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Abstract

A model for the description of an open quantum mechanical many-
particle system is formulated. It starts from the shell model and treats
the continuous states by a coupled channels method. The mixing of
the discrete shell model states via the continuum of decay channels
results in the genuine decaying states of the system. These states
are eigenstates of a non-Hermitean Hamilton operator the eigenvalues
of which give both the energies and the widths of the states. All
correlations between two particles which are caused by the two-particle
residual interaction, are taken into account including those via the
continuum.

In the formalism describing the open quantum mechanical system,
the coupling between the system and its environment appears nonlin-
early. If the resonance states start to overlap, a redistribution of the
spectroscopic values (”trapping effect”) takes place. As a result, the
complexity of the system is reduced at high level density, structures
in space and time are formed. This redistribution describes, on the

~ one hand, the transition from the well-known nuclear properties at

low level density to those at high level density and fits, on the other
hand, into the concept of selforganization. :



1 Introduction

As is well known, the states of many quantum systems have a finite lifetime.
An example are the states of nuclei most of which decay. In older papers,
either the discrete states of the system or the decay products are described
explicitely while the respective other part of the configuration space is taken
into account in a much worse approximation. An example is the description
of nuclear reactions in the framework of the shell model together with the
R-matrix theory. In these calculations, the nuclear structure of the discrete
states is relevant. There is no feedback at all of the decay products onto
the shell model states. Another example is the unified theory of nuclear
reactions in which the open decay channels are the relevant part while the
nuclear structure is described by means of statistical assumptions.

Recently, the properties of quantum systems with decaying states are in-
vestigated with a renewed interest in the framework of different models by
taking into account the feedback of the decay products onto the discrete
states [1 — 14]. In most cases studied, the number N of resonance states is
much larger than the number K of open decay channels. One of the results
obtained is the trapping effect which appears if the average width T of the
resonances is of the same order of magnitude as the average distance D of
two neighboured resonance states. In this case, a redistribution takes place
inside the nucleus which results in the formation of K short-lived resonance
states together with N — K long-lived ones. The time-scales of both types
of states are well separated from each other.

The trapping effect has been observed theoretically in different models.
It is shown [1 — 14] to occur in realistic many-body quantum systems such
as nuclei and also, e.g., in problems of quantum chemistry. In nuclei at
low level density, the nuclear spectroscopic properties are relevant, while at
higher level density, the properties of nuclei are described well by the unified
theory of nuclear reactions where the open decay channels are relevant. It is
exactly this transition which is described by the redistribution taking place
inside the nucleus at the critical degree T/D = 1 of resonance overlapping [5].

The trapping effect is the result of the interference between IV overlapping
resonances. The physical interpretation of the trapping effect as the forma-
tion of "structures in space and time” by selforganization is traced in some
papers [5, 13, 14]. It seems to be supported by many results obtained. In
any case, the number of relevant degrees of freedom of the system is reduced
as a consequence of the trapping effect. The system becomes less complex.



Selforganization in classical systems appears due to nonlinearities in the
rate equations by which the coupling of the system to its environment is
characterized. As a consequence, the superposition principle does not hold
and the decay occurs according to a power law [15].

In quantum mechanical systems embedded into the environment of decay
channels, selforganization is the result of non-trivial interferences [5, 8, 13].
The relation to non-linearities in the basic equations is not mvestlgated thor-
oughly, up to now.

It is the aim of this paper to write down the formalism for the description
of an open quantum mechanical system. In section 2, the method is desribed
for solving the original Schrédinger equation with an ansatz containing both
discrete and continuous states. This method (”continuum shell model”) is’
formulated several years ago {16] in order to describe experimental nuclear
reaction data at low energy. In section 3, the properties of the wavefunctions
describing the nuclear states embedded in the continuum of decay channels
are investigat'éd analytically. The extraction of rate-like equations and their
relation to the original Schrddinger equation is performed in section 4. In
section 5, the equation for the motion of one particle of the many-body sys-
tem is written down. Here, all correlations between two particles which are
caused by the two-particle residual interaction are taken into account. In
section 6, the number of degrees of freedom in an open quantum system is
investigated. It is reduced by selforganization at a certain critical value of
the degree of overlapping of the resonances. The transition from low to high
level density in nuclei is traced in section 7. It is described not only by the
model formulated in section 2 but fits also into the concept of selforganiza-
tion. Some conclusions on the question of the origin of selforganization in
the quantum mechanical equations are drawn in section 8.

2 Solution of the time-independent many-
particle Schrodinger equation

In the continuum shell model of the nucleus, the Schrodinger equation

(- EB)¥g =0 )



is solved with the ansatz

N A &0
U= br0R + 3 | dFagxg, (2)

R=1 : ol=1" % ’
containing both discrete and continuous states. The N discrete states are de-
scribed by the @g) which are antisymmetrized products of A single-particle
wavefunctions in bound states (Slater determinants) while the A wavefunc-
tions x% are the channel wavefunctions with A — 1 particles in bound states
of the target (or residual) nucleus and 1 particle in a scattering state. The
sum. runs over open as well as closed channels. The Hamilton operator is
H = Hy+ V where V is the two-particle residual interaction and Hy de-
scribes the central potential in which the particles move. The target nucleus
is described by the same Hamilton operator, i.e. the channel wavefunctions
X% contain the residual interaction V between the A — 1 particles bound
in the target nucleus. The residual interaction between the different decay
channels is not included into the channel wavefunctions x%.

A special problem of nuclear physics is the existence of single-particle
resonances. They have a large amplitude inside the nucleus like bound states
but behave asymptotically like scattering states. In order to make possible
spectroscopic investigations, a ”cut-off technique” is used for them by sub-
dividing them into two parts: The part from R = 0 up to the cut-off radius
Ry is treated together with the wavefunctions of the bound states while
the part for R > Ry is included into the set of scattering states [16]. Reu:
is about a factor 2 larger than the nuclear radius. The basic set of single-
particle wavefunctions obtained in such a manner is orthogonalized [16].

Then, the total function space is subdivided, by using the projector op-
erator technique, into the two orthogonal subspaces P and @ under the
condition

P+@Q=1. \ ' (3)

The subspace @ contains the many-body states of A nucleons formed by
products of the wavefunctions of the single-particle bound states and of the
single-particle resonances up to the cutoff radius R.,;. Therefore, the struc-
tural part in the continuum shell model is the same as in the standard shell-
model approach, ‘

N o
Q=> 125") (@3]. (4)

R=1



The eigenstates @3 of the Q-projected Hamiltonian Hpg,
(Hoo — ER) @3 =0, (5)

are called [16] "quasibound states embedded in the continuum” (QBSEC).
These QBSEC’s differ from the "bound states embedded in the continuum”
(BSEC) introduced by Mahaux and Weidenmiiller [17] by the contribution
of the single-particle resonances in the interior of the nucleus (”cut-off pro-
cedure”).

The subspace P contains the many-body states with A — 1 nucleons in
bound orbits and one nucleon in a scattering state as well as the part of the
single-particle resonance wavefunctions beyond the cut-off radius R.:. The
coupled-channel wavefunctions ¢% follow from

(Hpp — EM) 5;«7(+) =0, (6)

where Hpp is the P projected part of the Hamiltonian H. It is

F= 5_2/ dE (€87 (1)) | (7)

In the following, the method for the solution of eq. (1) is represented.

By multiplying (1) with P and @, respectively, from the left, it follows
(Hpp ~ E) PUL = —Hpq QU% {8)

and |
(Hoq — E) QU% = —Hgp P . {9

Here, Hpg = PH(E) and so on. By“us’ing the definition {6) of the coupled-
channel wavefunctions {3 ) and the Green function Gg’) in the P subspace,

G = P(EW) — Hpp)™'P {10)
one obtains from {8)
PO = £ 4 G Hpg QU . (1)
From {9) and {11}, '
(Hoo — E) QUEY = —Hopti " — Hop GFY Hpo QUEY  (12)



(Haq + Hop G Hpg — E) QUEY = —Hopel®) |

Defining the operator
| 7 Heff = Hgpg+ Hgp Gg:—*-) Hpg
= Haq+Vor G Veq,

eq. (13) can be written as follows

QUEY = (B — HGY)™ Horts™ .
The :cmsatz

QuE) = ¥ BPog
R

with the shell model wavefunctions ®Z¥ obtained from (5) leads to

ZB(+)®SM = (B — HZZ)™ Hop e3Y

and

B = S (O8I - B ) @RI
. Rt

From (11),
v = puit 4 Qo
6 4+ (G Hpg + 1) QUEH
and with (16),

i =57 + 301+ G Hpo) B
R

(13)

(14)

(17)

(18)

(19)

(20)

We define now the wavefunctions wg as solutions of the coupled channel

equations with source term
(Hpp — E®Y 0 = —Hpaa3M .
Then,

o = ey ol
R

(@FM(E — HI) @) (@3 ieshy
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where
Qg) @%M + wg) h

1+GW Hpg) oM. (23)

The diagonalisation of the operator HQQ,
eff & I % x
Hyd 8 = (Bn—5Tr) 8, (24)
with the orthogonal matrix Q leads to
c c A r iz -1 15— 12clH)
uE? = N1 300 (B-Ba+ 5T (O IVIET) . (29)
R ;

where the identity
(@M |0 Y (0HF O™ T018M) = (BF|(HEE) M @iM) (26)

is used. Further,

6 = & 4o

1+ G Hpg) &Y (27)

is the wavefunction of the resonance state R while ER and T'x determine the
energy and width of it. Q(+) as well as Ep and T'p are energy dependent
functions. The 1dent1ﬁcat10n of Ep= ER(E Eg), Tr= T r(E = ERg) and
Qr Q(+) (E = Egr) with the spectroscopic values energy, width and wave-
function of the resonance state R is meaningful since the cut-off technique
for the single-particle resonances is used in the continuum shell model [16].

The wavefunctions ‘i(-’") can be represented as
5 = ¥ alfh 0 (29

R,A

with complex energy dependent coefficients appr and Y prahm = L.

His-
P = X 68 v
= (1+GHV) 3. (29)
Together with (23} and {27), it follows [18] |
@RIV = @ i) (50)
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and

QR IVIXED) = @R i) - (31)

The matrix elements
i = @) QR VIxE) (32)
are energy dependent complex functions. The values 71/ = ”1/ HE = ER)

are the amplitudes of the partial widths. They are complex if the resonances
overlap.

‘"The S-matrix reads [5]
| Scc' = 621'60 - 227T<X§(_)IVI\IIC(+)>

) , ~1/2* ~1/2
e = 2in(GOWVIEE?) i3 o (33)
— (Br—iTr)

where egs. (25), (31) and (32) are used. In (33), the 52 T as well as
Ep are energy dependent functions.

The representation of U% in egs. (22) and (25) is the solution of eq.
(1). In(22), it is represented in terms of three sets of wavefunctions {$3M},
{¢5} and {wgr}. All three sets are obtained by solving standard equations:
The {®3M} are solutions of the shell model equations (5 ) while the {£4} and
{wr} follow from the solution of coupled channel equations without and with
source term, egs. (6) and (21 ), respectively. The coupled channel equations
are solved in the channel representation. The corresponding equations read

ZI(fIHPP — Elt){#'|¢z) =0 (34)

and

S (tlHpr — BI)(tlon) = =3 [ dB' GIE5) (G5 1HIORY) . (39)

Here, |t) is the wavefunction of the target (re51dual) nucleus, (£|£5) is the
scattering wavefunction in coupled channel representation (target+nucleon),
and (¢t|Hpp|t') is the corresponding one-particle Hamilton operator in the P
subspace. Eqgs. (34) and (35 ) are solved by using the relation P =1 — Q.
To that purpose, the channel representation of the shell model wavefunctions
@M in the Q-subspace is needed,

S (tHgq — Ef) (#1257 =0. (36)

£



Here and in the following, the (+) and (—) at the wavefunctions are omitted.

Details of the numerical solution of the equations given above can be

found in [16]. Here, the approximations underlying the solution method
(” continuum shell model”) are summarized.

1. The existence of a central potential in which the nucleons move.

The shape of the potential is not calculated in a selfconsistent manner

but assumed to be of Woods-Saxon type. It is assumed to be indepen-

dent of the excitation energy of the nucleus. The parameters of the

potential are fitted to experimental data. They are assumed to be the

same for the compound nucleus consisting of A nucleons and for the
“target (residual) nucleus consisting of A — 1 nucleons.

. U = PU + QV is assumed to be the full function space.

That means, no other decay channels as those described by P¥ with
one nucleon in relative motion to the residual nucleus consisting of A—1
nucleons are considered. The states of the residual nucleus are assumed
to be stable. Due to the assumption P+ = 1, the unitarity condition
of the decay process is fulfilled.

. The residual interaction V between two nucleons is of the same type
for bound and unbound nucleons.

In the numerical calculations of the continuum shell model, V is spin
and isospin dependent and V o §(r — r').

. Truncation of the configuration space.

In the numerical calculations, the configuration space is truncated in
the same manner as in shell model calculations. In every calculation,
the number IV of resonances of the many-particle system and the num-
ber A of open and closed decay channels is fixed. N and A can be
varied independently of each other.

In the continuum shell model, the equations (5), {6) and {21 ) are solved

numerically without further approximations. Some specific features of the
calculations are the following.

1. The energy "dependence of the coupling matrix elements (Qgr|V XE)
= (0FM|V]¢%) (amplitudes of the partial widths of isolated states) is
taken into account.

. The energy dependence of the eigenvalues &p = Eg — & Tr of H ej 4
(energies and widths of the resonances) is taken into acount. There’fme
deviations from the Breit-Wigner line shape appear.

9



3. The calculations are performed with non-vanishing energy dependent

channel-channel coupling (x%|V|x%:) where V is the residual interac-
tion. '

4. Due to the cut-off technique used for the single-particle resonances, the
number of shell model states is exactly equal to the number of resonance
states. The eigenvalues En= ER— L PR of HQQ at the energy F = Ep
of the system can be interpreted as the energies Fr = ER(E Egr)
and widths U = Tr(E = Eg) of the resonance states R [16].

The cut-off technique for single-particle resonances leads to QBSEC

(" quasibound states embedded in the continuum”) instead of the BSEC

© ("bound states embedded in the continuum”) [16]. The cut-off tech-

‘nique for single-particle resonances has no influence on the calculated

cross section. The only aim of doing the cut-off technique is to make
possible nuclear spectroscopic investigations.

5. The level distribution follows from a shell model calculation. The en-
ergy shifts AE = E5M — Ep(E = Eg) due to the coupling of the system
to the continuum of decay channels are of the order of magnitude of
the widths, as a rule.

3 INonlinearities

Nonlinearities occur in the equations of the continuum shell model at differ-
ent places.

The internal mixing of two basic states with the wavefunctions <I>( Y and
(Slater determinants) i is linear in the residual interaction V,

Wit = (@@ v]edy. (37)

It is contained in the ¥ according to (5). The external mixing is nonlinear

inV,
Fh = <@SM1HQPG“’HPQ1@SM>
- / dE' (S [VIEL ) (ED — BNV e VIasH) . - (38)
The difference between the @M and @y is caused by W according to (5 ),

(14) and (24). The value of W** is a measure for the degree I'/D of over-
lapping of the resonances where I is the average value of the T'r and D the

10




average distance of two neighboured resonances. The larger T'/D, the larger
We=t i.e. the larger the overlap region of the resonances where the nucleons
do not clearly belong to exactly one of the resonance states. a

The external mixing is most important for the redistribution processes -
and the trapping effect occuring in nuclei at high level density [5]. A part of
it can, of course, be simulated by an additional part to the residual interac-
tion in a typical nuclear structure calculation which is performed in a closed
system with only bound states. In such a case, the energy shift according to

AB=YP [7 aB @§Vieg) (B9 - B) (GIVIeE ) (39)

is effectively taken into account by a phenomenological residual interaction
(‘P is the principal value of the integral [17]).

The behaviour of the nuclear system is investigated in several papers as
a function of the strength of the mixing matrix elements W. In [1, 5], the
distance D between the resonance states is variied by hand while all the other
values are fixed. By this, the average degree of mixing I'/D of the resonances
and therefore We is changed. The same is achieved in {6, 7, 11, 13, 14],
where the mixing W via the residual interaction V' between an unbound
and a bound particle as well as between two unbound particles is varied while
the mixing W™ via V between two bound particles is fixed to its realistic
value. The external mixing W**, eq. (38), of two states R and R’ contains
the residual interaction V' in a nonlinear manner.

In another paper [10], W= is fixed while W** is varied. The internal
mixing W¥* depends linearly on V, eq. (37). The external mixing W=
is, however, nonlinearly in W because both matrix elements in eq. (38)
depend on W** via the wavefunctions ®3¥ and ®%}7. Thus, the behaviour
of the system described as a function of W< or as a function of W™ is
expected to show the same general behaviour. In both types of calculations,
the trapping effect is observed, indeed. :

Further, the Schrédinger equation (H — E)¥% is solved in Section 2. This
is, of course, a linear equation for U%. Investigating the properties of an open
quantum mechanical system, we are, however, interested not in the ¥§ but in
the wavefunictions of the resonance states. These wavefunctions are given by
the Qr(E) at the energy E = Ejp of the resonances. For isolated resonances,
0n = Qg

1



The Qg and Qg are proportional to the @5 and OIM | respectively. The
- ®3M are solutions of a Schrédinger equation in the @) subspace (@ < 1),
eq. (5), while the @ are solutions of an equation the Hamilton operator’
of which is non-Hermitean, eqs. (14) and (24). The eigenfunctions &5 are
complex and orthogonal,

(BRl%R) =1. (40)
Since the ®5M in (38) are real, it follows W = Wt and
Hiidr = Epdr, (41)
Héqu ot = ot (42)
Frozﬁ (40), one obtains ,
(Brl®r) >1. (43)

Egs. (24) and (43) lead to
(BrlH18m) = (Br— ST)Erlm) . (1)
Therefore the superp051t10n principle does not hold for the ®p, generally\
The eq. (24) can be rewritten in the following form ‘
(H—Er)®r = X Bp - (45)
where
X ={1—Hop G} Hrq. (46)

Eq. (45) is a Schrodinger equation with source term. The & are functions
of the () subspace while the source term has components in both subspaces
with nonlinear coupling. If @ =1 or Hpg = Hgp = 0, eq. (45) turns into a
usual Schrodinger equation without any source term and with real eigenval-
ues.

As foﬂoWS from (22 ) together with (14 ), the relation between ¥4 and a

special ®5M contains the coupling (3M|VI|(E) = (Qr[V]x%) between the
two subspaces via HO({ in a nonlineer manner, in general,

(@RV]U%) = Z(@ MI(B - By eR 1 eR Vi) - (47
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If (®5M|V]£S) « bge for K states and (®FV|V|£L) ~ 0 for the remaining
states, then the relation is (almost) linear in the coupling matrix elements
for K states.

The relation between ®x and W% is given by

(Bal05) = (B~ Bn + 2T5) " (B2]VI65) (alds) (48)

according to (25). If (®r|®r) ~ 1 then the relation between &5 and TS is
(almost) linear. This happens for the K broad states in the strong coupling
regime with K open decay channels [13].

According to (44 ), the widths Tr follow from the relation

Tm{(&xlH Effl@R»:—%fR (Baldn) (49)
It holds ,
Im{(®r|H54|2R)} = g;aziajafm{<.®fM|H5€ 25™)} (50)
and
I {(B 1) = —s UEMVIE) (Ve . )
Therefore, |
Im{(®p|H5|0R)} = - 3 ®r|VIEs) (€5]VI®R)

= —’2’2 7Rl (52)
by using the definition (32). From (49) and {52 ), it follows

Tr (®r|®R) =3 |3rd| - (53)
That means, only if (®r|®r) = 1, the width T'n of the state R is (nearly)
equal to the sum of the partial widths Yg,. Such an assumption is basic to the
method of calculation of widths in the frame of the shell model + R matrix
formalism. It is justified for non-overlapping resonance states as well as for
the short-lived states formed at high level density as numerical calculations
have shown [13] {see also section 7).

13



4 Coupling between system and environment

The three basic equations (5), (6) and (21 ) can be rewritten in the following'
manner. Eq. (5) reads

(H — EZ™) @3 = Hpqo3¥ . (54)

The ®3M are functions of the @)-subspace while the source term satisfies the
relation Q - Hpo®3M = 0.

From (21) it follows
(H—E)wg= —HPQ@}%M + Hop Gg) Hpg @}%M . (55)

It holds @ - wgr = 0 while the source term has components in both subspaces.
Eqgs. (54) and (55) together lead to

(H — E) Qp = HopGW Hpg ®3M — Hpo@SM(1 — Sppgm) .. (56)
In an analogous manner, one gets from (6)
(H —E) ¢ = Hop (% - (57)

The ¢§ are functions of the P subspace while the source term satisfies
P - Hgpég =0.

Using the expression (22 ) for the solution of {1 ), we obtain

(H-E)Is = 0
(H - E){&h + 3 (BR" +wn) x
RR
(ORI(E™ — Hag ) oRM) (23 IVIER)} . (58)
By using (56) and (57), it follows

0 = Hopty+ Y {HorGy Hpg 35" — Hpg®3"(1 — b5 pgm)} x

R,R!
(@B — HZ) M OR) (2R VIeE) - (59)
Multiplication (59) by @7 from left leads to J
(@FVieg) = — (@3 |Hop G Hpl®FM) x
RE
21 |(E® — Hoq — Hop GF Hpo) ™' |83) x
( SMWI&;) (60)

14



Due to the relation (30), (®33|V|£%) describes the direct coupling of
a discrete state R” to the channel ¢. The r.h.s. of eq. (60) describes the
coupling between R” and c via other states and other channels. The sum of
both parts vanishes in accordance with the fact that the ®%M are discrete
non-decaying states: The direct coupling between the discrete state R” and
the channel ¢ is compensated by the coupling of this state via other states
and other channels to the channel ¢. The square of eq. (60 ) plays therefore
the role of a rate equation.

Eq. (60) follows from our basic assumption according to which we re-
strict ourselves to the solution of the equation (H — E)¥%= 0 without any
source term and with U% = QU% + PUS. The environment (P subspace) of
the system (@ subspace) is well defined. It holds P =1 — Q.

The definition of P¥% as an environment differs from the usual definition |
of an environment which is supposed to be a thermal bath in which the sys-
tem is assumed to be embedded. The thermal bath is infinite, but it holds
P=1-4Q.

Due to the uncertainty relation in quantum mechanics, the short-time be-
haviour of the system is determined by the states which are strongly coupled
to the continuum. In other words, if the coupling matrix element (®3M |V ]¢5)
at E = Epg- is large, then the decay is'determined by this matrix element.
If it is small, the time scale may be determined by a few fast transitions in
the chain R” = ¢ = R = ¢” = R' = ¢ in the r.h.s. of (60). Deviations
from the exponential decay law holding for an isolated resonance state may
occur (see section 7). The corrections to the Breit-Wigner line shape can be
written down analytically due to the relations (31 ) and (33 ) {18]. Threshold
effects are considered numerically in {19] for one (isolated) resonance and two
channels.

Further, the different long-lived states are coupled to the continuum by
more or less the same strength due to the r.h.s. of (60). As a consequence,
the conditions of equilibrium are fulfilled in the long-time scale (formation
of a "compound nucleus”).

As follows from eq. (31), the coupling matrix element (®p|V|¢g) =
(Qg|V]x%) is the amplitude of the partial width for the decay of the state
R into the chammel c. In the (®a|V|¢%), all couplings of the r.h.s. of (60)
are involved. Fast and slow transitions are separated. As a consequence, the
partial widths observed in a realistic system may be very different from the

15



square of the original matrix elements (@3

VIEE).

The evolution of the nuclear system at high level density proceeds via the’
short-lived resonance states and is determined by the coupling matrix ele-
ments {Qr|V|x%) of the K short-lived states to the K open decay channels.
That means, it proceeds mainly via break-up (pre-equilibrium) processes.

5 The equation for the motion of one par-
ticle

As mentioned at the end of Sect. 2, the numerical solution of (H ~ E)¥%
requires the knowledge of the one-particle or channel wavefunctions. These
wavefunctions may be very different from the single-particle wavefunctions
which describe the motion of single particles independently of each other in
the central potential. The single-particle wavefunctions form the basis for
the construction of the Slater determinants ® used in the ansatz (2) for
solving eq. (1). In contrast to this, the channel wavefunctions contain all
the correlations between the particles which are caused by the residual inter-
action V. o ‘

The basic equations of the channel wavefunctions are given by eqgs. (34),
(35) and (36). The Hamilton operator is b = (t|H|t) with the projections
hpp = (t|Hpplt"), hgo = (t|Hgglt') and so on. It follows (see egs. (54) to
(57)) _

Z(tIH - ERYI)(125Y) = D _(tlHpolt) (¢197") (61)

tl

L(H — B )(tlwr) = 2 {(t|Hor GE) Hpglt') —

(t|Hpalt)} (107 (62)

SOEE - E)# {3 +wa)) = D {(t1Hopr GE ) Hpqlt') — (t|Hpglt') x

£

(1~ 8gpg)} (H1OR") (63)

16



DG — E[)(¢1eg) = Y (t|Hoplt) (t1€5) - (89

tl -tl

~ Egs. (61) to (64) are Schrodinger equations with source term arising
from the (nonlinear) coupling between the two subspaces. Using these equa-
tions, the one-particle Schrodinger equation in P + @ without source term
can be written down,

;(tlH — Blt)(#'|¥5) =0 (65)
with
(F19%) = (¢léz) + %(t’@f:{” +wr) - A (66)
where |
A= SUOM|(E — B 02y (@3 |VIéx) (67)

R

according to (22).
Using (25), it follows
(#]95) = ()¢5 +§<t'JéR+a»R> A (68)
where

P

®n|V|¢s) (2r|®R) (69)
(E— Ep+ %f‘R) ‘

Eq. (65) is a linear equation. The relation between (£{®3) (or (t|dr))
and (¢|¥%) contains the nonlinear coupling between the two subspaces. As a
consequence, the superposition principle holding for the ({[¥%) in the whole
function space @ + P is not valid for the (2|@3M) (or (t|®r)) in @ + P, in
general.

In egs. (61) to (65), all correlations between the nucleons caused by the
two-particle residual interaction V are taken into account including those
via the continuum. The last ones are contained in the non-diagonal ma-
trix elements of Hop Gg) Hpg. The factors A and A are calculated in the
framework of the continuum shell model by using the channel wavefunctions

(H®FM), (tlwon) and (tl¢E).
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6 The number of degrees of freedom in the
open quantum system

The number of degrees of freedom of a system is given by the number of
states, in which the system can exist. This number is equal to the number
N of resonance states (except for spurious states arising from the centre of
mass motion) if the internal mixing Vg of the residual interaction

HEE — (Ho)ag = Vag + VarGe Veq (70)

(see eq. (14)) is the dominant part. In this case, the properties of the system
are determined by the average potential and the two-body residual interac-
tion Vgq (nuclear structure calculations at low level density). If, however,
Vor Gﬁ;“) Vpg dominates in the residual interaction ( 70 ), then the number of
relevant degrees of freedom is given by the number K of open decay channels.
In such a case, the properties of the system are determined mainly by the K
coupled channels (Feshbach unified theory of nuclear reactions [20]).

The states of a system are mixed usually in the basic wavefunctions. As
long as the N states ®; are mapped to exactly NV other states according to
the relation

N
& =Y a;® i=1,.,N (71)

=1

the number of degrees of freedom does not change as a consequerce of the
mixing. The transformation (71) is linear.

If, however, N states ®; are transformed to K other states with K # N,
then the number of degrees of freedom of the system will be changed. For
K < N, it is reduced [22]. Such a map

N . .
Xe=2.a5%; c=1,.,K (72)
ot

is nonlinear, as a rule, due to the additional conditions for the coeflicients
a.; following from

¥ =0 c:I{—E—-l,,N - (73)
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In the nuclear system considered in this paper, the non-diagonal matrix
clements (@5} Hg/d |93M) contain the internal mixing W™ (in the ®M) as
well as the external mixing W of the resonance states (eqs. (37 ) and ( 38)).

The internal mixing W™ is linear in the residual interaction V. There-
fore, it cannot lead to a reduction of the number of degrees of freedom.
It leads to a "spreading” of the information over all NV states if the states
were originally unmixed. The information entropy increases with increasing
internal mixing W, :

Ar=InN —-Inl1>0. - : (74)
Here.z deﬁotes the maximum information entropy
1= [nN ' - (75)

of the system with IV states. The system tends to thermal equilibrium.

The external mixing W** is nonlinear in V. In this case, a reduction
in the number of degrees of freedom is possible. An information which was
originally distributed over IV states is concentrated finally in K < N states.
The information entropy of the system is reduced according to

Ai=InK —InN <0 (76)

if K < N. One observes formation of structures.

The results of numerical calculations for nuclei have shown that external
mixing can, indeed, lead to a "formation of structures in space and time”
(13, 14]. At sufficiently strong external mixing, a system with IV states and
K < N open decay channels forms K states with short lifetime and small
spatial extension. The remaining N — K states have a lifetime which is longer
by at least one order of magnitude. Furthermore, the nucleons emitted from
these states originate from the surface of the nucleus mainly in contrast
to those from the short-lived states. The K short-lived states behave like
"normal” resonances with (®z|®g) ~ 1 (egs. (43) and (53), see section 7)
and

f‘R ~ 271'2“‘5]{“/ %
=2 lrd - )

They are characteristic of the system and relevant for its evolution [4].
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The remaining N — K states are "slaved” by the K short-lived states.
They decay accordmg to :

((QR@R) i Zl"/nc
< > 1R | | (78)

due to (®r|®z) > 1 [13]. They retain not only the nonlinearity but carry
also a large information entropy due to their large number [13] so that there
is no contradiction of (76) with the second law. Further, these states have
generic (stochastic) properties [6]. They determine the long-time behaviour
of the system and not the evolution which proceeds at the short-time scale.
The differences between the short-lived and long~hved states are the stronger
the larger N — K is.

Accordingly, the closed channels play only a minor role for the evolution
of the system. Their contribution consists mainly in fluctuations caused by
the virtual emission of nucleons. 7 .

Thus, the number of (relevant) degrees of freedom of the system will be
reduced if the resonance states are able to mix via the continuum of decay
channels. This happens at high level density, starting at a certain critical
value of the degree of overlapping of the resonances, when the external mix-
ing of the resonance states cannot be neglected. .

7 The nucleus at low eXCitation energy

It is very well known that the properties of the nucleus are described well by
restricting to bound states as long as the level density is low. The relevant
part of the function space corresponds to the @ subspace defined in section
2. The lifetime against particle decay can be calculated by combining the
nuclear structure calculation with the R-matrix theory. That means, the
P subspace is irrelevant for nuclear structure studies (nuclear spectroscopic
investigations).

At higher level density, the function space of open decay channels is rel-
evant while the discrete states (compound nucleus states) and the closed
decay channels are irrelevant. This statement is basic to the unified theory
of nuclear reactions formulated by Feshbach [20]. Let us call the two cor-
responding subspaces the P’ and ()’ subspaces. At low excitation energy of
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the nucleus, the number of open decay channels is much smaller than the
number of resonances.

Thus, the properties of a nucleus at low and at high level density are
described by models which differ essentially from each other. The transi-
tion from one to the other description can be traced only if the Schrodinger
equation is solved with an ansatz which contains both the relevant and the
irrelevant parts of the function space since at the transition a great deal of
the relevant part becomes irrelevant and vice versa. The model described in
section 2 (continuum shell model) fulfills this condition.

In [5], the transition is traced numerically in the continuum shell model.
It takes place at T / D=~ 1, where T is the average width of the resonance
states and D is the average distance of two neighboured states. The transi-
tion takes place in accordance with the known properties of the nucleus at
low and at high level density. It s P+ Q=P + Q' = 1.

Analytically, the residual interaction between two nucleons consists of two
parts :

V5 = Vag + VarG Vg (79)
(see eq. (14)). The corresponding mixing matrix elements are
Wer = Wikh+ Wik
= (@R V]eR) + (@5 [VEeFVIeZM) (80)

according to (37), (38). Aslong as T/D < 1, it follows
Wir ~ Wik
= (@R VIeR) (81)
to a good approximation while for T'/D > 1,
Wir ~ Wgn
~ (@R |VGEV|8R) (82)

since Vpg can be neglected relatively to }26{’&’@}:'(77§;H Vpo} in (79). In this
case, the ®x can be obtained, to a good approximation, from a statistical
distribution of the eigenvalues and contain, in this manner, Re{Vp pGg}‘) Veo}
(and Vpg). Usually, the distribution of the Gauss Orthogonal Ensemble
(GOE) is used [17]. Then

Wan ~ Im{{0n|VGEV|0R)} . (83)
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It is clear that the symmetry properties of the system under the conditions
(81) and (83) are different. In the first case, the symmetry is determined
by Hp while this symmetry is broken in the second case. It is replaced by’
a symmetry against formation and decay of the compound nucleus ("time
reversal symmetry”).

In heavy nuclei, Re{Vpp ng“) Vpg } may be large and create strongly mixed
states ®g even if Im{Vp pG§3+) Vpg } vanishes or is very small as it is the case
for discrete states below the particle decay thresholds and for resonance states
just above the first threshold for particle decay (e.g. neutron resonances),
respectively. This can be seen from eq. (39) to which the matrix elements
(@EM|V|€) at all energies contribute due to the integral and from eq. (51)
or (52) where the corresponding matrix elements (®$M|V]€%) or (Pr|V|E5)
are taken at the energy of the system. The resonances in the very neigh-
bourhood of the elastic threshold have small matrix elements (83) and small
widths, therefore, in any case, i.e. also in that case in which the level density
is high and the conditions for the trapping effect, eq. (82), are fulfilled.

Let us multiply the residual interaction V in the matrix elements Wripr
by « in the same manner as it is done in the numerical calculations [5, 6, 11,
13, 14]. Then, the properties of the system can be considered as a function
of the parameter a. For small o, the resonances do not overlap and Wz is
small. Therefore, Wrip & Wgg. At some critical value o, the resonances
start to overlap a,nd WgEn~ Wiy For a> ay, Wrr~ WZip.

In the first case (Wrr &~ W), the relevant part of the function space
is the @) subspace. The coupling to the continuum does (almost) not influ-
ence the spectroscopic properties of the nuclear states. The symmetry of
the system is determined by Hy. It is only weakly disturbed by the residual
interaction V.

In the third case (Wrpr & Wgig), the relevant part is the P’ subspace
of open decay channels since the number of short-lived states is equal to the
number of open decay channels. This equality [8] is a consequence of the
unitarity of the S-matrix as can be seen from the continuum shell model
equations: The resonance part of the S-matrix, eq. (33), reads

FU/2e 512

st VYR VR

=y e 84

S =iy e T (59
Let us consider an ensemble of N resonances which lie densely in an energy
region AF comparable to the uncertainty of energy of the system (F ~ Fy =
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E,... = En). Due to external mixing, they interfere strongly and one gets
for estimation

’_71/2* —-/1/2
Scczf) ~ 9 ZR_C'I‘;E_C_ ) (&5)
It 1s
]7R c |
Sc(z) ZZ I’YfR ] @RfIQRf> (86')
c fC

where the R; denote the relevant fast modes. According to the unitarity of
the S-matrix, IS(Z)| <2or

I:YR_fC! ’
Zc |7Rf6| = (QRfléRf) g / : (87)
Therefore, the number Ry of relevant fast modes cannot be larger than 1 in
the case with one open decay channel (and (@RJ,@RJ‘) ~ 1). An analogous
conclusion can be drawn in the many-channel case: The number of fast rel-
evant modes is exactly equal to the number K of open decay channels. The
symmetry of the system is determined, therefore, by its coupling to the P’
subspace of open decay channels.

Thus, by means of varying the parameter o the transition from nuclear
structure calculations at low level density to coupled channels calculations
at high level density can be iraced. This is in accordance with the results
of numerical calculations [5, 13, 14]. Expressions of the type {81) are used,
indeed, in the nuclear structure calculations at low level density while an
expression of the type (83) is basic of the shell model approach to nuclear
reactions [17] at high level density. Here, the open decay channels are rele-
vant (unified theory of nuclear reactions {20]).

Further, the parameter o appears linearlyin Wg 5, eq. (81). At low level
density, the superposition principle holds, (‘I> n|® R) = 1, since the resonance
states do not overlap and the external mixing is smaM The decay takes
place according to an ezponential law as follows from the solution of the time
dependent Schrodinger equation:

zﬁalI,R = Hip

6 E g Ed
= Ep¥p (88)




Up = e e8| (89)

Here, ®p is the solution of the time independent Schrédinger equation with
the eigenvalue €p = Eg — % T'r (at the energy Fr = E’R(E = Ep) of the
system) and (®r|®x) = 1 (threshold effects are considered in {19]). It exists
therefore a natural scale £ what is very well known from the numerous nu-
clear structure calculations at low level density. The symmetry properties of
the system are determined by Hy as stated above.

In W3ip, eqs. (82) and (83), the parameter a appears nonlinearly. Here,
the superposition principle does not hold for the trapped (long-lived) states,
(®r|®r) > 1 in general, and the decay of the long-lived states takes place
according to a power law [21]. A natural scale does not exist for the long-lived
states as it is very well known from, e.g., the neutron resonances in heavy
nuclei. In the eigenvalue equation, ER(Q R|<I> r) appears instead of ER, see eq.
(44). The symmetry arising from Hy is broken.

For the short-lived states at high level density holds (®x|®z) ~ 1. This
follows from the unitarity of the S-matrix according to ( 86 ) since the widths
of these states are near to the Wigner limit (spectroscopic factor 1). More-
over, it is proven numerically [13]. Thus, the few short-lived states appearing
at high level density behave very much like the isolated states at low level
density. They determine the evolution of the system but cannot be seen in
high-resolution experiments, where they appear as a background.

In table 1, the properties of nuclear states at low and high level density
are summarized. The words "regular” and ”chaotic” motion are used in an
analogous manner as in classical systems [15]. The short-lived states at high
level density are not considered in table 1 since they are not investigated in
high-resolution experiments (although they are relevant for the evolution of
the system [20]).

Thus, the redistribution happening in an open quantum mechanical sys-
tem at a critical value a., of a "control parameter” « takes place in accor-
dance with our knowledge on the properties of nuclei at low excitation energy.
The nuclear structure and coupled channels approaches describe the different
behaviour of the nucleus below and beyond the critical value of the control
parameter. Further, this redistribution observed in the open nuclear system
at low excitation energy and described by the continuum shell model, satifies
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Table 1: Nuclear states in high resolution experiments

Low level density

Standard nuclear structure theory:

H=Hy+V

closed system <> @ =1

symmetry of Hy <=> spectroscopy of discrete states

Open quantum system:

W =~ Wigh = (85 [V|2F)

regular motion of the nucleons
(@ qu) ry =1

— exponential decay

— natural scale

High level density

Standard nuclear reaction theory:

HYJ = Hoq + VorG Veg

open system <= () < 1

symmetry breaking <=> statistical distribution of discrete states

Open quantum system:

Wrr = T/Vezi = (‘I’RllVG;Vﬂ@R)
chaotic motion of the nucleons:
— (@ RE@R) >1

— power law decay .
- no natural scale
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the same rules which are known from other selforganizing systems.

8 Summary

In this paper, the formalism of the continuum shell model is reformulated by
emphazing the origin of the interferences which lead to the trapping effect at
high level density. The interferences are caused by nonlinear couplings be-
tween the system (Q subspace) and the environment (P subspace) in which
the system is embedded. The wavefunctions, energies and widths of the
(decaying) resonance states follow from the diagonalization of an effective
Hamilton operator which is non-Hermitean due to the (non-linear) coupling
between the system and its environment.

The relation between the wavefunctions Qg of the discrete states (or the
wavefunctions Qg of the resonance states) and the solution ¥ of (H —
E)¥% = 0 in the full function space is nonlinear, in general. The super-
position principle in the whole function space @ + P holds only for the ¥§
and - approximately - for the short-lived states, but not for the trapped ones.

As a result, selforganization in a quantum system is caused by similar con-
ditions as in a classical system although the mathematical formalism used is
completely different. At a critical value of the degree of overlapping of the
resonances, a redistribution of the spectroscopic properties takes place as a
consequence of which states with very different lifetimes appear. The num-
ber of degrees of freedom which are relevant for the evolution of the system
is reduced. ”"Stractures in space and time” are formed. The corresponding
short-lived states are described well by (almost) linear equations. They decay
according to an exponential law and it exists a natural scale. The long-lived
(slaved} states decay according to a power law and do not have a natural
scale due to the non-negligible nonlinearities in the equations. The proper-
ties of the open system below and beyond the critical value of the degree of
resonance overlapping are very well known in nuclei at low excitation energy
and are described well by phenomenological models.
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