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We examine the experimental requirements for realizing a high-gain Quantum free-electron laser
(Quantum FEL). Beyond fundamental constraints on electron beam and undulator, we discuss
optimized interaction geometries, include coherence properties along with the impact of diffraction,
space-charge and spontaneous emission. Based on desired Quantum FEL properties, as well as
current experimental capabilities, we provide a procedure for determining a corresponding set of
experimental parameters. Even for an idealized situation, the combined constraints on space-charge
and spontaneous emission put strong limits on sustaining the quantum regime over several gain
lengths. Guided by these results we propose to shift the focus towards seeded Quantum FELs
instead of continuing to aim for self-amplified spontaneous emission (SASE). Moreover, we point
out the necessity of a rigorous quantum theory for spontaneous emission as well as for space-charge
in order to identify possible loopholes in our line of argument.

Recent advances regarding x-ray free-electron lasers in the Å-wavelength range [1–4] have led to tremendous progress
in revealing the structure of matter in physics, chemistry, material science and the life sciences [5]. However, current
x-ray FELs are large, expensive, km-long facilities that can offer access to only a few selected experiments.

The dream of a high-gain, Quantum SASE FEL combines compact devices on the scale of a university laboratory
with unprecedented small FEL bandwidths down to the transform limit at both full transverse and longitudinal
coherence. Especially the latter feature is not yet available in existing machines [6–10] and would be a catalyst
for opening another window into the structure of matter. Compactness of Quantum FELs arises from the use of
laser pulses as optical undulators [11–14]. These reduce both the undulator length to centimeters and the electron
energy Ee to a few ten megaelectronvolt for the production of coherent x-ray pulses due to their micrometer scale
undulatorperiods.

These prospects have put the Quantum FEL (QFEL) into the focus of continuous theoretical interest [15–28] since
2005. These studies showed that the quantum regime of the FEL emerges when the discrete recoil ~kFEL, which
an electron experiences when it scatters from a photon, exceeds the classical gain bandwidth ρEe. However, studies
concerned with the actual challenges towards experimental realization have been scarce [29–31]. Often these analyses
point to the technical challenges of providing the required electron beam quality or drive laser amplitude, spot size
and pulse length. Beyond selected parameter sets, critical problems of Quantum FELs arising during interaction,
such as transverse coherence, space-charge or spontaneous emission were investigated in isolation without estimating
scalings and systemic interdependencies.

In this article we provide an overview on the basic QFEL theory, as well as a list of requirements and scaling laws
in order to identify suitable regimes for experimental realization. We discuss in detail the benefits and implications of
using an optical laser as undulator for a QFEL. In addition to the challenges of providing electron bunches with ultra-
low energy spread and low normalized emittance, we describe two critical limitations for Quantum SASE FEL: First,
we show that requirements on intensity and phase stability of the optical undulator field are unnecessarily restrictive
for Quantum FELs if a standard focal geometry of a Gaussian laser pulse colliding head-on with an electron beam
is used. We propose that this challenge can be met by utilizing Traveling-Wave Thomson-Scattering (TWTS) which
makes use of a side-scattering geometry and pulse-front tilted laser pulses.

Secondly, we derive that even for an idealized situation the combination of spontaneous emission and space-charge
constraints imposes strong limits on sustaining the quantum regime over several gain lengths. This is our central
result which appears to be prohibitive for all Quantum SASE FELs aiming at the generation of fully coherent x-
ray beams from electron beam shot-noise until saturation. Best-case estimates motivated by classical FEL theory
including space-charge show that the deep quantum regime ρ̄� 1 remains out-of-reach, where ρ̄ denotes the quantum
parameter of ref. [16]. Only regimes with a quantum parameter ρ̄ ≥ 0.5 would be directly accessible using a Quantum
SASE FEL.

Therefore, we close the article by proposing a shift of theoretical and experimental efforts towards seeded Quantum
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FELs instead of self-amplified spontaneous emission. This step can lead to novel applications with respect to FEL
amplifiers in the hard x-ray range and diagnostics for electron of extreme 6D-brightness and highly coherent x-ray
beams.

Aiming for a deeper understanding, as well as for testing our argumentation against potential loopholes, we stress
the need for a complete quantum theory of the Quantum FEL, which includes the effects of both spontaneous emission
and space-charge.

INTRODUCTION: WHAT IS A QFEL?

A Quantum FEL denotes a special regime of free-electron laser operation. Like its classical counterpart, it consists
of a relativistic electron beam with an undulator field from either a magnetic or optical undulator, as well as a resulting
FEL field. The electrons interact with both the undulator field and FEL radiation. Provided that electron beam and
undulator field fulfill some threshold criteria with respect to beam and field quality a collective instability emerges, in
which a part of the kinetic energy Ekin of the electrons is converted to FEL radiation. Due to the relativistic nature
of the interaction, the emitted light is Doppler-upshifted up to the hard x-ray range.

In contrast to a classical FEL, where the electrons travel on deterministic trajectories, the electron motion in a
Quantum FEL is characterized by discrete momentum steps which occur only with a certain probability according to
Born’s rule. These discrete jumps emerges when an electron scatters an undulator and an FEL photon whereby it
recoils by about ~kFEL. If this recoil is small compared to the absolute momentum bandwidth of the classical FEL,
the discreteness of the dynamics is washed out. This case corresponds to the classical regime.

The quantum regime [32–35] of the FEL will be entered if the recoil ~kFEL is large compared to the absolute
momentum bandwidth of the classical FEL ργmc. This condition leads to the definition of the dimensionless QFEL
parameter [16]

ρ̄ ≡ ρ γmc

~kFEL
= ργ

λFEL

λc
, (1)

where γ = Ekin/mc
2, m, kFEL, λc ≡ h/(mc), λFEL, ρ denote the dimensionless electron energy, electron mass,

FEL wavenumber, Compton wavelength, FEL wavelength and the dimensionless FEL parameter respectively. We
emphasize that the quantum regime can be accessed only if ρ̄� 1.

This quantum mechanical recoil can now be exploited to construct and isolate a two-level quantum system. This
becomes apparent in the average rest frame of an electron, Fig. 1(a), where the FEL and the undulator field have
equal frequency ωrest. The energy-momentum relation of an electron at small velocities is a parabola, while the
dispersion relation of the fields is linear. If momentum uncertainties of electron and photon are negligibly small, only
discrete transitions are allowed according to Fig.1(a): One undulator photon is absorbed by the electron, which in
turn gains the discrete energy and momentum of the photon. At the same time an FEL photon is emitted in opposite
direction reducing the electrons energy and momentum by the discrete photon energy and photon momentum, ~ωrest

and ~krest respectively. If in addition the intensity of the FEL radiation is small, multiphoton transitions are much
less likely to occur than processes where a single photon is emitted or absorbed. Hence, a single, discrete transition
becomes the dominant mode of interaction, which constructs a system of two momentum levels [23]. Exploiting the
quantum mechanical recoil together with energy and momentum conservation therefore excludes transitions to other
momentum levels. Especially it is not possible within this two-level system to extract more energy than ~kFELc per
electron.

The interaction can also be described in the laboratory frame [24], as shown in Fig.1(b). An electron with initial
energy γ gains energy by absorbing an undulator photon, while loosing the momentum ~ku due to the opposite
direction of light propagation. At the same time, the electron looses energy by emitting an x-ray FEL photon in the
direction of electron propagation causing again a loss of momentum, but now by a value of ~kFEL � ~ku. In total
this two-photon process defined by the FEL resonance condition kFEL ' 2γ2ku uniquely connects two energies by a
secant. Assuming that higher harmonics processes are negligible, quantum mechanics thus enforces a selection rule for
the fundamental two-photon process that specifically forbids energy gain to energies above Ekin,0, as well as energy
losses to energies below Ekin,1.

Due to a finite bandwidth of the undulator laser, quantum uncertainties of a single electron or the classical momen-
tum spread of the electron bunch, the two points of intersection of the secant are in reality small, but finite energy
and momentum bands. However, if either these finite bands or the transition bandwidth determined by the undulator
field become large enough to enable several secants on the energy scale or even merge all these bands to one single
band, quantum effects are washed out leading to the physical make-up of a classical FEL. Qualitatively speaking, the
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quantum regime of an FEL can only be accessed through an experimental setup, where the electron distribution as
well as the spectrum of the optical undulator allow only the fundamental two-photon transition between two discrete
and disjunct sets of energy and momentum bands, see Fig. 1(c).

A classical FEL as depicted in Fig. 2 has either multiple energy bands due to ρ̄� 1 or no discrete band structure
at all due to quantum mechanical uncertainties, finite bandwidth of the electron energy distribution as well as the
undulator field, or from competing physics processes such as space-charge and spontaneous emission. In all these
cases, each electron can absorb and emit several photons [36] within the energy bandwidth ργmc2 during the classical
FEL interaction. Over the statistics of many interactions, the mean energy loss of the electron ensemble translates
to FEL photon yield and can be several photons per electron.

A Quantum FEL ρ̄ � 1, corresponding to a large quantum mechanical recoil compared to the classical FEL
bandwidth ρ, allows only a single class of transitions between two energy bands as shown in Fig. 2(b). By initial
choice of electron energy and undulator wavelength, electrons start in the upper energy band and exhibit Rabi
oscillations [37] between the two energy bands. At best, if the QFEL interaction is ended when all electrons reside
in the lower energy level, each electron has emitted a single FEL photon. Although each electron can only emit one
single FEL photon, the photon statistics evolves continuously according to the interacting electrons and photons. In
the same way as for optical solid-state lasers, the stimulated emission leads to a self-reinforcing avalanche until the
upper energy level is depleted and all electrons reside in the lower energy band. Considering a two-level system, it
is necessary to end the interaction at the right moment, otherwise the electrons will continue to oscillate between
the two energy levels until either the FEL radiation has spatially left the interaction region by slippage or non-ideal
effects end the interaction.

For the sake of completeness, we note that according to Refs. [16, 27] a micro-bunching of electrons also exists in a
QFEL. Unlike the classical FEL, where the micro-bunching emerges by the motion of the electrons in a ponderomotive
potential, the corresponding effect in the quantum regime can be understood by means of position and momentum
uncertainty [27].

THEORY OF THE QUANTUM FEL

In the following, we motivate the most important conditions and features of a Quantum FEL. The starting point of
this discussion is the intuitive model in Ref. [23], where the emergence of the quantum regime of the FEL was studied
from a quantum optics point of view. Although this model is based on a low-gain theory, it enables us to identify
the most important quantities for the Quantum FEL even in the high-gain regime. We note that a rigorous high-gain
theory is out of the scope of the present article, but will be presented elsewhere.

Instead, we highlight the connection of the different quantities between the formalisms established in Ref. [23] and
Ref. [16]. While the former approach is focused on the fundamental aspects, models based on the latter one tend to
employ concepts of classical FEL theory and are therefore closer to the usual notation of standard FEL literature.
For this purpose, we connect to the usual notation and scaling of parameters [16].

Basic quantum model

The dynamics of electron, radiation field and undulator field in the average rest frame of the electron, see Fig. 1(a),
the so-called Bambini-Renieri frame [38], is dictated by the Hamiltonian [39]

Ĥ =
p̂2

2m
+ ~g̃

(
âFELâ

†
u ei2krestẑ +â†FELâu e−i2krestẑ

)
, (2)

where ẑ and p̂ denote the position operator of the electron along the wiggler axis and the conjugate momentum
operator, respectively, while âFEL, â†FEL and âu, â†u are the photon annihilation and creation operators for the radiation
and the undulator field, respectively. The constant g̃ describes the coupling of electron and fields and incorporates
the vacuum amplitudes of the fields as well as the mass m of the electron.

Although Ĥ has an analogue form as the classical pendulum Hamiltonian we emphasize that its consequences are
fundamental different from a classical theory: while the classical Hamiltonian equations are solved by deterministic
trajectories, solutions to the Schrödinger equation subject to the Hamiltonian Ĥ, Eq. (2), are characterized by
probability amplitudes, implying that transitions between momentum levels occur only with a certain probability.
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Figure 1. (a) depicts electron energy and momentum with emission and absorption events of undulator and FEL photons in
the average rest-frame (Bambini-Renieri frame), where krest ≡ ku ≡ kFEL. At small energy and momentum uncertainties, as
well as small laser bandwidths compared to the photon recoil, only selected transitions are allowed. The fundamental transition
(red, solid) is more probable than higher-order transitions (blue, solid) or off-resonant transitions (red, dashed). (b) shows the
corresponding situation for a relativistic electron in the laboratory frame, where ku 6= kFEL and the electron energy-momentum
relation reads γ(p) =

√
1 + (p/mc)2. (c) emphasizes the finite bandwidths of the electron momentum states and the laser

transition bandwidths. Opposed to two-level systems such as in atomic bound states, both initial momentum bandwidth and
undulator bandwidth are not a priori defined and have to be externally enforced by the experimental setup for the duration of
the entire interaction. In addition, every real-world (laser) undulator features a finite bandwidth and thus defines the minimum
relative bandwidth of the resulting QFEL radiation.

By considering the action of the single contributions of Ĥ, Eq. (2), on a quantum state we again observe momentum
conservation like in Fig. 1 (a), but now on a more formal level. For example, we obtain

â†FELâu e−i2krestẑ |nFEL, nu, p〉 = |nFEL + 1, nu − 1, p− 2~krest〉 .

While one photon is emitted into the radiation field and one is absorbed from the undulator field, the momentum
of the electron is decreased by the recoil q ≡ 2~krest. Here we have assumed a product state consisting of two Fock
states with photon numbers nFEL and nu for the radiation and undulator field, respectively, and of one momentum
eigenstate for the electron with the momentum p. In general we have to deal with a superposition [40] of all possible
transitions yielding

|Ψ〉 =
∑
µ

cµ |nFEL + µ, nu − µ, p− µq〉 ,

where cµ denotes the probability amplitude for finding the system in one of these configurations which can be distin-
guished by their quantum number µ which simultaneously indicates the number of scattered photons into or from the
respective field and the number of discrete momentum jumps of the electron.
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Figure 2. (a) depicts the evolution of a classical FEL, where the quantum mechanical recoil is much smaller than the relative
FEL bandwidth ρ. Potentially discrete momentum levels overlap, so that phase space is continuous. All electrons can have
multiple photon emission and absorption events during the FEL interaction. (b) shows the evolution of a Quantum FEL
where the quantum mechanical recoil is larger than the relative Quantum FEL bandwidth

√
ρ̄ρ, with ρ̄ � 1. In this limit

momentum bands are partitioned and isolated in phase space as well as a single transition selected. This constructs a two-level
system. By a suitable choice of electron energy and undulator wavelength electrons start in the upper energy level. FEL lasing
happens through stimulated emission in the interaction with the undulator and x-ray fields. Note that energy bands are only
approximately equidistant. According to Etot = γmc2 and Fig. 1(b) it is actually critical that such a weak energy dependency
exists.

Before we proceed, we emphasize that the model leading to the Hamiltonian in Eq. (2) is quite basic: it covers only
one electron, one spatial dimension and two modes of the radiation field. In order to model realistic experiments,
one would need to consider a continuous distribution of both Fock states and electron momentum states as well as
three-dimensional effects. However, our simple approach still proves to be a powerful tool to derive and understand
important conditions and parameters for a Quantum FEL as we show in the following.

Quantum parameter

The crucial step in deriving the fundamental Quantum FEL dynamics [23] is to identify the two important frequency
scales of the FEL dynamics, which are (i) the coupling strength g

√
nFEL and (ii) the recoil frequency

ωrec ≡
1

~
q2

2m
,

which is the energy associated to one momentum step with q ≡ 2~k divided by ~. We note that we have redefined
the coupling g̃ as g ≡ g̃

√
nu ∝ a0 which is proportional to the undulator parameter a0, eq. (15). This rescaling was

possible since the number nu of photons in the undulator field is very large and we can approximate it by a constant.
Thus, we are allowed to remove the degree of freedom associated to the undulator from the dynamics [39].

The quantum regime is entered, if the ratio of these two frequencies, defined as the quantum parameter

α ≡
g
√
nFEL

ωrec

is small, that is α� 1. We can understand this statement in the following way: in the equations of motions [23], the
transitions between different momentum levels are characterized by oscillations with different multiples of the recoil
frequency ωrec. For α� 1 the recoil frequency is large and oscillations with multiples of it can be considered as rapid
ones. Hence, we neglect these fast varying terms in a rotating-wave like approximation [37]. Only the dynamics of
the transition from p = q/2 to p = −q/2 is independent of ωr and thus is slowly varying. Hence, only this transition
survives and thus forms the basis of the two-level approximation for the quantum regime [23].



6

We note that by employing asymptotic methods [41] we observe that the probability of transitions outside the two-
level system of q/2 and −q/2, that is, processes, where more than one photon is scattered into the FEL mode, scale
with integer powers of the quantum parameter α in comparison to single-photon processes and thus are suppressed in
the quantum regime, α� 1. Hence, employing the parameter α is the natural choice for understanding the Quantum
FEL from first principles.

However, for experimental considerations it is more convenient to use the parameter

ρ̄ ≡ ρ mcγ

~kFEL
(3)

from Ref. [16] which includes the FEL parameter ρ and is written in terms of the laboratory frame. In Ref. [23] a
one-to-one relation between the two different representations was established, which reads 1

α ≡ ρ̄3/2 . (4)

In order to establish this connection of α and ρ̄ we had to set the number nFEL of photons equal to the number N of
electrons. This estimate is motivated by the fact that in the quantum regime each electron emits maximally only one
photon. We note that this rather hand-waving procedure is inherent to the low-gain approach of Ref. [23] and would
become unnecessary in a proper high-gain theory were α should emerge in a description of the collective electron
dynamics.

In contrast to α, which appears only in integer powers in the equations of the quantum regime, the 3/2-scaling
of ρ̄ in eq. (4) has its source in geometry and dimensional considerations of FEL physics, especially from transverse
and longitudinal dynamics. It originates from the description of the collective interaction of many electrons with the
fields and quantifies the strength of the electron-light coupling. As it represents the growth rate of the microbunching
instability, it can be seen as a measure of the efficiency of the classical FEL. Both quantum parameters, the more
fundamental α and the coupling strength quantifying ρ̄, have their respective fields of application to which they are
more natural. Since this work focuses on the experimental realization of a Quantum FEL we adopt in the following
mainly the notation of Ref. [16] in terms of the parameter ρ̄.

Interaction Length

The quantum regime of the FEL is defined by the two-level behavior of the momentum states p = q/2 and p = −q/2.
From quantum optics it is known that the time evolution of such a system is characterized by Rabi oscillations [37].
Hence, the probabilities Pp=q/2 and Pp=−q/2 for the electron to be in the excited state q/2 and the in ground state
−q/2 of the two-level system are given by the simple relations [23]

Pp=q/2 = cos2 Ωt

Pp=−q/2 = sin2 Ωt ,

where Ω = g
√
nr denotes the Rabi frequency.

Hence, 2Ω defines the typical frequency scale of the time evolution in the quantum regime. The typical length scale
is then simply found by the relation

Lg =
c

2Ω
,

where we have identified Lg as the gain length of a Quantum FEL. In terms of ρ̄ this gain length reads [16]

Lg =
γ2

kFEL

1

ρ
√
ρ̄︸︷︷︸

≡Γ

,
(5)

where we have used α = Ω/ωr, as well as eq. (4) and the definition eq. (3) of ρ̄. Compared to classical FEL theory we
had to replace the FEL parameter ρ, which also quantifies the gain bandwidth of the classical FEL, by the quantity
Γ = ρρ̄1/2. Later on we can identify Γ as the gain bandwidth of a Quantum FEL.

1 We note that in Eq. (40) of Ref. [23] an additional prefactor of
√

2 appears. This discrepancy has emerged since in this reference a
slightly different definition of the FEL parameter ρ was used.
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Motivated by the heuristic argument that Γ equals ρ in the classical limit ρ̄→∞, Γ is occasionally defined [29, 30]
by the interpolation formula

Γ = ρ

√
ρ̄

1 + ρ̄
. (6)

Although (6) is correct in both the quantum and classical limits, it constitutes only a first estimate for the transition
range in between.

EXPERIMENTAL CHALLENGES

Objectives and significance of Quantum FELs

Basic requirements and goals

For realizing a Quantum FEL in the hard x-ray range, as for any classical FEL, we lack highly reflective x-ray optics
and thus rely on an external seed or the SASE process, which starts from the shot noise of an electron bunch combined
with the spontaneous Compton emission characteristics as seed. Thus and in contrast to the low-gain amplification
of an (Q)FEL oscillator within a (laser) cavity, the interaction to attain full amplification until saturation takes place
within a single interaction between an electron bunch and a laser undulator.

Both the initial electron bunch and laser pulse of a QFEL shall follow well-defined, but still classical distributions.
Specifically, laser pulses are not described by a single frequency but rather by a finite bandwidth. Instead, the classical
initial laser and electron distributions reflect that frequency ω and momentum p are not discrete, but continuous
observables. Measurable quantum effects emerge within the QFEL interaction only.

The primary aim of this analysis is not the realization of the smallest possible natural bandwidth Lbunch/λFEL of
a QFEL, but instead the easier goal of significantly surpassing the bandwidth of a classical FEL ∆λFEL/λFEL = 2ρ.
The measurable characteristics of a QFEL are: First, the decreased bandwidth ∆λFEL/λFEL = 2ρ

√
ρ̄, which secondly,

ideally consists only of a single spectral spike – sometimes referred to as “quantum purification” [18, 29, 31]. Finally,
each electron emits at maximum one photon such that the resulting photon number NQFEL,max = Nel could in
principle significantly surpass the expected photon number of the corresponding classical regime NFEL,max = ρ̄Nel.

Another goal is coherence according the definition [42] in classical optics which is also applied for classical FELs.
Longitudinal coherence in QFELs diminishes when the electron bunch duration exceeds the quantum cooperation
length Lc. In other words, causally separated regions within a QFEL emit radiation within the same target bandwidth,
but feature different relative phases, which leads to spectral interference patterns within the remaining “SASE-spike”.
While good longitudinal coherence is a highly desirable trait, sizable degree of transverse coherence is critical to
virtually all FEL applications, because the degree of coherence is related to the ability to focus and image the beam,
as well as to perform subsequent interferometric or holographic techniques. Thus, for a QFEL to be experimentally
useful, we require a minimum x-ray photon number > 105 with superior small bandwidth, while being longitudinally
and transversally coherent.

Significance of Quantum FELs for experiments and future applications

The primary motivation for QFEL physics with regard to future experiments and potential applications lies in
producing highly coherent pulses at hard x-rays from an ideally compact light source. Long coherence lengths up to
several µm significantly surpass the coherence lengths of existing hard x-ray lasers. Beyond these applications there is
also a fundamental interest in QFELs as a quantum system, in which a Quantum SASE FEL with its photon statistics
is the natural extension of a SASE FEL with significant quantum mechanical recoil. Even for classical FELs with
ρ̄ � 1 quantum effects may become relevant, since in these regimes the position uncertainty of single electrons can
already become larger than the radiated wavelength [27] during interaction. Therefore, a quantum physics description
is necessary to understand the FEL evolution, even if only to confirm that there is indeed no observable effect.

The biggest drawback of a QFEL besides its strict experimental requirements appears to be the relatively small
x-ray photon number, which at best equals the number of electrons. While a QFEL would have a photon yield of
105 to 1010 per pulse, an XFEL-type source already features 1012 photons per pulse [6, 7]. Hence one could put
forward the argument, that the same spectral width can be attained by applying a narrow spectral bandpass filter.
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However, this does not change the coherence time of the resulting x-ray pulse. Instead of a well-defined Gaussian
envelope in both time and spectral domain, one would end up with a shot-by-shot, randomly distributed train of
pulses. A Quantum FEL, on the other hand, can produce small x-ray-laser bandwidths in the spectral domain and
simultaneously well-defined, ultrashort temporal pulse characteristics. In the best case, a QFEL based on an ultrashort
electron bunch would also yield an x-ray pulse of the same length and not a laser envelope consisting of numerous,
causally independent intensity spikes.

Thus, the central value of hard x-ray radiation from a QFEL for experiments and applications would be a signif-
icantly improved longitudinal coherence length, potentially exceeding the coherence length of classical FELs by one
order of magnitude. Combined with its well-defined, ultra-short temporal x-ray laser structure this feature would
enable novel applications such as phase-referenced (i.e. interferometric and holographic), time-resolved studies of
the structure of matter. The field of warm-dense matter physics is one example, where phase-sensitive diagnostics
could identify exotic states of matter undergoing ultrafast instability dynamics and rapid phase transitions in highly
overdense plasmas.

Analogously to the development of ultrashort, high-power, optical lasers, where an initial low-power, but high-
quality seed is key to an entire amplification chain, an ultrashort QFEL x-ray laser pulse of good pulse quality but
limited photon number could serve as a seed for subsequent amplification processes.

From an experimental perspective, QFELs would most-likely be driven by compact optical laser undulators which
require much lower electron energies. Compared to kilometer long linear accelerators and undulators, such designs
would be much more compact. In contrast to classical SASE, one exploits that once the quantum regime is reached,
the number of emitted photons depends only on the number of electrons available and not on the electron energy.

Non-ideal effects

Introduction to non-ideal effects

A high quantum mechanical recoil, quantified by α = ρ̄3/2 � 1, is not the only fundamental constraint to realize
the quantum regime of the FEL. If we want to avoid that the discreteness of the momentum steps is washed out
we require the initial momentum spread ∆p of the electron beam in the average rest frame to be smaller than the
separation q of the momentum levels yielding ∆p < q [23]. In the laboratory frame we then obtain

∆γ

γ
<

~kFEL

γmc
=
ρ

ρ̄
. (7)

Due to λFEL ∝ γ2 this requirement for the energy spread translates to a maximum linewdith

∆λFEL

λFEL
< 2

~kFEL

γmc
= 2

ρ

ρ̄
(8)

for the FEL radiation.
We emphasize that Eqs. (7), (8) only represent limits at which quantum effects become visible in the FEL. However,

they do not make any statement about the parameter space in which these can be efficiently exploited in order to
operate a Quantum FEL. in the following we show that the parameter limits allowing for (efficient) operation of a
Quantum FEL are closely related to its gain bandwidth.

The dynamics of the electron in the quantum regime is characterized by sharp resonances due to energy-momentum
conservation; that is the electron jumps from excited to ground state, only if in the average rest frame its initial
momentum exactly equals the resonant one p = q/2. Since the interaction time is finite these resonances are broadened
and interaction also takes place for momenta which are slightly off-resonant.

We can quantify this broadening of the resonance by considering energy-time uncertainty

δE δt ≥ ~
2
, (9)

where δE and δt denote the uncertainties in energy and time, respectively. We estimate δt by the typical interaction
time characterized by the Rabi frequency Ω yielding δt = 1/(2Ω). For the energy of the electron we simply consider
the free energy E = p2/2m which yields for a resonant electron with p = q/2 the expression

δE ∼=
(
∂E

∂p

)
p= q

2

· δp =
1

2

q

m
δp (10)
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in terms of a momentum uncertainty δp .
With the help of Eq. (10) and by taking the lower bound of Eq. (9) into account we finally obtain the relation

δp

q
= α (11)

for the broadening δp of the resonance in momentum space, where we have employed α = Ω/ωrec. A more rigorous
derivation yields the similar result δp = 2αq. If the initial momentum spread ∆p of the electron beam is smaller than
this broadening each electron participates in the interaction and contributes to the gain of the FEL. For an electron
beam which possesses a momentum spread that exceeds the constraint given in Eq. (11), however, only a fraction of
the electrons interacts with the fields, which is known as velocity selectivity in cold atom physics [43]. In this case,
the gain is reduced and thus we identify an offset δp = αq as the gain bandwidth of a Quantum FEL. Since α � 1
in the quantum regime, we, moreover, recognize that this requirement due to velocity selectivity is stronger than the
fundamental constraint ∆p < q.

In terms of the laboratory frame we obtain the condition

∆γ

γ
<
√
ρ̄ρ = Γ , (12)

for the relative energy spread of the electron beam, where we have used Eqs. (4) and (7) as well as the definitions,
Eqs. (3) and (5), of ρ̄ and Γ, respectively. This heuristically motivated result is consistent with existing literature on
Quantum FELs [31]. Since Γ denotes the maximally allowed energy spread for which amplification occurs, we identify
this quantity as the gain bandwidth of a Quantum FEL.

By now there are two requirements on the electron energy spread. One for the emergence of quantum effects in
the interaction and the other for efficiently driving a QFEL, eqs. (7) and (12) respectively. The first of these is a
necessary condition and is automatically fulfilled for quantum regimes ρ̄ ≤ 0.62 if the latter condition is fulfilled. For
regimes with a larger quantum parameter the latter condition is not sufficient to analyze the requirements for QFEL
operation. Electrons violating condition (7) do not only reduce the ability to drive the QFEL instability, but can
actively disrupt the process by undergoing competing transitions.

Three-dimensional non-ideal effects are best systematically analyzed by starting from the relative bandwidth of the
amplified radiation in a Quantum FEL, which in contrast to a classical FEL is

∆λFEL

/
λFEL ≤ 2Γ = 2ρ

√
ρ̄

1 + ρ̄

' 2ρ
√
ρ̄ , for ρ̄� 1. (13)

This bandwidth can then be compared to the kinematics of the fundamental scattering process, which here can be
well described by the classical Thomson formula

λFEL =
λu ·

(
1 + a2

0/2 + γ2θ2
)

2γ2
, (14)

with

λu =
λ0

1− β0 cosφ
.

describing an effective one-dimensional undulator wavelength for arbitrary interaction angles φ. The interaction angle
is enclosed by the directions of propagation of the electron bunch and the laser pulse providing the optical undulator
field. Above eqs. feature the wavelength dependence on the observation angle θ with respect to the electron direction
of propagation, laser wavelength λ0 and the electron energy and velocity, which is expressed in terms of the speed of
light, γ and β0 respectively [44].

The dimensionless laser strength

a0 =
eE0

mcω0

' 0.8493× 10−9λ0[µm]I
1/2
0 [W/cm2] , (15)

where E0 denotes the laser electric field, I0 its intensity and ω0 its central angular frequency, characterizes the
transition from sub-relativistic a0 � 1 to relativistic a0 ≥ 1 quiver velocities of electrons within the laser field. For
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optical undulators a0 identically replaces the usual dimensionless undulator parameter K = eB0λu/2πmc of magnetic
undulators. Physically, this analogy exists, because undulators were designed to mimic at a very good approximation
an incident electromagnetic wave with respect to a relativistic electron beam. Therefore, on the level of fundamental
processes one can easily interchange undulator and Thomson scattering theory. In non-ideal laser and electrons beams,
the quantities a0, λ0, φ and γ are neither uniform in space nor constant over time. Essentially, in order to contribute
to the same QFEL transition, the radiation of every electron needs to remain both inside the interaction region and
within the gain bandwidth eq. (13).

However, this simple picture quickly becomes more complicated, because electron momentum and laser frequency
are both continuous and not discrete observables. Thus one has to consider not one single line transition of some
specified relative spectral width 2Γ, but a whole range of possible transitions between two bands of momentum states
driven by a laser of finite and continuous frequency bandwidth. All these transitions need to remain within the
aforementioned 2Γ bandwidth. Accordingly, the best case result for Dirac-delta-type distributions of electron and
laser spectra are Nphot,max ' Nel QFEL laser photons with at minimum the natural bandwidth

∆λFEL,min

λFEL
=
Lbunch

c
.

With finite spectral widths as in any real-world experiment, this minimum bandwidth increases according to the
electron momentum distribution and laser bandwidth until the QFEL bandwidth criterion eq. (13) cannot be met
anymore and prevents the QFEL interaction.

In the following we go through the different properties of electron bunch, laser pulse, interaction geometry, space-
charge and spontaneous emission to identify critical challenges for experimental realizations of QFELs. Here we adopt
standard FEL nomenclature for the 1D-FEL power gain length of a monoenergetic beam [16]2

Lg =
λu

4πΓ
, (16)

as well as the cooperation length

Lc =
λFEL

4πΓ
(17)

in order to be more consistent with respect to standard literature on classical FELs. For Quantum FELs ρ is replaced
here with Γ. Compared to some previous work on QFELs [29, 30] these definitions are smaller by a factor of

√
3.

Thus, the expected saturation length

Lsat ' 10Lg ∼
λu
Γ
. (18)

accordingly increases.

Challenges due to required electron bunch properties

Electron energy spread and transverse emittance of the electron beam both enlarge the radiation bandwidth.
They are strict constraints for experimentally reaching the quantum regime of the FEL. Especially if the condition
for isolating a single momentum transition (8) is violated, discrete FEL frequency-bands ensured by the nonlinear
energy-momentum relation γ(p) =

√
1 + (p/mc)2 cease to exist. Equation (14) relates the energy spread to a spread

in radiated wavelength 2∆γ/γ = ∆λ/λ, thus the condition on the electron bunch energy spread is given by

∆γ

γ
≤ Γ = ρ

√
ρ̄

1 + ρ̄
=

λc
γλFEL

√
ρ̄3

1 + ρ̄
, (19)

which we obtained earlier, cf. (12), but now we applied the interpolation formula (6) for Γ. The strong energy
dependence ∆γ/γ ∝ γ−1 shows that conventional undulators are at a significant disadvantage for QFELs. According

2 Note, that the QFEL dispersion relation is not a cubic equation as for the classical 1D-FEL [7, 45, 46]. Thus the gain length of the
classical FEL for ¯ρ� 1 is by a factor of

√
3 smaller than for a QFEL. Consistently, the required number of gain lengths Ng until

saturation for a classical FEL is also by a factor of
√

3 higher than for a QFEL, hence resulting in a similar saturation length for the
classical and the quantum regime.
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to eq. (14), where λFEL ' λu/2γ2, a cm-long undulator wavelength λu = 1 cm of a magnetic undulator requires such
high electron energies (3.6 GeV) that the relative energy spread according to eq. (19) for ρ̄ = 0.2 needs to fall below a
limit of 2.8× 10=7. While the absolute energy spread is the same as for optical undulator with smaller λu, reaching
such low relative spreads after acceleration to higher energies, in which each acceleration cavity increases energy
spread, is currently beyond the state-of-the-art. Hence, more compact optical undulators with λu in the range of µm
to 100 µm do not only lead to more compact setups, but significantly reduce technical demands on the accelerator to
provide extraordinary small relative electron energy spreads.

The normalized transverse emittance εn of an electron bunch combined with the (rms) electron beam radius σe is
a measure of the electron beam divergence. According to eq. (14) and [14] the condition for the maximum allowed
divergence angle reads

γ2δφ2 ≤ 2Γ (20)

and thus the normalized emittance limit is

εn ≤ σe

√
2Γ . (21)

The electron density of a divergent electron beam also reduces during propagation which diminishes the electron–
radiation coupling. The laser and electron pulse overlap over the interaction distance Lint is reduced, too. Both effects
lead to an additional criterion on the normalized electron bunch emittance

εn ≤ σ2
eγ/Lint , (22)

where we require the interaction length to remain shorter than twice the β? = γσ2
e/εn of the electron bunch, which

denotes the β-function in the middle of the interaction at the focus β(s) = β?+s2/β? and represents the characteristic
defocusing distance. This defocusing condition is of high practical relevance, since optical FELs (OFELs) do not a
priori provide focus guiding of the electron beam as in magnetic undulators, where the increasing magnetic field off-
axis can confine an electron beam. Although optical undulators could at least in principle achieve the same through
a ponderomotive potential of carefully engineered intensity gradients in the laser pulse, the technical implementation
is extremely challenging. For typical QFEL electron beam parameters beyond 30 MeV energy, εn = 0.01 mm mrad
normalized emittance and σe = 2.0 µm, one typically arrives interaction lengths at the centimeter scale(here: 2β? =
4.8 cm).

Finally, the electron bunch charge Q, rms cross-sectonal radius σe and pulse length τe, determine the bunch mean
electron density ne and hence the classical FEL coupling strength ρ, as well as the Quantum FEL coupling strength

Γ ∝ ρ =

[
a2

0f
2
BΩ2

p

32γ3
0c

2k2
0(1− β0 cosφ)2

]1/3

(23)

=

[
1

16γ3
0

I

IA

(
λ0a0fB

2πσe(1− β0 cosφ)

)2
]1/3

∝ Q1/3τ−1/3
e σ−2/3

e ,

with the non-relativistic plasma frequency Ω2
p = e2ne/ε0m, fB = [J0(χ) − J1(χ)] with χ = a2

0/(2 + a2
0), the Alfvén

current IA = 4πε0mc
3/e ≈ 17 kA, and the electron beam peak current I.

In order to enter the quantum regime of an FEL extraordinary high-quality electron guns are needed to realize the
required small normalized emittances εn at a scale below ε < 0.1 mm mrad. Developing such guns is an active field of
research within accelerator physics. However, when assuming only minor extrapolations beyond the current state-of-
the art, one of the promising methods appears to be going towards small bunch charges in order to isolate electron
bunches with low-emittances [47–50] at relatively high electron densities. While this sacrifices final photon flux, such
an approach could potentially meet the strict electron requirements towards QFEL proof of principle experiments
[31].

Challenges due to required laser undulator properties

In the deep quantum regime ρ̄ � 1, the undulator wavelength is chosen such that ρ and thus Γ ' ρ
√
ρ̄ are being

maximized to reduce the engineering and economic challenges towards an experimental realization.
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The duration of the entire laser-electron interaction is Lsat/c. In head-on, colliding geometries, where laser and
electron beam foci overlap and propagation directions are oriented 180◦ with respect to each other, the laser pulse
duration τ0 is required to be longer than

τ0 > 2 · Lsat/c .

For this reason most QFEL scenarios with mm to cm long interaction lengths require a laser pulse duration in the ps
to ns-range. Later in this article we will show how this constraint can be relaxed.

Due to the onset of nonlinear Thomson scattering at a0 approaching unity, intensity variations also lead to variations
of the scattered wavelength by the (1+a2

0/2) redshifting-factor in eq.(14). Hence the upper limit on intensity variations
due to the wavelength shift for a0 < 1 is

δI0
I0
≤ 4Γ

1 + a2
0/2

a2
0

. (24)

In practice this is a strong limit for high laser intensities, since it is technically extremely challenging to provide
spatially and temporally uniform laser beams of laser strengths a0 of unity and beyond, where required intensity
variations would often be in the sub-percent range.

The variation in laser intensity during the propagation of the electron bunch caused by the laser spatial envelope
gives rise to a ponderomotive force on the electrons. Its strength is F = −mc2∇a2

0/4γ [51], provided that a0 � γ.
Through intensity gradients within the laser pulse, the ponderomotive force causes a drift in the electron motion away
from the center of the bunch. To minimize the resulting error angle δφ, the relative intensity variation δI0/I0 = 2δa0/a0

must be kept small. In order to derive an approximate limit on the allowed intensity variation within the laser pulse,
we assume a constant ponderomotive force over the entire interaction time and approximate the gradient linearly with
∇a2

0 ≈
√

2/πδa2
0/σe. Hence the deflection angle θpond = δa2

0Lint/
√

8πγ2σe combined with condition eq. (20) yields
the intensity variation limit of the ponderomotive force

δI0
I0
≤ 4

a0

(
πρσ2

eγ
2

L2
int

)1/4

. (25)

Typically intensity variations within each pulse of several percents can be obtained in modern high-power laser
systems. Beyond improving the optics and material quality, as well as thermal control and vibration stability, there
exists little work on active filtering and control of small scale intensity variations. Existing homogenizing filters as
used in industry applications [52] are unsuitable for driving QFELs, since homogenizers that reduce local intensity
noise within a laser pulse strongly reduce its spatial coherence, too.

Challenges due to coherence properties

A high degree of coherence 〈E(rA, t)E
?(rB, t + τ)〉 > 0 in resulting FEL x-ray beams is essential to almost all

applications. Spatially coherent FEL beams show planar phase fronts, which makes it possible to image and focus the
beam. Longitudinally (or temporally) coherent FEL beams feature an extended coherence length over which a fixed
phase relation exists that can be used in experiments as prior knowledge. For interferometric or diffraction-based
techniques, both spatial and temporal coherence usually has to exceed the dimensions of the target under investigation.

For identifying the maximal achievable domain of full coherence both in classical and Quantum FELs, it is useful
to identify the volumes within the electron beam that are causally connected by the entire FEL interaction. Causally
disconnected regions in an unseeded FEL, can generate FEL radiation at the same wavelength, but do so with random
phase shifts with respect to one another.

Longitudinally, this dimension is defined by the so called cooperation length, i.e. the total slippage length between
the x-ray pulse and electrons. According to the FEL resonance condition, the emitted light slips over the electrons
by one FEL wavelength for every electron oscillation period which defines the total slippage length as the radiation
wavelength times the number of undulator periods until saturation. For a QFEL we assume that this cooperation
length is approximately given by

Lc =
λFEL

4πΓ
, with Γ = ρ

√
ρ̄

1 + ρ̄

in analogy to classical FEL theory. Compared to eq. (17) the interpolated expression for Γ is used now.
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Transversally, the degree of coherence is not as straightforward to identify as for longitudinal coherence, primarily
because the interplay between electron beam and FEL laser usually requires more extensive numeric modelling. For
build-up of transverse coherence there needs to be some interaction between distinct regions of the beams transverse
cross-sections in order to permit synchronization, which is homogenization, of the FEL beams transverse phase front.
This does not occur, if both FEL and electron beam are perfectly collinear. However, diffraction of finite-size FEL
beams, as well as divergence of electron beams with non-zero emittance and space-charge all lead to variations of the
transverse beam cross-sections and FEL radiation modes. Assuming equal diameters, one usually compares divergence
of electron and FEL beams by their respective emittances εn/γ and εr = 4π/λFEL.

Furthermore we assume that the electron and the FEL photon beam fulfill the emittance eq. (22) and diffraction
criteria, Lg < zr,FEL = 4πσ2

e/λFEL [14] respectively, to avoid excessive losses in the FEL gain. Within these constraints,
a diverging FEL beam imprints the local FEL phase onto the local phase of the modulated electron beam and vice
versa. While the existence of beam divergence effectively synchronizes the phase front over the course of a number of
gain lengths, this competition of transverse modes during amplification tends to be more effective if FEL and electron
beam divergences are matched. Thereby the respective interaction duration between local electrons and FEL photons
is maximized.

Qualitatively, there are two extremes for radiation emittance: εr � εn leads to transversal coherence, but strongly
increases the FEL gain length. Here a divergent FEL beam reduces the FEL field within the electron bunch and thus
the FEL gain. In the opposite limit εr � εn maintains the shortest FEL gain length, but diminishes or eliminates
transverse coherence since a low-divergent FEL beam does not reach all areas of the electron beam crosssection. This
is equivalent to independent Quantum SASE FELs in the same beam without mutual phase-lock and hence without
transverse coherence.

Quantitatively, the degree of transverse coherence of FEL radiation is often characterized by the transverse coherence
parameter [53, 54]

ε̂ = 2πεn/γλFEL .

The parameter ε̂ matches the divergence of the FEL radiation and the electron beam such that the degree of transverse
coherence is best at ε̂ u 1 and useful transverse coherence is typically available in a rather wide range of ε̂ = 0.5− 10.

For a head-on laser geometry, where laser and electron collide collinearly at 180◦ interaction angle, at 800 nm
wavelength and a permissive transverse coherence parameter target of ε̂ = 10, the required normalized beam emittance
for a QFEL at λFEL = 1 Å is εn = 7.1× 10−3 mm mrad, which becomes εn = 7.1× 10−4 mm mrad ∝ ε̂ for perfect
emittance matching ε̂ = 1. This shows, that full transverse coherence can become prohibitively difficult. This
problem can be avoided by using drive lasers at longer wavelengths, such as CO2 lasers at 10.6 µm, or optical lasers
in a Traveling-Wave Thomson-Scattering (TWTS) geometry [55].

Beyond the general guideline for ε̂ a numerical modeling is essential for predicting transverse coherence and further
radiation field properties in classical FELs. Today there is no conclusive framework available for numerical simulations
of the interaction between electrons, undulator field, radiation field as well as the evolution of the fields (e.g. laser
defocusing and transverse mode competition respectively) in Quantum FELs starting from a realistic electron bunch
distribution. Yet first approaches using a quantum fluid approach exist [17].

Despite aforementioned limitations of current theoretical works, one expects that these general ε̂ scalings hold
also for Quantum SASE FELs. In essence both the degree of longitudinal and transverse coherence of a SASE FEL
primarily depend on the ability of the FEL field to causally connect spatially separated regions within the electron
bunch and that the effect of slippage and electron beam divergence do not fundamentally change in the quantum
regime. Therefore we adopt the classical coherence requirements for Quantum SASE FELs

εn = ε̂
γλFEL

2π
, (26)

where the dimensionless transverse coherence parameter ε̂ needs to be within the approximate range ε̂ ∈ [0.5 . . . 10]
in order to obtain at least partial transverse coherence.

Quantum FEL Interaction Geometry

Challenges due to the interaction region

In the usual head-on scattering geometry, which is a collinearly, colliding configuration, the interaction length does
not only need to be shorter than twice the β? of the elecron beam, cf. (22), it is also required to remain shorter than
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twice the laser Rayleigh length

Lint < 2zr ,

with zr =
πw2

0

λ0
, (27)

which denotes the distance from the laser waist where the width of the beam is
√

2 larger compared to w0 at the waist
and on-axis intensity one half of the peak intensity. For a laser focal width w0 = 10µm at 800 nm wavelength, chosen
to be considerable larger than the electron bunch radius σe = 2µm, the available interaction distance 2zr = 0.078 cm
is much smaller than 2β? = 4.8 cm.

Moreover, the change in laser intensity due to defocusing, the Gouy-phase, the intensity variation originating from
the transverse laser profile, as well as the laser curvature further limit the useful interaction volume.

According to the field amplitude scaling a0 ∝ (1 + (z/zr)
2)−1/2 of a collimated Gaussian beam with propagation

distance z from the waist and eq. (14), the resulting relative deviation in FEL wavelength during interaction and
corresponding useful range in (z/zr) for a QFEL with 2Γ bandwidth are

∆λFEL,defocus

λFEL
= 1− (1 + (fa0a0)2/2)

1 + a2
0/2

, with fa0 = (1 + (z/zr)
2)−1/2

∆λFEL,defocus

λFEL
=

a2
0(z/zr)

2

4 + 4(z/zr)2
, leads to range(

∆z

zr

)
defocus

= ± 2
√

2Γ√
a2

0 − 8Γ
, satisfying ∆λFEL/λFEL ≤ 2Γ. (28)

In case of cylindrical focusing, as for the Traveling-wave Thomson scattering geometry introduced later, the allowable
distance doubles.

The Gouy phase leads to local shifts in laser wavelength experienced by the electrons passing through the focal
region at the speed of light. The Gouy-phase Ψ(z) = arctan(z/zr) modifies eq. (14) according to

∆λFEL,Gouy(z)

λFEL
=

∆ω0,Gouy(z)

ω0
=

(
ωGouy(z = 0)− ωGouy(z)

ω0

)
=

1

ω0

(
∂Ψ(z = ct)

∂t

∣∣∣∣
t=0

− ∂Ψ(z = ct)

∂t

∣∣∣∣
t→z/c

)

=
1

k0

(
∂

∂z
arctan(z/zr)

∣∣∣∣
z=0

− ∂

∂z
arctan(z/zr)

)
.

The resulting relative deviation in FEL wavelength and corresponding range in (z/zr) for a QFEL with maximum 2Γ
bandwidth are

∆λFEL,Gouy(z)

λFEL
=

z2

k0z2zr + k0z3
r(

∆z

zr

)
Gouy

= ±
√

k0zr2Γ

1− k0zr2Γ
. (29)

Assuming a Gaussian shaped transverse laser mode with a0 = a0,max exp (−x2/w2
0), eq. (24) shows the wavelength

shift and extent of the center region to be

∆λFEL,Gauss

λFEL
=

a2
0

2 + a2
0

(1− exp(−2x2/w2
0))(

∆x

w0

)
Gauss

= ± 1√
2

√
log

a2
0

a2
0 − 4Γ− 2a2

0Γ
. (30)

For the sake of completeness we note that wave curvature contributions from the focusing can alter the incident angle
on individual electron by ∆φ = arctan(x/(z(1 + (zr/z)

2))). On axis (x = 0) this effect typically becomes negligibly
small, such that above interaction region constraints are more strict. This can be checked, when we insert ∆φ in



15

eq. (14) and search for the maximum transverse extent of the interaction region at maximum wavefront curvature at
z = zr that is permissible at the QFEL bandwidth Γ. For small angles ∆φ� 1 we arrive at the estimate

∆λFEL,curvature

λFEL
=

2

1− cos(π + ∆φ)
− 1 ≤ 2Γ(

∆x

w0

)
curvature

' ±2πw0

√
2Γ(z/zr + zr/z)/λ0 . (31)

In an example scenario of an 800 nm laser at a0 = 0.05, focused to w0 = 10µm with a Rayleigh length zr = 393µm
for a QFEL with bandwidth Γ = 5.0× 10−5, the Rayleigh-intensity criterion eq. (28) is ∆(z/zr) = ±0.30, the Gouy-
phase criterion eq. (29) is ∆(z/zr) = ±0.67, the transverse Gaussian intensity criterion is ∆(x/w0) = ±0.20 and the
minimal radius according to the Rayleigh wavefront curvature criterion is ∆(x/w0) = ±1.57.

These results show that laser spot sizes need to be considerably larger than the corresponding electron beams. In
practice this leads to either prohibitively large requirements on the laser pulse energy or to extremely small radii
for electron beams and thus to an even higher constraint on electron beam emittance, cf. eq. (21). In essence, this
is known as the Rayleigh limit. Previous works [30] impose this limit for finding suitable QFEL designs, therefore
sacrificing much of the potential parameter space for QFEL configurations. In the following section we briefly show
that above Rayleigh-limit based constraints can be mostly avoided if a different interaction geometry is used.

Traveling-wave laser geometries – sidestepping the Rayleigh limit

A Traveling-wave optical FEL does not collinearly, overlap and collide laser pulse and electron beam in a shared
Gaussian-beam type focus. The Traveling-wave geometry becomes more complex, because it now distinguishes several
generally different directions: First the electron direction of electron propagation, secondly the laser direction of
propagation, thirdly a laser pulse-front tilt, i. e. a tilt of the laser pulse envelope with respect to its propagation
direction, and finally the FEL radiation direction of propagation. The laser geometry as shown in Fig. 3 is a cylindrical
focus, where its focal line is collinear with the electron beam. Therefore the electrons remain in the laser pulse focus
over the entire width of the laser pulse which is a big advantage in contrast to head-on scattering geometries.

Consequential the laser direction of propagation is not collinear anymore with the electron beam in the Traveling-
wave geometry, but encloses the interaction angle φ with the electron beam direction of propagation. Except for
angles close to 0◦ and 180◦, all angles φ are in principle possible. Note that the interaction angle φ changes the FEL
resonance condition eq. (14), which for a given target FEL wavelength requires higher electron energies. If available
laser pulse energy and poor laser-electron beam overlap would impose no technical limits, we would be already done,
but also would not require this geometry in the first place.

The Traveling-Wave Thomson-Scattering (TWTS) geometry therefore makes use of pulse-front tilted, ultra-short
laser pulses which allow for full temporal and spatial overlap between electrons and laser pulse, see Fig. 3(b). This
enables exploitation of every photon in the laser field for scattering in contrast to head-on geometries. The laser
pulse-front tilt, where the envelope of the laser pulse has an increasing time delay along one transverse direction with
respect to the center of the laser pulse, ensures continuous overlap of electrons and laser pulse over the whole laser
pulse width. In this way, the length of the optical undulator is given through the laser beam diameter and only limited
by the available laser power as opposed to head-on scattering geometries, where the interaction distance is limited
by the laser Rayleigh length. Thus, almost the total available energy of a high-power laser can be used in TWTS
to realize centimeter to meter long optical undulators suitable for OFEL operation in order to produce radiation
with higher intensity, narrower bandwidth and consequential higher brilliance than a head-on Thomson scattering
geometry.

The required laser pulse-front tilt for a relativistic electron beam is αtilt ' φ/2. In an experimental setup, these large
pulse front tilts can be realized by applying an angular chirp to the laser pulse which can achieved by a pair of optical
gratings. The goal is optimal overlap, in which ideally the entire laser pulse subsequently interacts with the electron
bunch. At a given laser pulse energy, this optimization of overlap vastly improves the coupling between laser and
electrons, because the constraints of the Rayleigh limit do not apply anymore for the length of the interaction zone,
but merely to the much smaller dimensions of the electron bunch itself. One main technical challenge is controlling the
group delay dispersion and spatial dispersion induced by the angular chirp during propagation. This can be solved by
pre-compensating the dispersion contributions prior to the interaction using two standard optical gratings in addition
to the CPA laser systems compressor [14, 56, 57].

Utilizing Traveling-Wave Thomson-Scattering does neither change the interaction dynamics of Quantum FELs
nor the one of classical FELs on a fundamental level compared to a head-on scattering geometry. On the level of
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Figure 3. (a) Overview on the Traveling-wave optical FEL experimental design. A laser obtains a pulse-front tilt by passing
two gratings and then is focused via a cylindrical mirror, sideways with an incident angle φ onto an electron beam, where the
line focus coincides with the trajectory. Within the interaction zone, (b) shows the TWTS principle of a pulse-front tilted
laser pulse subsequently interacting with the focused electron bunch. All parts of the laser get to interact with the electron
bunch over an extended interaction length Lint, which can be much longer than the laser Rayleigh length zr, while locally each
electron sees a plane wave. This is the basis for both long and narrow optical undulators driving FELs. In terms of FEL physics
(c) depicts the difference for the FEL interaction resulting from the sideways incident angle φ of the TWTS geometry. The
resulting FEL radiation features a walk-off angle of φsc with respect to the propagation direction of the electrons. All graphics
shown are derived work based on [14].

characteristics differences arise if finite-size electron and laser beams are considered. In the laboratory frame, as
shown in Fig. 3(c), the direction of FEL radiation does not exactly coincide with the electron direction of propagation
anymore, but features a walk-off angle

φsc =


φ , φ < 1

γ (forward scattering),
1

γ2
0 ·φ

, φ > 1
γ and φ� 1, (small-angle back scattering)

arctan
(

sinφ
2γ2·(1−β0 cosφ)

)
, φ� 1

γ (large-angle back scattering).

,

which is strictly smaller than 1/γ. In many practical cases, this angle φsc turns out to be negligible. As long as
condition

Lg · tanφsc < 2
√

2σe (32)

holds, the angle φsc remains small enough to cause a notable walk-off loss of the FEL laser energy with respect to the
electron beam within one gain length [14].

For further details on the Traveling-wave Thomson scattering scheme and possible implementation in high-power
lasers we refer the reader to our more extensive works [14, 55–60]. While there are many indications, that such TWTS
geometries are well in the range of current machines and laboratories, the main practical challenge in experimentally
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implementing TWTS are system integration efforts, such as for example accompanying diagnostics for the TWTS
characteristics, as well as finding suitable space in existing beam lines.
Summarizing the main advantages for Quantum FELs that possibly can be obtained by the TWTS geometry:

First, the TWTS geometry eliminates the Rayleigh limit of the interaction length. Rayleigh and laser pulse envelope
limitations are only imposed on the much smaller electron bunch dimensions. Hence, this saves laser pulse energy, by
making it possible to match the laser spot size to specific combinations of electron bunch size and interaction length,
without increasing laser spot size and thus laser pulse energy to satisfy the Rayleigh length criterion eq. (27).

Secondly, TWTS reduces intensity variations in optical undulators, since the interaction takes place in the temporal
center of the drive laser beam, while the temporal evolution of the optical undulator strength experienced by the elec-
trons is primarily determined by the transverse laser profile. Experimentally, transverse laser profiles are considerably
easier to adjust than the temporal profile.

Thirdly, despite local pulse durations being ultrashort, in a TWTS laser, every electron can undergo many optical
undulator periods at uniform field amplitudes as from a temporally extended plane wave. Hence, TWTS strongly
reduces the effective bandwidth observed by electrons even for ultrashort lasers.

Finally, a more practical advantage is that tuning the interaction angle φ gives the freedom to go to different FEL
wavelengths at constant electron energy.

LIMITS TO QUANTUM FELS DUE TO SPACE-CHARGE AND SPONTANEOUS EMISSION

Space-charge counteracting QFEL dynamics

Classical FELs theory [61–64] shows that space-charge forces within an electron bunch can negatively impact
classical FEL performance and dynamics in several ways. From a perspective of electron beam dynamics, space-charge
forces change global beam properties [65, 66], such as beam size, divergence, energy spread and transverse emittance.
On the microscopic scale however, space-charge forces also act directly against the local density modulations of FEL
micro-bunching [67], thus altering or inhibiting the FEL dynamics.

Since the focusing fields of magnetic undulators can be used to improve global beam properties, most of theoretical
FEL literature investigates the effect of space-charge on micro-bunching. Hereby, it is useful to introduce the inverse
relativistic plasma wavenumber

k−1
p = cγ3/Ωp (33)

of the electron beam as a characteristic length scale, where Ωp =
√
e2n/ε0m denotes the nonrelativistic plasma

frequency. For transversal motions in bunched beams, the strong γ3 scaling originates from the transversal relativistic
mass mγ combined with the reduction of the electric Coulomb repulsion by the magnetic attraction according to the
v×B-term of the Lorentz force FL = eE(1− β2) = eE/γ2. For longitudinal motions there is no such magnetic field
reduction, but the longitudinal relativistic mass γ3m takes the place of the non-relativistic mass [65].

The parameter k−1
p describes a characteristic length scale for space-charge evolution. For beam propagation dis-

tances L � k−1
p , space-charge forces become negligible, while for L ≥ k−1

p space-charge forces become relevant for
beam dynamics.

For a quantitative understanding of the space-charge dynamics inherent in the FEL process, classical 1D FEL
theories often self-consistently introduce space-charge forces as periodic potentials at the micro-bunching period
[61, 62, 67], with its amplitude being derived from Fourier transform components of the longitudinal electron bunch
density profile.

As a result one arrives at the prerequisite of a dimensionless space-charge parameter being smaller than unity

Lg · kp < 1 , (34)

which amounts to the statement that micro-bunching of the electron beam has to grow faster than the space-charge
potential-equalizing dynamics. If Lg · kb reaches an appreciable fraction of unity, this leads to increased gain lengths,
as well as to shifted FEL wavelengths, which marks the beginning of the so called Raman regime. The FEL regime
free of noticeable space-charge dynamics is called Compton regime in standard FEL literature, see e. g. ref. [67]. In
the following we adopt this distinction of Raman and Compton regimes for the Quantum FEL.

Despite first attempts by Serbeto et al. using a semi-classical quantum fluid approach [68–70], there exists no
comprehensive theory yet on the 6D phase-space properties and dynamics of QFELs under the influence of space-
charge. A theory of the Raman QFEL regime would have to take the maximum allowable relative momentum spread
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into account, cf. eq. (8), before competing momentum transitions occur. These processes effectively disrupt the
isolated two-level quantum system.

Accordingly, it is useful to define an additional, more defensive requirement, which excludes significant space-charge
effects not only over one gain length, but over the entire QFEL interaction length

Lint · kp < 1

NgLg · kp < 1 , (35)

where Ng denotes the number of gain lengths Lg within the interaction length Lint. In analogy to classical FEL theory
we assume that the earliest saturation of a Quantum SASE FEL occurrs at approximately Ng,sat ≈ 10. While on the
one hand the limit in eq. (35), corresponding to virtually all QFEL theories published so far, could be too strict with
regard to potentially realizable two-level QFELs in the Raman regime, the Raman regime condition eq. (34) on the
other hand will be too permissive, since it includes neither increasing gain lengths nor the break-down of the two-level
quantum system due to space-charge. Thus we discuss space-charge in both these limits in the following – keeping in
mind that the true space-charge constraint likely lies in between these two extremes.

It is useful to restate eqs. (34) and (35) to better expose all fundamental dependencies. For this purpose we use
the relation Lg = λu/4πΓ with Γ = ρ

√
ρ̄/(1 + ρ̄) and isolate the direct dependency with respect to ρ̄ for a0 � 1 by

applying the definition eq. (1). Then we transform kp using eqs. (33) and (23) in order to cancel the lowest order
ρ3/2-dependency of Lg and arrive at

Lintkp = Ng

√
8λc
γλFEL

(1 + ρ̄)

a2
0

≤ 1 , with

{
Ng = (Lint/Lg) , for QFELs with negligible space-charge (Compton regime) ,

Ng = 1 , for QFELs with significant space-charge (Raman regime) .
.

(36)
Since the electron-light interaction has to occur faster than the space-charge dynamics, solving eq. (36) for a0 yields

a minimum requirement for the normalized laser amplitude

a0 ≥ a0,min , with

a0,min =

√
8λc
γλFEL

(1 + ρ̄)Ng (37)

where again Ng = Lint/Lg and Ng = 1 for the Compton QFEL regime and the Raman QFEL regime, respectively.

Spontaneous emission counteracting QFEL coherence

Another major process competing with the QFEL stimulated emission dynamics is the spontaneous decay of electron
momentum in the laser undulator field by standard Compton scattering. Spontaneous emission is polychromatic in
nature, since it is robustly a 3D effect, where the emitted wavelength depends on the angle of emission θ, cf. eq. (14),
and ranges from λu to λFEL in its lowest order.

Thus the great majority of spontaneously emitted photons lead to electrons decaying to momentum states outside
the momentum bands allowed by the QFEL, see also [22] and corresponding comment. If all electrons decayed into
other momentum states, the QFEL dynamics would not take place. Hence we require that the number of coherent
photons emitted by a Quantum FEL surpasses the number from incoherent Compton scattering. In other words, all
QFEL physics has to take place within the lifetime of the initial electron momentum states.

For investigating the influence of spontaneous emission, the two-mode model of the Hamiltonian in eq. (2) is
insufficient. Instead, one has to consider an electron, which initially is prepared in the excited state p = q/2 of the
average rest frame, coupled to a reservoir of all possible modes of the electromagnetic field with each mode being in
the vacuum state |0〉 except for the undulator mode.

In a standard Wigner-Weisskopf approach [71] one can derive the decay constant [72]

D = 4π2 V

(2π3)

ω2

c3︸ ︷︷ ︸
all modes

8π

3︸︷︷︸
3D

g2︸︷︷︸
interaction

(38)

which denotes the inverse life time of the excited state in the average rest frame before it incoherently decays due
to spontaneous emission. The origin of the single terms in eq. (38) is as follows: the first contribution emerges due
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to the conversion of a sum over all modes to an integral by means of the density of states. The second term 8π/3
represents a three-dimensional effect and arises by integrating over all possible directions of polarization. Moreover, we
obtain a quadratic dependency on the coupling g of electron and fields which is analogous to Fermi’s golden rule [73].
We emphasize that in the derivation of eq. (38) collective effects [74] due to the simultaneous interaction of many
electrons with the fields were neglected. We further assumed a0 � 1 and neglected multi-photon processes, as well
as cases where the magnitude of the recoil becomes similar to the particle momentum at high energies. If the latter
assumptions do not hold, the constraint due to spontaneous emission becomes even more restrictive.

The classical result [75] for the inverse decay length R−1
sp of a single electron in the laboratory frame reads

R−1
sp =

2παf
3

a2
0

λu
,

which is also the expression used in Ref. [20] with αf denoting the fine structure constant. The above inverse decay
length R−1

sp ≡ D/c is consistent with the result (38) from the quantum theory [72].
In order to obtain FEL amplification the lifetime of the excited state has to exceed the typical interaction time,

that is, the electron has to have enough time to interact coherently with the undulator and the FEL mode before
it spontaneously emits radiation. Hence, we require the inverse decay length R−1

sp to be smaller than half the total
QFEL interaction length

R−1
sp · Lint ≤

1

2

or

αf

6
√

3λc
Nga

2
0γλFEL

√
1 + ρ̄

ρ̄3
≤ 1

2
. (39)

Note, that a higher drive laser intensity leads to more spontaneous emission R−1
sp ∝ a2

0. Accordingly, this results in
the constraint

a0 ≤ a0,max , with

a0,max =

√√√√ 3λc
αfγλFELNg

√
ρ̄3

1 + ρ̄
(40)

where Ng = Lint/Lg is independent of the regime. This limit is opposed to the space-charge requirement (37) of a
minimum a0 and features the same dependency on λFEL and γ.

Strong limit by opposed scalings of constraints

The opposing constraints of eq. (37) and (40) from space-charge and spontaneous emissions now impose strong
limitations to the feasibility of any Quantum FEL.

There are four fundamental quantities: the quantum parameter α ≡ ρ̄3/2, the undulator length Ng in units of
the gain length, as well as the number of spontaneous decays R−1

sp · (LgNg) at the end of the interaction and beam
plasma wavenumber times the undulator length kpLgNg. We now express the undulator length Ng as a function of
the other three quantities. In addition we have to simultaneously meet three constraints: a small quantum parameter
α = ρ̄3/2 � 1 as well as the limits set by the number of spontaneous decays and space-charge effects to Quantum
FEL operation, eq. (40) and eq. (37) respectively.

Searching for the largest acceptable undulator length Ng,max for a0,max ≥ a0,min and α � 1 we obtain the simple
relation

Ng,max =

(
3

8

α

αf

)1/3

, (41)

which in particular is independent of λFEL and γ. This dimensionless undulator length Ng,max now can be compared,
see dashed line in Fig. 4, with a saturation length Nsat, showing that the largest acceptable undulator length Ng,max =
3 - 4 is much smaller than the typical saturation length Nsat ≈ 10 for SASE FELs. Therefore the maximum photon
yield is diminished by a factor of eNg,max−Nsat .
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After presenting the core argument in a nutshell, we reiterate above result of eq. (41) in a more general form without
the condition α = ρ̄3/2 � 1 while adopting the more commonly used notation ρ̄ for the quantum parameter. The
maximum undulator length is for example obtained by reformulating the spontaneous emission criterion (39) to a
statement on Ng. Then the largest possible Ng is found by inserting a0,min for a0.

In the Compton QFEL regime where we require negligible space-charge effects on the interaction dynamics the
largest possible undulator length is

NCompton
g,max =

(
3

8αf

√
ρ̄3

(1 + ρ̄)3

)1/3

(42)

where we have used the defensive space-charge criterion eq. (35). Figure 4(a) shows the scaling of NCompton
g,max as a

function of the quantum parameter ρ̄.
In contrast to the Compton QFEL regime, the more relaxed result

NRaman
g,max =

3

8αf

√
ρ̄3

(1 + ρ̄)3
(43)

is based upon the optimistic assumption of a hypothetic Raman QFEL regime, in which space-charge forces alter the
Quantum FEL dynamics but without destroying either the two-level system nor the QFEL gain. The Ng,max−ρ̄-scaling
following eq. (34) is depicted in Fig. 4(b).
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Figure 4. Depicts the maximum number of achievable gain lengths Ng for Quantum FELs with respect to the quantum
parameter ρ̄ based on the combined limitations due to space-charge and spontaneous emission. We distinguish between two
models, representing lower and upper constraints of a future, more rigorous QFEL theory taking space-charge, as well as
spontaneous emissioninto account: (a) illustrates the Compton QFEL regime according to eq. (42), which assumes negligible
space-charge dynamics Lint · kp < 1. The dashed curve shows the small-ρ̄ approximation of eq. (41). (b) depicts eq. (43) of
the supposed Raman QFEL regime in which, akin to classical FELs, space-charge dynamics is an integral part of the FEL
interaction Lg · kp < 1. The red-dashed curve shows the Compton regime for comparison. The green-dashed line marks the
undulator length at which SASE operation would become possible.

The defensive criterion in eq. (42) on the one hand suggests that it is impossible to operate any Quantum FEL
ρ̄ ≤ 0.5 in a regime where space-charge can be neglected for more than 3 to 4 gain lengths Lg. Especially, there
is no “safe” regime for a Quantum SASE FELs in which both spontaneous emission and space-charge dynamics are
negligible for the extent of a full QFEL saturation length. The limit

lim
ρ̄→∞

NCompton
g = 3.71782 ,

shows that classical SASE FEL dynamics at saturation is always subject to significant space-charge or spontaneous
emission dynamics or both.

The probably overoptimistic criterion in eq. (43) on the other hand shows that even in a permissive quantum Raman
regime – if it exists – the deep quantum regime ρ̄� 1 remains inaccessible since the stimulated QFEL interaction can
last only for very few gain lengths before the dynamics is dominated by spontaneous emission or space-charge effects.
According to the optimistic scaling of Fig. 4(b), a Quantum SASE FEL only becomes possible for ρ̄ ≥ 0.5. Both
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scalings show that within the deep quantum regime, a QFEL necessarily needs to enter the Raman QFEL regime,
otherwise there would be too many spontaneous emission events. However, according to the fitting formula for the
classical gain length in Marcus et. al. [64]

L̃g,sc ≥ L̃g(1 + (2kpL̃g)1.91) , with L̃g = Lg/
√

3

it increases with 2kpL̃g. This suggests that the deep quantum regime ρ̄ < 0.078 following from NCompton
g (ρ̄) < 1 is

robustly forbidden due to excessive spontaneous emission events indirectly caused by space-charge.
First, above estimates rely on the known micro-bunching dynamics of classical FEL and the classical energy loss due

to spontaneous emission. In addition to a quantum treatment, more detailed studies would need to take the continuous
momentum distribution of spontaneously emitted photons into account, as well as the statistics of spontaneous
scattering events instead of the mean scattering probability. Although these contributions can substantially add to
the numerical complexity of the analytical expressions, we assume that the basic scaling with ρ̄ does not change.

Secondly, the space-charge dynamics of the global electron bunch evolution, in contrast to micro-bunching, is not
directly taken into account. Although the space-charge parameter with the beam plasma frequency is related to
the generalized perveance in beam dynamics [65], hence providing a useful time-scale for the space-charge dynamics,
its results do not provide quantitative estimates on beam parameters. As shown in a later example, quantitative
space-charge calculations of realistic beams usually cannot be modeled analytically anymore, but require numerical
particle-tracking simulations. Since the space-charge dominated regime cannot be avoided for Quantum FELs, it is
this dynamics which is most destructive to the possibility of experimentally realizing Quantum SASE FELs.

DESIGNING QUANTUM FEL EXPERIMENTS

For Quantum SASE FELs there are essentially only four main quantities that have the largest impact on selecting
a suitable experimental design:

First, one needs to pick a desired FEL wavelength and a target quantum parameter ρ̄. In our example we aim for an
Å-wavelength QFEL. Since we try to enter the quantum regime (ρ̄� 1), but know about the limits on the achievable
interaction length arising from spontaneous emission and space-charge, we pick the quantum parameter by choosing
the lowest value ρ̄ = 0.5056 which allows to keep the interaction going over at least ten gain lengths. The range of
possible values for ρ̄ fulfilling this requirement can be seen in Fig. 5(a) showing the scaling of the space-charge and
spontaneous emission constraints on a0, eqs. (37) and (40) respectively, in dependence of the electron energy. While
for values ρ̄ < 0.5056 these constraints on a0 exclude each other (a0,min > a0,max), there is a range of possible a0 for
values ρ̄ > 0.5056 which ensure an interaction length of at least ten gain length in a Raman QFEL regime.

The next decision is on a desired electron energy according to eq. (14). It is only due to the TWTS interaction
geometry and its variability with respect to the interaction angle, that this choice exists. According to eqs. (19)
and (26) this choice allows to define the sweet spot between the contrary energy spread and transverse emittance
requirements for some electron source. Figure 5(b) illustrates the scaling of these requirements in dependence of
the electron energy. The emittance graph is based on a weak requirement on the transverse coherence parameter of
ε̂ = 10.0. At 100 MeV we find the largest transverse emittance goal εn = 0.031 mm mrad with a relative energy spread
barely beyond 10−5.

Then one needs to choose some normalized laser strength a0 for the undulator field from the range [a0,min, a0,max].
If electrons and optical undulator shall interact over the largest possible undulator length of 10Lg, being determined
by the picked value of ρ̄ = 0.5056, the maximum and minimum value of a0 are equal. In our example a0 = 3.85× 10−2

according to eq. (37) or (40).
At this point there are already enough conditions to fix the rest of the parameters. Remaining electron and laser

pulse parameters, such as bunch length and charge as well as wavelength, incidence angle and duration respectively,
are constrained by the electron bunch peak current Ie, laser strength a0 as well as the properties of the beam overlap.
An overview on the parameters of this example is given in Table I.

We emphasize that this example already assumes the existence of a Raman QFEL regime. Further note that the
laser requirements are relatively benign due to the low value of a0. Thus basic feasibility primarily is determined by
the technical feasibility of the electron source and the space-charge dynamics.

As a way to reduce the technical challenges for such electron sources it was suggested in Ref. [31] to aim for
low-charge electron bunches with high peak currents. While the minimum bunch radius is given by the transverse
emittance criteria for the electron beam, the longitudinal bunch length can in principle be chosen as short as a
cooperation length Lc before the QFEL amplification dynamic changes.
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Figure 5. Illustrates the major decisions for a Quantum SASE FEL design satisfying λFEL = 1 Å, ρ̄ = 0.5056 and ε̂ = 10.0.
(a) shows the minimum and maximum allowed laser strength a0, see eqs. (37) and (40), for several values of ρ̄ according to
the constraints on space-charge and spontaneous emission in the optimistic case of a Raman QFEL regime. While the value
ρ̄ = 2.0, which tends to a classical FEL regime, allows for a wide range of possible a0,min < a0,max (green) for any given electron
energy, the deep quantum regime at ρ̄ = 0.2 remains excluded since a0,min > a0,max (red). The blue curve presents the limit of
a0,min = a0,max, thus marking the lowest permissible quantum parameter ρ̄ = 0.5056 for a Quantum SASE FEL. (b) depicts the
choice of the target electron energy with its consequences on the energy spread and transverse emittance requirements. The
dashed line marks the target electron energy chosen for the design in tab. I.

In Fig. 6 we compare the fully classical beam propagation dynamics of a short (100 fs) and a long (10 ps) electron
bunch within the interaction zone without any FEL interaction, subject to space-charge and self-fields only. The
simulations are done with the particle tracker GPT [76, 77] using the spacecharge3Dmesh model which calculates
space-charge forces between particles based on a classical model. The laser-electron beam interaction volume for the
short bunch is the entire volume, while for the long bunch of same electron density we exclude virtually all longitudinal
space-charge dynamics by observing the results in a subset volume corresponding to the short bunch, defined by the
laser geometry. Hence the function of most electrons in the long beam is shielding the core region from longitudinal
space-charge forces, but not participating in the QFEL interaction itself.

While there is no scenario in which the electron beam maintains the required electron beam properties in terms
of transverse emittance, electron number density and energy spread for even a fraction of the entire QFEL inter-
action distance, the examples show that low-charge scenarios based on ultra-short electron bunches are dominated
by longitudinal space-charge dynamics. Particularly the relative energy spread in Fig. 6(b) deteriorates by orders of
magnitudes.

These examples illustrate that for the space-charge dominated beams required for QFEL lasing according to the
presented space-charge and spontaneous emission scaling, even ideal electron sources will not suffice to meet this
challenge. In addition to exploiting a (hypothetical) Raman QFEL regime on the microscopic scale, it will be
necessary to shield a core part of the interaction region from space-charge forces, either through a sufficiently large
and uniform beam or external focusing forces mitigating the space-charge forces. However, for all practical purposes,
such a technology for almost perfectly mitigating space-charge forces along a centimeterm to meter long interaction
region currently exceeds the state of the art.

CONCLUSIONS

We conclude that not only any future realization of QFELs faces extraordinary experimental challenges, but also
that current theories of QFELs do not account for central aspects relevant for applications.
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Table I. Example of a hypothetic 1 Å Quantum SASE FEL design. At this point the space-charge evolution of the global
beam dynamics, see Fig. 6, has not been taken into account yet. The design is based on the optimistic scaling with regard to
space-charge and spontaneous emission constraints as shown in Fig. 4(b) (blue curve).

Electron bunch

electron energy 100 MeV
norm. transv. emittance εn 0.031 mm mrad
peak current Ie 2.0 kA
bunch radius (rms) σe 3.0 µm

Laser

laser wavelength 1.035 µm
TWTS interaction angle φ 30.0◦

laser strength a0 0.039
laser intensity 1.89× 1015 W/cm2

Quantum FEL

FEL radiation wavelength 0.1 nm
undulator wavelength λu 7.74 µm
radiation walk-off angle φsc 0.048 mrad
Pierce parameter ρ 6.236× 10=5

QFEL parameter ρ̄ 0.5056
rel. QFEL bandwidth Γ 3.61× 10=5

1D QFEL gain length Lg 17.0 mm
maximum interaction distancea 0.113 m
assumed interaction distance Lint 0.170 m = 22.0× 103λu = 10.0Lg

Requirements for Lint

rel. energy spread 3.61× 10=5

laser power 12.1 TW
laser irradiance variation (wavel. shift) 9.7 %
laser irradiance variation (pond. deflection) 63.0 %

Regime indicators

X-ray beam diffraction < 1? 0.01
X-ray radiation walk-off < 1? 0.06
Trans. coherence parameter ε̂ ∈ [0.5 . . . 10.0]? 10.0
Space-charge parameter k−1

p Lg < 1? 1.0
Avg. # of spontaneous emission events per electron < 1 0.50
Cooperation length Lc 2.2 µm

a Beyond this distance loss of laser-electron beam overlap, which can be compensated by
more laser power through larger laser beam diameter.

Central experimental challenges for the electron beam lies in attaining normalized transverse emittances of typically
below 0.01 − 0.1 mm mrad and relative energy spreads below 0.1 − 1.0× 10−4. These may be addressed by QFEL
designs incorporating low-charge, high-current bunches as suggested in Ref. [31].

The experimental challenge for the optical undulator lies in providing uniform undulator properties over the entire
interaction length. Intensity variations of the laser pulses providing the optical undulator field typically need to be
below a level of 10 % within the interaction volume. The choice of a Traveling-Wave Thomson-Scattering (TWTS)
geometry can preclude variations originating from the finite Rayleigh length of laser pulses in head-on scattering
geometries. Therefore TWTS allows to efficiently reduce intensity variations below the required level over extended
interaction distances.

To this day, there is no theoretical work on Quantum FELs, neither analytical nor numerical, which self-consistently
accounts for the full kinetic 3D problem of a QFEL including spontaneous emission and space-charge for realistic,
non-ideal electron and laser beams in a rigourous quantum model. A good modeling of space-charge, transverse
coherence, field diffraction, spontaneous emission and 6D electron phase space will be essential to capture the relevant
processes affecting the dynamics of a QFEL. Although the derivation of such a highly complex model is a challenge
by itself, it will be key to judge on the existence and realizability of Quantum FELs.

The key finding of our study is the exclusion of a deep quantum-mechanical FEL regime in which space-charge
forces and spontaneous emission are negligible for the electron dynamics and coherence properties of the QFEL.
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Figure 6. Shows the classical beam propagation dynamics including space-charge, but without FEL interaction, for the electron
beam of the QFEL example scenario for a short 100 fs (orange) beam and a long 10 ps beam (blue) simulated. The beam
quantities are evaluated within the target region of laser-electron overlap. Any substantial deviation from the initial beam
properties destroys QFEL lasing. The beam quantities are (a) transverse emittance, (b) energy spread, (c) beam radius σe

(rms) common to both scenarios and electron density relative to the initial density and (d) the beam divergence. Except for
the beam radius, all these quantities are calculated over a sub-volume of c · 100 fs× (5 µm)2 of the beam corresponding to the
target QFEL interaction volume defined by the laser beam geometry.

This fundamentally excludes the existence of a Quantum SASE FEL without significant space-charge dynamics. Our
argument manifests in the opposed scalings of a minimum and a maximum acceptable optical undulator field strength
a0, eqs. (37) and (40) respectively. The former constraint originates from the requirement of negligible space-charge
effects throughout the interaction and the latter by requiring the liftetime of an excited electron momentum state
to be comparable to the interaction time. These constraints reflect that increased gain lengths by modified electron
dynamics as well as Coulomb explosion on the electron bunch-scale each prohibit the existence of a Quantum SASE
FEL.

We identified two potential loopholes to our argument: First, space-charge blowup could be averted by focusing
structures that are effective on a sub-millimeter scale or if a region in the center of an extended, uniform high-charge
bunch can be found which is largely unaffected by space-charge. However, currently such an approach seems to be
beyond the state of the art.

Secondly, the electron dynamics including space-charge and spontaneous emission requires a theory of a possible
Raman QFEL regime and a complete multi-mode model. Although first attempts of a description including space-
charge were made [68–70], it is not yet clear how gain lengths and bandwidths change or if hard limits to the quantized
nature of the FEL regime emerge. By applying a best-case estimate for the hypothetical Raman QFEL regime, we
conclude that the deep quantum regime ρ̄ ≤ 0.5 remains excluded for Quantum SASE FELs.

For potential applications, the central features of a QFEL are to provide a transversally, as well as longitudinally,
fully coherent SASE FEL at Å-wavelength in a relatively compact setup compared to existing x-ray FELs. Beyond
eventual proof-of-concept experiments that mainly explore quantum statistics, Quantum SASE FELs are currently
not ready to meet such a demand.

For future theoretical and experimental efforts on Quantum FELs we thus propose to shift the perspective towards
seeded Quantum FELs. One option could be to build a cascade of QFELs each of which operates just over a few
gain lengths but starts with a fresh electron bunch to amplify the radiation of the previous QFEL. In this way the
challenge imposed by space-charge effects may be met if the QFEL parameters are tuned for low spontaneous emission.
Analogously to classical FEL theory the saturation length of a seeded QFEL may be expected to become smaller than
the one of a Quantum SASE FEL, which will facilitate meeting the challenges brought up in this article.

Hybrid schemes of classical and Quantum FELs are another option. Especially if one acknowledges the advances
of classical FELs, both based on magnetic [6–10] and optical undulators [14, 55–58, 60] to obtain fully coherent x-ray
FELs, as well as compact infrastructure footprints. In such a scenario Quantum FELs would extend only over a few
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gain lengths, operate either on a full or filtered coherent (x-ray) seed of a classical FEL source and amplify the incoming
seed by several orders of magnitudes. The benefit of such a QFEL amplifier compared to a classical FEL amplifier
is a larger energy conversion efficiency, which allows for a lower electron energy and for more compactness. Beyond
light source applications such seeded Quantum FELs also provide an avenue to meet one of the grand challenges
in modern beam diagnostics: the diagnostics of ultra-low emittance beams with high 6D-brightness [78], as well as
highly coherent x-ray sources. By exploiting the extreme sensitivity of QFEL physics with regard to non-ideal effects
as a diagnostic, Quantum FELs might open a new window for measuring and manipulating the quantum properties
of high-brightness electron or x-ray beams.
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Matsumoto, Tomohiro Matsushita, Sakuo Matsui, Mitsuru Nagasono, Nobuteru Nariyama, Haruhiko Ohashi, Toru Ohata,
Takashi Ohshima, Shun Ono, Yuji Otake, Choji Saji, Tatsuyuki Sakurai, Takahiro Sato, Kei Sawada, Takamitsu Seike,
Katsutoshi Shirasawa, Takashi Sugimoto, Shinsuke Suzuki, Sunao Takahashi, Hideki Takebe, Kunikazu Takeshita, Kenji
Tamasaku, Hitoshi Tanaka, Ryotaro Tanaka, Takashi Tanaka, Tadashi Togashi, Kazuaki Togawa, Atsushi Tokuhisa, Hi-
romitsu Tomizawa, Kensuke Tono, Shukui Wu, Makina Yabashi, Mitsuhiro Yamaga, Akihiro Yamashita, Kenichi Yanagida,
Chao Zhang, Tsumoru Shintake, Hideo Kitamura, and Noritaka Kumagai, “A compact X-ray free-electron laser emitting
in the sub-̊angström region,” Nature Photonics 6, 540–544 (2012).

[3] D Reschke, W Decking, N Walker, and H Weise, “The Commissioning of the European-XFEL LINAC and its Performance,”
in 18th International Conference on RF Superconductivity (Lanzhou, China, 2017) pp. 1–5.

[4] Christopher Milne, Thomas Schietinger, Masamitsu Aiba, Arturo Alarcon, Jürgen Alex, Alexander Anghel, Vladimir
Arsov, Carl Beard, Paul Beaud, Simona Bettoni, Markus Bopp, Helge Brands, Manuel Brönnimann, Ingo Brunnenkant,
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Table II. Overview on Quantum FEL scaling laws and realization criteria.

FEL characteristics
Optical undulator wavelength λu = λ0/(1− β cosφ)

Normalized optical undulator strength (15) a0 = eE0
mcω0
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1/2
0 [W/cm2]
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Target electron energy γ0 =
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√
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Resulting photon number Ne = Q/e
Interaction length Lint = Ng · Lg

Electron bunch characteristics
Bunch charge Q = |e|Ne

Bunch duration (rms) τe = Qe/Ip
Bunch density ne = Ip/(2πσ

2
eec)

Bunch radius Choose with Ip and τe according to ρ in eq. (23).
Check against the emittance constraints eqs. (21), (22),
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Quantum FEL constraints
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