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1. Introduction

One of the most interesting problems in present nuclear physics is: how much does a hadron
inside nuclear matter, at various densities and temperatures, differ in its properties frcm
a free hadron? Even at normal nuclear matter density ng and temperature T' = 0, i.e., in
nuclei near ground state, changes of hadron properties are observable. The medium influence
is expected to become stronger with increasing density and temperature of nuclear matter.
Accordingly, many efforts have been devoted last years to investigate the hadron properties
in compressed and heated nuclear matter which may be obtained in intermediate-energy
heavy-ions collisions.

Since some time the properties of pions, as the lightest of the strongly interacting par-
ticles, have been considered by many authors (cf. Ref. [1] for reviews). At present it is
commonly accepted that the pionic mode in nuclear matter suffers a softening which in-
creases with increasing nucleon density. Since the pion in turn couples strongly to the other
hadrons, their properties are altered in nuclear matter also, which is expected to be most
important at high density and temperature. As the nucleon is surrounded by a pion cloud,
the nucleon properties change simultaneously with a change of the pion mode in nuclear mat-
ter [2]. To describe nuclear matter at large density and temperature one needs to include
not only the nucleon and pion degrees of freedom.but also one has to take into account the
heavier mesons, in particular the p,w-mesons. A knowledge of the properties of p,w-mesons
in compressed and heated nuclear matter is necessary in order to investigate the equation
of state under such extreme conditions. Also the study of several processes, such as meson,
photon, and di-lepton production {3], in the course of heavy-ion collisions is aimed to learn
more about mesonic degrees of freedom in excited nuclear matter. The theoretical works
[4, 3] are devoted to these goals. In these investigations the p-meson propagator is consid-
ered at vanishing temperature and within special approximations for the pions in nuclear
medium. The relationship between the p-meson propagator and the dilepton production rate
is analyzed in the quoted works [4, 5]. We also mention the Refs. [6] in which the p-meson
properties in nuclear matter have been analyzed by different methods, like QCD sum rules
or the Nambu - Jona-Lasinio model.

In the present paper we investigate the properties of the p,w-meson propagators in
dense nuclear matter at finite temperature. In doing so we employ for the pion propagator
in medium an asymptotic expression, which includes interactions between baryons and pions,
and is valid near the critical pion mode softening. We investigate the asymptotic behaviour
of the p,w-mesons in hot and strongly compressed nuclear matter. We take our results
as some fix point and focus on the debated problems of heavy meson mass and width in

medium.
2. The 7. p,w-meson propagators

We investigate the properties of mesons in nuclear matter at finite temperatures using
Matsubara's Greens functions (cf. Ref. [7]). The meson propagators are defined as usual by
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where 7. is a "time” ordering operator, and ¢! (7, 7) denotes the field operators of the con-
sidered m, p, w-mesons. The indices ¢ and p are Lorentz and isospin indices, respectively. We
consider here an isospin symmetrical medium, therefore the isospin indices can be omitted.
In case of the pseudo-scalar pions the Lorentz indices have to be skipped too. The pion
propagator takes then the form

D(r,7) =TS exp{—war}D(wn, ) = (2)

TZexp{——wnT}/%exp{iﬁF}D(wn,lg), wy, = 2rniT.
™

According to usual transformations [7] one obtains

D(r) = - [ 5oz exp{€lrDIE(E), (3
D67 = [ Gz erliDER, X0 = (eols)-1) -

©

N
AN

Fig. 1. The contour C
in the complez £ plane.

The integration contour is shown in Fig. 1. All the formulae here apply also for the vector
mesons. The vector meson propagator D;(&,7) has, of course, the Lorentz indices. D(¢, E)
is the analytical continuation of the Matsubara Greens function from discrete values w, into
the full complex plane. Due to the isospin symmetry of the considered medium one has

D(€ +i0) = D(—€ — i0), ImD(Ref =0)=0

which has been used in deriving eq. (3).
The pion propagator can be cast in the form [1]

where H(w. k.n.T) =
N

is the polarization operator which is determined by the ¥ NN. 7 AN and 7AA interactions.

3



(We use as units mr = £ = ¢ = 1.) The solid lines indicate nucleon and nucleon-hole
propagators, the double line stands for the A-isobar propagator, the dotted line represenis
the pion propagator. The dot denotes the irreducible 7NN, AN and 77NN interactions.
The hatched area is the full vertex in nuclear matter. The polarization operator in eq. (4)
has been analyzed thoroughly in many works, the results of them we rely on. The quantity
IT includes various excited states of an interacting nucleon - nucleon-hole, delta - nucleon-
hole and delta - delta-hole in nuclear matter. At larger density and temperature also the
rr-interaction (last term) needs to be included. The polarization operator in medium has
a logarithmic singularity. II(w) and D(w) are defined in the complex plane with cuts along
the real axis [1] (see Fig. 1), and the relation

D(£ +i0) — D(£ — i0) = 2ImD(¢ + 10)

holds, which is used for calculations of the integrals of type as in eq. (3).
The previous analysis of the pion propagator [1, 8] has shown that the propagator D(w, k)
has a sharp maximum at baryon density n — n. and pion momentum k = k., where it can

be approximated by

D Hw, kv, T) = w? =1 — k* — Rell(w, k,n, T) — iImII(w, &, n, T) (5)
~ w?a(T) + 1wy(T)sign(Imw) — X (w, E,n,T)
2 5ATk2
X = bk — ko) + 0w, k.0, T), &= C(n(T) —n)+ 2
0 (ne(T) ~ n) Y

K(n,T) =kl + 5(n—ne(T)), 5=08, ~4(T)=05+03T, C=1.1,
a(Ty=1.6-0.1T, k=13, k=30, n(T)=15+0.1T+0.025, A~ 0.1—0.5.
From these expressions it becomes obvious that at & — 0, i.e., when the density approachsthe
critical value, n — n., the pion mode becomes very soft and D! gets the sharp minimum at
k = ko. We exploit this comparative simplicity of the pion propagator at & — 0 and analyze

the asymptotics of the p- and w- propagators just in this limit.
For the p,w-vector mesons the propagators take the form

-

Diy(w, k) = 6 D*(w. k), (6)
" L 272 2 -\ 7!
D*{w. k) = (w —k —mV—P"(w,k)> \
where we have introduced the quantity
1
'Pu- = gTI‘k[’P,Z,

and ¥V = p or w. In what follows we consider only P. For the isospin singlet w-meson the

isospin index has to be dropped.
Our goal now is to investigate the change of D and P in nuclear matter in comparison

with their corresponding vacuum values. The propagator is represented as follows

DHw. kn.T) = (w-‘l — R mE —ape urf;,)q , (7)



§P* = ’P“(w, E, n, T) - Pu(w’ Z;, 07 0)7
where my and I'{, denote, respectively, the observed physical mass and width of the corre-

sponding meson in vacuum. Hence there do not appear problems with smgulantles because
they cancel each other in P(n,T) — P(0,0).

3. Interactions of 7,w, p-mesons and the p,w-meson polarization operators

The quantity P contains certainly an infinite set of different interactions, including also
the coupling to the pion field. In our context such processes turn out to be of most importance
where pions participate. This is due to the strong modifications of pions in nuclear matter at
large density and temperature. To obtain the contributions to w- and p-meson polarization
operators from the pionic degrees of freedom one needs the different vertices of the vector-
meson pion couplings. We list the interaction Lagrangians which we exploit [9]

p
Lprn = —TVL[W'aﬂﬂ'kfjkz = l ......... , (8)

where g = V2], prms f, 31” /47 = 3.1 and €,y is the Levi-Civita tensor.
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Here 7, V¥, U; denote the field operators of the 7, p- and w-mesons. Heavy lines stand for

vector mesons.
In addition to these most important interaction vertices there are also others, e.g.,

3g2 : .
Lopr = = g;F s VYO = w L p (9)

which corresponds to the radiation or absorption of a pion by a the transition between p-

and «-mesons.
e also need a description of the mw-interaction in nuclear matter. For this we adopt

i Ly .
T (*"(),ﬂ HE 4 f;?&") = . 1103

the following form
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which coincides in its form with the Weinberg vacuum nw-Lagrangian, but can include
another amplitude A. It should be emphasized that in our approach the pions interact
not only by p-meson exchange but also due to other process according to eq. (10). The
attractive mr-interaction which causes the p-meson formation, i.e., a bound 7x-state with
quantum numbers of the p-meson, must be excluded from eq. (10) because the p-meson is
directly taken into account. Accordingly we have to use only such effective n#-interaction
which does not result in a bound state in the p-meson channel. For later estimates we assume
A= o1 fr = 93 MeV. ‘

It is clear, that the quantity 6P contains, besides pion-including processes, many others.
Among them are the excitations as displayed in eq. (4). However, due to the large mass of
the vector mesons, such contributions are of minor importance. The processes of the types
as displayed in eq. (4) do not result in a noticeable softening of the p- and w-modes. Due
to the essential softening of the pion mode with increasing nuclear density the dominating
contribution to 6P comes from processes which include just the pions. Therefore, we focus
on such processes and consider their asymptotic behaviour in the limit & — 0 in eq. (5).
Naturally, one expects the largest contributions from processes with most internal pion lines.
The interactions (8) result in the following contributions to the self-energies defined in egs.

(6)

P;’r = %gJV(n,T) = , (11)
dk d -
VD)= [ g [ FimDie—i0.Fom 1)1 + 2006
Pﬁ”(wiio,ﬁ) — _ﬁgA(WiiO,mT(w’ﬁ) _ ............... . (12)
with . T -
—_ d‘kl dk? dfl dfz
= (f)ﬂ);:./(r)ﬂ, /,)m/r)mY(fl Ix(€2) % (13)

n.—l 4
D(&, D (52,/»2) (/»1 + k- 7)(kin + kzn)ztzzz'f(w,ﬁ),
where &, = (€, l:) and
&+ fz} 1
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The full reducible prr-vertex 7 (indicated by a heavy dot) is expressed via the effective

ty = exp{

Tw-interaction.
T(w.py =7 + 20 A{w, p)T (w. p), (14)
which is graphically represented by
—® -— +—e 1

= -—g/f and hence

T(w ) = e 15
T R At (15)
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dk, dk, dks o2 27 7
'PS”:—Ehe“m“'eabcd/( e e S(k1 + ks + ks — k) x (16)
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This expression contains the full w — 37 vertex A, which in turn contains various processes
including 7r-interactions, however, not such diagrams of the type as in eq. (16) which have
three outgoing pion lines from one point. One should note that in our investigations there
is no direct mrww-interaction which would correspond to the "sea-gull” term of the 27 2w-
interaction. The reason for disregarding such anomalous interactions is that at present there
is no evidence for it. Of course, the 7v- and w-mesons may interact via p-meson exchange
due to the prw-vertex being described in eq. (9). The corresponding contribution to the

polarization operator of the w-meson takes the form

In case of a essentially softened pion mode in nuclear matter such processes can be neglected
in comparison to process represented by diagrams of type (11) - (16).

4. Calculation of p,w-polarization operators in nuclear matter near the critical
point of the pion field

All above-presented expressions in nuclear matter are different from the corresponding
expressions in vacuum due to the replacements of the pion propagator, the vertices, and am-
plitudes. Properly one should self-consistently consider the changes of the p- and w-mesons
due to the influence of the surrounding nuclear medium. However. if the density approaches
the critical value then. due to the pion mode softening, the asymptotical behaviour of the
expressions (11) - (16) at w — 0 is determined by the products of D-functions, while the
changes in the vertices and amplitudes are more moderate, since they do not diverge at
& — 0. Therefore, in this asymptotic limit we can replace the irreducible vertices and am-
plitudes in egs. {11) - (16) by their vacuum values. Further, we need only the difference 6P
in eq. {7) and. therefore. we do not need the quantities {11) - (16) themselves but only the
clifferences between their values in medium and in vacuum. It is possible to transform (or
renormalize) these differences in such a way that in the integrals. instead of the products
of two or three pion propagators. only the differences of these products in medium and in

vacuum appear. i.e..

[T, D(&,F) — T, Die Fon. T) = T DIE,,7,0.0),  j = 1.2.3 (17)



In the same time the vertices and amplitudes are replaced by their full, reducible vacuum
values. That is, in eq. (14) the reduced vertex 7, which is determined by the equation

Fw,p) =7 +24(w,p,n=0,T = 0)7(w, P) . (18)

occurs instead of irreducible vertex #. So, we pick up the most important parts of these
diagrams which determine their asymptotics at @ — 0. In what follows we focus on the
investigation of the asymptotics of these selected parts of the diagrams. Obviously, at @ — 0
the D function possesses a sharp maximum at k ~ ko, w ~ 0. Under such conditions the
region k ~ ko, & ~ 0 gives the main contribution to the integrals (11) - (16). The vertices
and amplitudes are smooth in this region, as well as the D- function of pion in vacuum. This
behaviour allows one to insert in the integrals (13) and (16) the products of the asymptotic
propagators (5) without subtracting the vacuum propagators, i.e., to neglect the second term
in eq. (17) for j = 2, 3. The vertices and amplitudes can be factorized out of the integrals
and replaced by their vacuum values. At large values of k& the pion propagators in nuclear
matter and in vacuum are equal. This ensures a natural regularization of the integrals in
egs. (11) - (16).

Now we are in the position to calculate the asymptotic behaviour and limiting values of
the quantities (11) - (16) at different temperatures and densities under the condition @ — 0.
First of all, we obtain for the quantity M(n,T) in eq. (11),

KXT  [#ayT\*
N0, T) = m ( 6;) +C, (19)
where z = 0 for @* € 27T and z = 1 for T < &* « 1. C remains constant at & — 0. Then
one can conclude from eq. (19) that the contribution (11) to the p-meson self energy is real
and does not change the meson width. In the same time its real part is positive and it grows
essentially in the limit @ — 0 at finite temperatures. At T = 0 there is no singularity in A’
so that eq. (11) remains finite at @ — 0.

The quantities A(w,p,n,T) in eq. (13) and P3" in eq. (16) contain the sum over the
projections of a four momentum. We are interested in the asymptotic main term. One can
easily verify that the dominant contribution stems from the sum over the spatial components,

e., the indices n in eq. (13) and b,c,... in eq. (16) degenerate here to purely space-like
indices. The reason is the sharp maximum of the integrand at £ — 0 and & — 0 due to the
properties of the propagator D and the expression within the parenthesis in eq. (13), (16).
Therefore we need to consider only the spatial components in egs. (13), (16) (for details see
below). In this approximation the expressions (13} and (16} become

Alw £10.5) % —EKiba(p) / il dfzzztz Meys / - {ﬂ,—’“(-f—f—f%%— (20)

4 - - - o
blp) = (27 Pko /dnl /dn2(n1 — 7i2)*8(n} — 1)6(nd — 1é(71 + 72 — p/f ko), (21)

. 5 ”A,b 2
pjﬁ(w" 4 l@~iﬂ 2~ )l / dfl / llg / (lfs Z‘gt;; (22}

%'x}



A ® dk; Eryx(&)
xIiz1,2,3 /_w X2(k;) + 12€2

Sk _ [ diy [ am, / ARz é(n? — 1)é(n2 — 1)6(n2 — 1)x (22)
(27")6]90./ j - EANNAS 2 N 3 =y

6(1:1:1 + ﬁQ + 7-1:3 —_ ﬁ/ko) ((7_7:1 X ﬁg)ﬁ;;)z .

The integrals I2 3 can solved in closed form

—p2ET2
Iz(P)-_—{ 4_25,-_2:— 0< p< 2k,

Ia(P) =

0 2k0 < p,
2k3(k* —42k2+105) 0 <k< 1
k3 105 > L
Ii(p) = (;r)%pJ(P/ko), J(k) = k7—42k5+105k*;|~c-)1505k3—378k2+81 1 <k< 3,
0 3 <k

In obtaining egs. (20), (22) we suppose that the momenta of the p,w-mesons are not too
small, i.e., |7] > @V/b, in order that the different maximum values of the various propagators
do not necessarily coincide. Correspondingly, these relations are valid only in such a region
of p.

In the limiting case of large temperatures, T > &%, we can reduce the above relations
(20) - (23) by using the expansion

exp{z]{-} ~ 14 % (24)

which is justified since the functions in the integrals have sharp maxima at £ < &%, After a
direct calculation we get for the real and imaginary parts of the expressions (20), (22)

2Tk “ w?y?
ReA(w,p) = —3—%—2—[2(10) (1 - W) N (25)
3 262 [T ? w?y?
Re(slpwﬂ’(wsﬁ) = —3h I‘SOI1 (—\/—E—.) [3(]9) (1 - (3&*)2)2 + w272) ’ (26)
. w2 T kiwy
ImA{w +10,p) = ?:m[ﬂp), (27)
3 .
570 4 50.7) = =3h2T28 (T _sin(2a/3)
Imé P> (w £ 20. ) = F3R*TkS ( \/5) I3(p) (it 2 (28)

with @ = arctan(wvw™?). The presented imaginary parts change their sign at w = 0 and are
proportional to w at small values of w in accordance with general analytical properties of
the quantities 6P and A. For the expression (28) this becomes obvious by considering the
limit w — 0.

Here we comment briefly the reason to neglect contributions of the time like terms in
eqs. {13). (16). Such terms would give contributions similar to egs. (20} and (22), however

with replaced integrals over £ by

°° (&) ,
/_00 (Z&W m = 12 (29)

The integrands here have not so sharp maxima at & ~ kg0 — 0. i.e. X ~ 0 as in case

m = {) which appears in the spatial components.
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5. Results of calculations and discussion

The relations (25) - (28) allow the explicit determination of the properties of the p,w-
propagators in the limit of an essentially softened pionic mode. The quantities (25) - (28)
increase strongly in the limit & — 0 if the value of w is not too large, i, w < Q. The
quantity P?*(w % 70, p) behaves regularly in thls limit, because the function A appears in
both the nominator and denominator, i.e.,

rA(w =10, p)T

= ——  ReAd <0. (30)
1 — 2A A(w £ 10, p)

5P (w +10,5) = 2

This quantity occurs in the propagator D(w,p,n,T') of the p-meson in nuclear matter and
determines its properties. Since the quantities §P2", §PS" possess imaginary parts, the prop-
agators of the p,w-mesons do not have poles, but are defined on the complex plane with cuts
along the real axis, as the pion propagator (4). In order to investigate the change of the
p-meson in nuclear matter we determine the energies w at which the real part of the denom-
inator of the p-meson propagator vanishes. Simultaneously we calculate the imaginary part
of §P¥"(w — 40) at these energies. This imaginary part determines the modification of the
width of the p-meson in medium. That is, we solve the equation

DY w,p,n,T) =w? — p* — mf, - 6Re§73§“(w,p) — 6P =0, (31)

and obtain the quantity w(p) in the region p ~ ko at various temperatures and values of
& < 1, i.e., at nuclear matter density n ~ n, in eq. (5). The dependence w(p) is displayed
in Figs. 2 and 3 at T = 1 and T = 0.5. For comparison the spectrum of the free p-meson
is displayed too. One observes that the energy w(p,&) increases with deceasing values of .
This indicates that there is no softening of the p-meson mode near the critical point of the
pion mode. On the contrary, the p-meson mode becomes stiffer at decreasing values of &
and increasing temperature. And the width of the p-meson increases because the value of
the quantity IméP>" increases with increasing temperatures and decreasing values of @, as,
e.g., seen in Fig. 4., where the values of ImP?" are displayed at characteristic momenta p
of the p-meson. One can see that the change of the width is remarkably larger (namely ~
1400 MeV) than the width of the free p-meson. It means that in nuclear matter at large
temperature and density the p-meson does not exist as stable particle.

Considering the properties of the w-meson in nuclear matter, we start with the investi-
gation of the propagator D,(w,p) at w = 0. In this case IméP(0) = 0. We calculate this
quantity
B (3?)?

o3 ((302)2 + 72w?’

ReD ™ Hw.p) =w? —w? + (32)

3
B = 3h21\:ST2 ('-\;_—b) L{p) > 0, wf, = m:‘: +p2

at w = 0 as function of p at various values of &. A representative example of such calculations
1s displaved in Fig. 5. For the free p-meson one has the curve 1. One observes (see curves
2. 3) that the quantity —DJ'(0 ﬁ) decreases and shows a minimum when the value of &
decreases. In the limit & — 0. i.e., near the critical point, the w mode becomes unstable (cf.
tlashed line). This instability has the same meaning as the pion mode instability which has
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been considered in many previous works (see, for example, [1, 8]) In this case the energies
w of w-mesons in certain momentum intervals would have a negative imaginary part, and
consequently the w-meson field would increase unlimited. For a self-consistent description
one needs to take into account the processes, which are non-linear in the meson field. Here
we focus on the pre-critical behaviour of the w-meson propagator by means of egs. (6, 26,
28, 30) and postpone the investigations of these non-linear effects to later work. To elucidate
the behaviour of the w-meson propagator we calculate the quantity (32) as function of w at
various values of T, &, p. Results of these calculations are displayed in Fig. 6, which reflect
the same properties of the w-meson propagator as shown in Fig. 5. At the relatively large
values of @ and p outside of the interval, where the dashed line in Fig. 5 dlves into the

-negative area (curve 1 in Fig. 6), the equation

ReD  (w) =0 (33)

with ReD ! (w) from eq. (32) has only a single solution, w;, not being significantly smaller
than w,. If & decreases, a second solution w, of eq. (33) appears, being much smaller than
wy. It is not difficult to trace back immediately the rise of the second solution from egs.
(32, 33) if one takes care that at small & the last term in eq. (32) grows essentially at small
w < w,. If w becomes very small and p resides in the above mentioned interval, then eq. (33)
has no real, positive solution. Of course, a imaginary solution exists, which just reflects the
fact. that the w-meson field under such conditions grows unlimited. as already demonstrated
in Fig. 5. The dependence of the solutions w;, on @ is displayed in Fig. 7. One observes
that, in agreement with results displayed in Figs. 5 and 6, there is no real positive solution
of eq. (33) at very small &. In some interval of &-values both solutions w; ; do exist. At
larger values of & only one solution w, survives, which approaches the free w-meson energy
wp. From eq. (33) we also obtain the solutions w; »(p) as function of momentum p for certain
values of @ < 1 and T = 1.5. The results of the calculations are displayed in Fig. 8. If &
is not too small then two solutions exist in some interval of the momentum p, and at large

p only one solution remains, which finally coincides with w,. This behaviour is illustrated

by the solid and long-dashed lines. At very small values of & (see short-dashed line) both
solutions disappear in some interval of p. That means, as mentioned above, that there is
no real positive solution at such values p, @, T. In Fig. 9 the imaginary part of §P>" is
displayed as function of p with w(p) as shown in Fig. 8. It can be seen that the width of
w-meson in nuclear matter at large density and temperature can be considerably larger than

1n vacuum.

6. Conclusions

According to our investigations the behaviour of p,w-mesons in compressed and heated
nuclear matter are quite different. The p-meson propagator does not show a very particular
behaviour. The p-meson degrees of freedom becomes stiffer. {one may sayv that the mass
increases). and the width broadens essentially. In contrast. the w-meson degrees of freedom
hecomes softer. if the temperature and density increase. In extreme case. when @ <« 1 and
the temperature is sufficiently large. the unlimited amplification of the w-meson field sets on.
As we have seen. the w-meson width broadens too with increasing temperature and density.
VWe are speaking about the density and temperature at which the w-meson field does not vet
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increase infinitely. The expressions for p,w-meson propagators, which we derive here, are to
be used in future investigations of various phenomena, occurring in dense and hot nuclear

matter.

7. Summary

In summary, we analyze the properties of p- and w-mesons in dense and hot nuclear
matter. Near the critical pion mode softening one obtains a comparatively clear picture of
the p,w-mesons due to their strong coupling to the pions. We find indications for shifting
the p-meson mass to considerably larger values (in comparison with the vacuum value), and
its width is strongly increased. Under such extreme conditions one cannot expect to observe
distinguished p-meson peak, e.g., in di-lepton signals. Also the w-meson width is increased,
however the mass is reduced in the same time.
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Figure 2. Solutions w(p) of eq. (31) for the p-meson at T=1 and various values of the
quantity @ (solid lines, @ = 0.5 (1), 0.3 (2), 0.1 (3)). The dashed line depict w(g) for the

free p-meson for comparison.
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Figure 3. The same as in Fig. 2. but at T = 0.5
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Figure 4. The imaginary part of the modification of the p-meson polarization operator,
21r . . . — . . .
IméP2"(w(p), p), in medium as function on p at T' = 1.0 with w(p) being just the energy
displayed in Fig 2.

Figure 5. The quantity —D-'(w.p), ¢q. (32), for the w-meson as function on p at w =0
(that is ImD;! = 0). The curves 2. 3 and the dashed one are obtained at T' = 1 and w = 0.5,
0.375 and 0.35, respectively. The quantity —D3'(0,7) of the free w-meson is also displayed
{curve 1) for comparison. '
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Figure 6. The dependence of the quantity ReD'(0, p) for the w-meson on w for various
values of T', p and @. The curves correspond to the following parameters sets: 1 - T = 1, p
=5.0=03:2-T=1,p=50=01;3-T=15p=3,0=0.05.
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Figure 7. The two solutions. wy (@} and w,{w). of eq. (33) as function on w at T = 1.5,
p = 1. The upper (lower) eurve represents wil@} (wi{w)).
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Figure 8. The solution w(p) of eq. (33) as function on p at T' = 1.5. The solid, short-
dashed and long-dashed curves correspond to the values of & = 0.3, 0.05 and 0.1. The two
solutions, w; (p) and wo(p), existing in this interval of p for given p, are marked in as "1” and
”2”. In the region 2.4 < p < 4.8 there are no solution in case of @ = 0.05.
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Figure 9. The imaginary part of the modification of the w-meson polarization operator
IméP3 (w(p).p} at T = 1.5, & = 0.3 (solid curve) and & = 0.1 (dashed curve), as function

on p and with « = w(p) as represented in Fig. 8.
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