude of the partial width for the d e c v  of the stake 
R into the channel c. In the ( & R l ~ l ( $ ) r  all couplings of 'the r.h.s.. of (60) 
are involved. Fast and slow transitions are separate$, As a consequence, the 
partial widths obser~ed in a rea1istic system may be very &%rent from the 



square of the original matrix elements (Q?'' I VIJ;). 

The evolution of the nuclear system at high level density proceeds via the' 
short-lived resonance states and is determined by the coupling matrix ele- 
ments ( & I V J ~ & )  of the K short-lived states to the K open decay channels. 
That means, it proceeds mainly via break-up (pre-equilibrium) processes. 

5 The equation for the motion of one par- 
ticle 

As mentioned at the end of Sect. 2, the numerical solution of (H - P)Qe 
requires the knowledge of the one-particle or channel wavefunctions. These 
wavefunctions may be very different from the single-particle wavefunctions 
which describe the motion of single particles independently of each other in 
the central potential. The single-particle wavefunctions form the basis for 
the construction of the Slater determinants @g) used in the ansatz ((2 for 
solving eq. ( 1 ). In contrast to this, the channel wavefunctions contain all 
the correlations between the particles which are caused by the residual inter- 
action V. 

The basic equations of the channel wavefunctions are given by eqs. ( 34 ), 
( 35 ) and ( 36). The Hamilton operator is h = (tlHltl) with the projections 
hPP = (t/-kTpp]tf), hQQ = (tPHQQ It') and so on. It follows (see eqs. ( 54 ) to 

( 5 7 ) )  



Eqs. ( 61 ) to ( 64) are Schrodinger equations with source term arising 
from the (nonlinear) coupling between the two subspaces. Using these ecgua- 
tions, the one-particle Schrodinger equation in P + & without source term 
can be written down, 

with 

where 

according to ( 22 ). 

Using ( 25 ), it follows 

(tfle;) = ( t ' l ~ )  + C(t r l& + c,) A 
R 

where 

Eq. ( 65 ) is a linear equation. The relation between (or ( t l 6 ~ ) )  
and (tl@&) contains the nonlinear coupling betv~een the two subspaces. AS a 
consequence, the superposition principje holding for the (tj@k) in the whole 
function space Q + P is not valid for the (tl@iM) (or ( i i 6 ~ ) )  in Q + P? in 
general. 

In eqs, (61) to (CS), all conelations between the nucleons caused by the 
two-particle residual interaction V are taken into account includi~lg those 
via the continuum. The last ones are contanned in the non-diagonal ma- 
trix elements of HQP GL*) Bp*. The factors A and A are caiculJed in the 
frarnew-ork of the continuum shell model by using the channel wa~pefunctions 

(t;tl@%M>, ( 2 9 ~ ~ )  (tlJ&) 



6 The number of degrees of freedom in the 
open quantum system 

The number of degrees of freedom of a system is given by the number of 
states, in which the system can exist. This number is equal to the number 
N of resonance states (except for spurious states arising from the centre of 
mass motion) if the internal mixing VQQ of the residual interaction 

(see eq. (14)) is the dominant part. In this case, the properties of the system 
are determined by the average potential and the two-body residual interac- 
tion VQQ (nuclear structure calculations at low level density). If, however, 
VQ~G$!)V'Q dominates in the residual interaction (70) ,  then the number of 
relevant degrees of freedom is given by ithe number K of open decay channels. 
In such a case, the properties of the system are determined mainly by the K 
coupled channels (Feshbach unified theory of nuclear reactions [20]). 

The states of a system are mixed usually in the basic wavefunctions. As 
long as the N states @; are mapped to exactly N other states according to 
the relation 

the number of degrees of freedom does not change as a consequence of the 
mixing. The transformation ( 71 ) is linear. 

If, however, N states Q; are transformed to K other states with K # N ,  
then the number of degrees of freedom of the system will be changed. For 
K < N ,  it is reduced [22]. Such a map 

is nodinear, as a rule, due to the additional conditions for the coefficients 
a,j fouowing from 



In the nuclear system considered in this paper, the non-diagonal matrix 
elements ( @ ~ V l ~ ~ ~ l @ ~ ~ )  contain the internal mixing Win' (in the @iM) as 
well as the external mixing We"' of the resonance states (eqs. ( 37 ) and ( 38 )). 

The internal mixing W"' is linear in the residual interaction V. There- 
fore, it cannot lead to a reduction of the number of degrees of freedom. 
It leads to a "spreading" of the information over all N states if the states 
were originally unmixed. The information entropy increases with increasing 
internal mixing $Vint, 

Ai = lnlV - In1 > O . (741 

Here i  denotes the maximum information entropy 

of the system with N states. The system tends to thermal equilibrium. 

The external mixing Wext is nonlinear in V. In this case, a reduction 
in the number of degrees of freedom is possible. An information which was 
originally distributed over N states is concentrated finally in IC < N states. 
The information entropy of the system is reduced according to 

Ai=ZnK-lnN<O 

if I< < N. One observes formation of structures. 

The results of numerical calculations for nuclei have shown that external 
mixing can, indeed, lead to a "formation of structures in space and time'" 
[13, 141. At sufficiently strong external mixing, a system with N states and 
IC < N open decay channels forms IC states with short lifetime and small 
spatial extension. The remaining N- Ii states have a lifetime which is longer 
by at least one order of magnitude. Furthermore, the nucleons emi2ited from 
these states originate from the surface of the nxacleus mainly in contrast 
to those from the short-lived states. The I< short-lived states b e h w  like 
'horrnal'~esonances with ( 6 ~ [ & f ~ )  M P (eqs. Q 43 ) md ( 53 1, see sectinn 7) 
and 

They are characteristic of the system and relevant for its evoPution [&l. 



The remaining iV - K states are "slaved" by the Ii' short-lived states. 
They decay according to 

C 

due to (6n16R) > 1 [13]. They retain not only the nonlinearity but carry 
also a large information entropy due to their large number [l31 so that there 
is no contradiction of (76) with the s~econd law. Further, these states have 
generic (stochastic) properties 161. They determine the long-time behaviour 
of the system and not the evolution which proceeds at the short-time scale. 
The differences between the short-lived and long-lived states are the stronger 
the larger N - K is. 

Accordingly, the closed channels play only a minor role for the evolution 
of the system. Their contribution consists mainly in fluctuations caused by 
the virtual emission of nucleons. 

Thus, the number of (relevant) degrees of freedom of the system will be 
reduced if the resonance states are able to mix via the continuum of decay 
channels. This happens at high level density, starting at a certain critical 
value of the degree of overlapping of the resonances, when the external mix- 
ing of the resonance states cannot be neglected. 

7 The nucleus at low excitation energy 

It is very well known that the properties of the nucleus are described well by 
restricting to bound states as long as the level density is low. The relevant 
part of the function space corresponds to the Q subspace defined in section 
2. The lifetime against particle decay can be calculated by combining the 
nuclea structure calculatian with the R-matrix theory. That means, the 
P subspace is irrelevant for nuclear structure studies (nuclear spectroscopic 
investigations). 

At higher level density, the function space of open decay channels is rel- 
evant while the discrete states (compound nucleus states) and the closed 
decay channds are irrelevant. This statement is basic to the unified theory 
of nuclear reactions fo'ormu1ateb-l by Feshbach [28]. Let us call the two cor- 
responding subspaces the P%nd Q' subspaces. At low excitation energy of 



the nucleus, the number of open decay channels is much smaller than the 
number of resonances. 

Thus, the properties of a nucleus at  low and at high level density are 
described by models which differ essentially from each other. The transi- 
tion from one to the other description can be traced only if the Schrodinger 
equation is solved with an ansatz which contains both the relevant and the 
irrelevant; parts of the function space since at the transition a great deal of 
the relevant part becomes irrelevant and vice versa. The model described in 
section 2 (continuum shell model) fulfills this condition. 

In [5], the transition is traced numerically in the continuum shell model. 
It takes place at T/D FZ l, where is the average width of the resonance 
states and D is the average distance of two neighboured states. The transi- 
tion takes place in accordance with the known properties of the nucleus at 
low and at high level density. It is P + Q = P' + Q' = 1. 

Analytically, the residual interaction between two nucleons consists of two 
parts 

(see eq. ( 14 )). The corresponding mixing matrix elements are 

WRtR = wint R'R + wert R'R 

= (@g l ~ l r n k " ' )  + (m;Ylv~p'vlm;~) (88) 

according to ( 37 ), ( 38). As long as f /D << 1, it fdlows 

to a good approximation while for l?/D $> 4, 

~ e z t  - R'R 

a (mRt ~ V G ~ ~ V ] @ ~ )  (;Eb2) 

since VQQ can be neglected relatively to ~ e { ~ ~ ~ ~ $ + ) l l p ~ ]  in (79). h this 
case, the @R can be obtained, to a good approximation, from a statistic4 
distribution of the eigenvalues and contain, in this manner, R ~ { v ~ ~ G ~ ' v ~  ] 
(and VQQ) . Usually, the distribution of the Gauss Qrthogonatl Ensemble 
(GOE) is used [l'?]. Then 



It is clear that the symmetry properties of the system under the conditions 
(81 ) and (83 ) are different. In the first case, the symmetry is determined 
by H. while this symmetry is broken in the second case. It is replaced by 
a symmetry against formation and decay of the compound nucleus ("time 
reversal symmetry"). 

In heavy nuclei, R ~ { V ~ ~ G Y ' V ~ ~ }  may be large and create strongly mixed 
states @R even if ITTA{V~~G$!)V~~} vanishes or is very small as it is the case 
for discrete states below the particle decay thresholds and for resonance states 
just above the first threshold for particle decay (e.g. neutron resonances), 
respectively. This can be seen from eq. (39  ) to which the matrix elements 
(@SM] VItk) at all energies contribute due to the integral and from eq. ( 51 ) 
or ( 52 ) where the corresponding matrix elements (@SM IVj&) or ( C R  I V 16) 
are taken at the energy of the system. The resonances in the very neigh- 
bourhood of the elastic threshold have small matrix elements ( 83 ) and small 
widths, therefore, in any case, i.e. also in that case in which the level density 
is high and the conditions for the trapping effect, eq. (82), are fulfilled. 

Let us multiply the residual interaction V in the matrix elements WafR 
by a in the same manner as it is done in the numerical calculations [5, 6, 11, 
13, 141. Then, the properties of the system can be considered as a function 
of the parameter a. For small a, the resonances do not overlap and is 
small. Therefore, W'la E WR<IR. At some critical value a,,, the resonances 
start to overlap and M W;IR. For a >> a,,, WRfR E W;/R. 

In the first case (WRtR W W'sR), the relevant part of the function spacc 
is the Q subspace. The coupling to the continuum does (almost) not influ- 
ence the spectroscspic properties of the nuclear states. The symmetry of 
the system is determined by I&. It is only weakly disturbed by the residual 
interaction V. 

In the third case (WRtn E W&,R), the relevant part is the P' subspace 
of open decay channels since the number of short-lived states is equal to the 
number of open decay channels. This equality [8] is a consequence of the 
unitarity of the S-matrix as can be seen from the continuum shell model 
equations: The resonance park of the S-matrix, eg. ( 3 3 ) ,  reads 

Let us consider an ensemble of JV- resonances which lie densely in an energy 
region AE comparable to the uncertainty of energy of the system (E E El M 



Ez...  FZ EN).  Due to external mixing, they interfere strongly and one gets 
for estimation 

where the RI denote the relevant fast modes. According to the unitarity of 
the S-matrix, 15'$)1 1 2 or 

Therefore, the number Rf of relevant fast modes cannot be larger than 1 in 
the case with one open decay channel (and (6nf16B,) 1). An analogous 
conclusion can be drawn in the many-channel case: The number of fast rel- 
evant modes is exactly equal to the number K of open decay channds. The 
symmetry of the system is determined, therefore, by its coupling to the P" 
subspace of open decay channels. 

Thus, by means of varying the parameter a the transition from nuclear 
structure calculations at low level density to coupled channels calculations 
at high level density can be traced. This is in accordance with the results 
of numerical calculations [5, 13, 141. Expressions of the type ( 81 ) are used, 
indeed, in the nuclear structure calculations at Bow level density while an 
expression of the type (83) is basic of the shell model approach to nauc1e;es 
reactions B171 at high level density. Here, the open decay channds are seke- 
vant (unified theory of nuclear reactions 1201). 

Further, the parameter a appears linearly in W&R, eq. ( 81 ). At low levd 
density, the superposition prkciple holds, 16~16~) M since the resonance 
states do not overlap and the externd mixing is s d l .  The decay takes 
place according to an ezponendial law as follstvs h r n  the solution of the time 
dependent Schrodinges equation: 



where 

Here, is the solution - of the . - time independent Schriidinger equation with 
the eigenvalue I"R = ER - : (at the energy ER = s R ( ~  = ER) of the 
system) and (ijinlBR) = 1 (threshold effects are considered in [IS]). It exists 
therefore a natural scale I" what is very well known from the numerous nu- 
clear structure calculations at low level density. The symmetry  properties of 
the system are determined by H. as stated above. 

In W'tR, eqs. (82) and (83), the parameter a appears nonlinearly. Here, 
the superposition principle does not  hold for the trapped (long-lived) states, 
( < P R l < P ~ )  > 1 in general, and the decay of the long-lived states takes place 
according to a power law [21]. A natural scale does not  exist for the long-lived 
states as it is very well known from, e.g., the neutron resonances in heavy - " 

nuclei. ~n the eigenvdue equation, appears instead of G, see eq. 
(44). The symmet ry  arising from Ho is broken. 

For the short-lived states a t  high level density holds (&R]@R)  1. This 
follows from the unitarity of the S-matrix according to ( 86 ) since the widths 
of these states are near to the Wigner limit (spectroscopic factor 1). More- 
over, i t  is proven numerically [13]. Thus, the few short-lived states appearing 
at high level density behave very much like the isolated states at low level 
density. They determine the evolution of the system but cannot be seen in 
high-resolution experiments, where they appear as a background. 

In table 1, the properties of nudear states at low and high level density 
are summarized. The words "repPar" i d  "chaotic" motion are used in an 
analogous manner as in classical systems [E]. The short-lived states at high 
level density are not considered in table 1 since they are not investigated in 
high-resolution experiments (although they are relevant for the evolution of 
the system [20]). 

Thus, the redistribution happening in an open quantum mechanical sys- 
tem at a cpitical vdue  am of a ''contro8 parameter" a takes place in accor- 
dance with our knowledge on the properties of nuclei at  low excitation energy. 
The nudear structure and coupled channels approaches describe the different 
behaviour of the nucleus belotv and beyond the critical value of the control 
par meter. Further, this redistribatn observed in the open nuclear system 
a t  low exeitaticana energy and desc~bed by the continuum shell model, satifies 



Table l: Nuclear states in high resolution experiments 

?t Low level density 

- Standard nuclear structure theory: 
H = H Q + V  
closed system Q = 1 
symmetry of 110 spectroscopy of discrete states 

- Open quantum system: 
wRRf = wgj, = (m$) lvjmg)) 
regular motion of the nucleons: 
- (6R16R) = 1 
- exponential decay 
- natural scale 

?t High level density 

- Standard nuclear reaction theory: 

H;: = 114~ + vQP ~ j t ) v ~ ~  
l 

open system Q < l 
symmetry breaking -+=+ statistical distribution of discsek astakes 

- Open quantum system: 
W R ~  M I V S ,  M (@R"VG;VI@R) 
chaotic motion of the nucleons: 
- (6R16~) > l 
- power law decay b 

- no natural scale 



the same rules which are known from other selforganizing systems. 

8 Summary 

In this paper, tbe formalism of the continuum shell model is reformulated by 
emphazing the origin of the interferences which lead to the trapping effect at 
high level density. The interferences are caused by nonlinear couplings be- 
tween the system (Q subspace) and the environment (P subspace) in which 
the system is embedded. The wavefunctions, energies and widths of the 
(decaying) resonance states follow from the diagonalization of an effective 
Hamilton operator which is non-Hermitean due to the (non-linear) coupling 
between the system and its environment. 

The relation between the wavefunctions l I R  of the discrete states (or the 
wavefunctions !?lB of the resonance states) and the solution g'& of (H - 
E)\Irk = 0 in the full function space is nonlinear, in general. The super- 
position principle in the whole function space Q +- P holds only for the X@$ 
ilnd - approximately - for the short-lived states, but not for the trapped ones. 

As a result, selforgmization in a quantum system is caused by similar con- 
ditions as in a classical system although the mathematical formalism used is 
csmpietely different. At a, critical value of the degree of overlapping of the 
resonimces, a redistribution of the spectroscopic properties takes place as a 
consequence of which states with very different lifetimes appear. The num- 
ber of degrees of freedom which are relevant for the evolution of the system 
is reduced. ""Srructures in space and time" are formed. The corresponding 
short-lived states are described well by (almost) linear equations. They decay 
accordirng to an exponential law and it exists a natural scale. The long-lived 
(slaved) states decay according to a power law and do not have a natural 
scale due to the non-nedigible nonlinearities in the equations. The proper- 
ties cof the open system below and beyond the critical value of the degree of 
resonance overlapping are very '~ve11 hewn  in nuclei at low excitation energy 
and are described well by phenomenolagicd models. 
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