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Temporal micro computed tomography (CT) allows the non-destructive quantification of processes that are
evolving over time in 3D. Despite the increasing popularity of temporal CT the practical implementation
and optimisation can be difficult. Here, we present new software protocols that enable temporal CT using
commercial laboratory CT systems. The first protocol drastically reduces the need for periodic intervention
when making time-lapse experiments, allowing a large number of tomograms to be collected automatically.
The automated scanning at regular intervals needed for uninterrupted time-lapse CT is demonstrated by
analysing the germination of a mung bean (vigna radiata), whilst the synchronisation with an in-situ rig
required for interrupted time-lapse CT is highlighted using a shear cell to observe granular segregation. The
second protocol uses golden-ratio angular sampling with an iterative reconstruction scheme and allows the
number of projections in a reconstruction to be changed as sample evolution occurs. This overcomes the
limitation of the need to know a priori what the best time window for each scan is. The protocol is evaluated
by studying barite precipitation within a porous column, allowing a comparison of spatial and temporal
resolution of reconstructions with different numbers of projections. Both of the protocols presented here
have great potential for wider application, including, but not limited to, in-situ mechanical testing, following
battery degradation and chemical reactions.

I. INTRODUCTION

X-ray micro computed tomography (CT) has grown
into a popular tool for non-destructively examining the
interior of objects to micron scale resolutions, with
excellent reviews of the broad range of applications
across material science1, food technology2, biology3 and
geosciences4,5. With off-the-shelf commercial micro CT
machines available for as little as 60,000 Euros, it has
also become widely accessible laboratory technique with
an estimated 2000-3000 machines worldwide6. Maximis-
ing the scientific potential of these laboratory machines
is thus of high value.

While many of these machines are used for static 3D
observation of materials, they are being increasingly de-
ployed for temporal studies7. As a non-destructive tech-
nique CT can be used to repeatedly acquire 3D im-
ages and thereby follow changes to the internal structure
of materials and components during their manufacture
(e.g additive manufacturing8 and powder processing9), or
whilst they are performing in service (e.g under stress10

or during cracking11 and fracture12).

a)Electronic mail: parmesh.gajjar@alumni.manchester.ac.uk

In a dynamic process, the sample can be changing con-
stantly and so the relationship between the scan time
and the rate of evolution of the sample is important. In
practice the time taken for a CT scan is determined by
the time needed to acquire a sufficient number of projec-
tions of the sample viewed from different angles as it is
irradiated with x-rays. These projections can then be re-
constructed into a virtual volume known as a tomogram.
Although synchrotron facilities (frame rates up to 10,000
projections/s)14 and medical CT scanners (frame rates
up to 10 projections/s)15 can perform fast scans, the
scan times for laboratory machines are typically much
longer (∼ 1 sec to 10 min per projection)16. These time-
scales give rise to two strategies for data acquisition for
in-situ temporal CT13: 1) “Time-lapse CT”, which is di-
rectly analogous to time-lapse photography, involves col-
lecting a series of bursts of projections, where each burst
is collected over a time-scale that is short relative to the
whole process, and; 2) “Continuous streaming”, where
projections are continuously acquired whilst the sample
evolves. In-situ time-lapse CT can be further categorised
into “interrupted” and “uninterrupted”. In the former
case, the process governing the evolution of the sample is
‘interrupted’ (paused) whilst a scan is acquired17. In the
latter case, the acquisition time is much shorter than the
evolution time, allowing scans to be performed at spe-

mailto:parmesh.gajjar@alumni.manchester.ac.uk


2

(a) (b) (c)

TimeTimeTime

P
hy

si
ca

lly
ch

an
gi

ng
qu

an
tit

y

Scan 1 2 3 4 Scan 1 2 3 4 Continuous acquisition

FIG. 1. The relationship between the evolution of the sample (blue curves) with the scan time (red) leads to different temporal
CT modes, after Ref. 13: (a) Interrupted time-lapse CT; (b) Uninterrupted time-lapse CT and; (c) Continuous streaming CT.
In this paper, we implement protocols for both interrupted and uninterrupted time-lapse CT and for continuous streaming on
commercial machines. Each protocol is demonstrated with examples of granular segregation, the germination of a mung bean
and mineral precipitation in a porous column respectively.

cific points but leaving the evolution ‘uninterrupted’18.
Finally, when the rate of evolution of the sample is com-
parable to the scan time, a continuous acquisition of pro-
jections is required.

Of course, the longer scan times associated with labo-
ratory CT are directly related to the lower flux typical of
laboratory tube x-ray sources, meaning that longer ex-
posure times are needed to accumulate sufficient photons
on the detector for a high signal-to-noise ratio in the pro-
jection images. Other technological limitations, such as
detector efficiency and performance of add-on-equipment
were recently reviewed by Bultreys et al.19. Together,
these limitations present a significant barrier to using lab-
oratory CT machines to study dynamic processes, since
they place an upper limit on the rate of evolution that can
be examined. Even for relatively slow processes where
the acquisition rates of laboratory CT systems are well
tuned to the time-scales of the processes being followed,
they are still under-utilised. Limited work has been done,
for example, in the areas of root growth20 and degrada-
tion of construction materials21, but there is certainly
untapped potential.

One significant additional challenge faced by many lab-
oratory users arises from the proprietary software used to
control commercial machines. Each manufacturer pro-
vides a user interface which includes utilities such as cal-
ibration and beam warming, along with routines that
guide the user through configuring and starting their
scan. While such proprietary software has lowered the
barriers to new applications of static CT, it presents an
obstacle for temporal studies. Starting a new scan re-
quires user intervention, which becomes impractical when
wanting to undertake a large number of scans. Figure 2
summarises laboratory based temporal studies identified
by the authors to date according to the number of tomo-
grams in a time-series, the temporal scanning mode and
the machine type. The above impracticality of conduct-
ing a large number of scans could explain why all but 8
of the 60+ time-lapse studies (both interrupted and un-
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FIG. 2. A summary of previous laboratory-based temporal
CT studies, categorised by the temporal CT scanning modes
explained in figure 1 (Interrupted time-lapse, Uninterrupted
time-lapse, Continuous acquisition), and the machine type
(Commercial or custom built). The data for this plot is avail-
able in Supp. Table 1, in the supplementary material.

interrupted) are limited to less than 10 tomograms in a
time-series, with none acquiring more than 30. A number
of groups have developed custom CT machines in-house
by assembling individual x-ray sources, manipulators and
detectors. These afford a greater degree of flexibility over
commercial machines22 and have allowed the implemen-
tation of continuous streaming23,24. However, as shown
in figure 2, continuous acquisition has not yet been im-
plemented on a commercial machine.

Usually for both time-lapse and continuous streaming,
the number of projections N for each scan is decided ex
ante, based on a priori knowledge of the best acquisi-
tion time for optimal signal to noise ratio. Projections
are then acquired in a sequential order as the sample
is rotated through a full circle, with the angular incre-
ment given by dividing 360° by N . However, with this
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method, any movement is captured progressively over
successive projections giving rise to spiral artefacts in
the reconstructed tomogram25. Further more, the same
acquisition time must be used throughout and cannot be
changed mid-process. One approach to overcome the mo-
tion artefacts was to distribute the angles more evenly in
time using interlaced sampling26. The projections of suc-
cessive rotations are offset from each other that they do
not overlap, from which subsets are reconstructed with a
model-based scheme using prior information. This al-
lowed visualisation of fine dendrites with high spatial
and temporal resolution27. An alternative approach is
a golden-ratio distribution of projection angles that was
inspired by the way plants distribute their leaves28, with
the angular increment ∆φ equal to the golden ratio times
360°,

∆φ =

√
5− 1

2
· 360° ≈ 222.5°. (1)

This approach has the added benefit of allowing the num-
ber of projections for each reconstruction to be chosen ex
post facto. A number of studies have successfully imple-
mented golden-ratio sampling in simulations29, in MRI30,
with neutron tomography31,32 and at synchrotron x-ray
facilities33, but although there is interest for applications
on laboratory CT machines, up to now it has not been
technically possible34.

In this paper, we present two protocols for advanced
temporal CT on commercial laboratory systems. The
first protocol in section II considers the steps needed to
enable automated acquisition of time-lapse CT scans. In-
terrupted time-lapse is demonstrated through two-way
synchronisation with an in-situ shear cell, whilst the ease
of acquiring a large number of uninterrupted scans is
demonstrated by collecting 54 tomograms of a slowly
germinating mung bean35 over a 108 hour period. Al-
though CT has very recently been used to study seed
germination36, this is the first high temporally resolved
quantification of the process. The second protocol en-
ables continuous streaming with golden-ratio angular
sampling. This is the first time golden-ratio sampling of a
CT experiment has been used in conjunction with an iter-
ative reconstruction algorithm. The method is applied to
analyse mineral precipitation in porous media in section
III, allowing a comparison between spatial and tempo-
ral resolution of reconstructions with differing numbers
of projections. Whilst the protocols may appear similar,
they both control the CT system in different ways. The
automated time-lapse CT protocol automates the start-
ing of many scans using scan modes already provided on
the machine; on the other hand the continuous golden-
ratio acquisition protocol shows how new scan modes can
implemented for temporal CT.

Both protocols were encoded into software exten-
sion modules for evaluation on the Nikon High Flux
Bay within the Henry Moseley X-ray Imaging Facility
(HMXIF), in the Henry Royce Institute at the University
of Manchester, UK. The High Flux Bay is a 225 kV walk
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FIG. 3. Protocols for (a) automated time-lapse CT and (b)
golden-ratio continuous streaming. Although the steps by
themselves appear simple, the challenge is in controlling the x-
ray system to automatically perform these operations without
user intervention.

in room fitted with a 6 axis manipulator and a Perkin
Elmer 1611 flat panel detector (a size of 4000 ×4000 pix-
els and a pixel pitch of 100 µm), running Nikon’s pro-
prietary Inspect-X version 5.1.4.3. The software mod-
ules were created using the IPC interface37 to Inspect-X,
which allows the proprietary software to be controlled
programmatically. The extension modules run alongside
Inspect-X, and as the safety interlocks are managed by
the proprietary software, the safety of the CT system is
unaffected. It should be emphasised that no additional
hardware or software modifications were needed for the
extension modules to work. The software extension im-
plementations, along with datasets from this paper, can
be downloaded from Zenodo38.

II. AUTOMATIC TIME-LAPSE CT

There are many situations in which one would like to
acquire a series of CT images of objects as they evolve.
In the ‘interrupted’ case (figure 1a), the evolution of the
microstructure would be induced by an external influ-
ence such as tension39, indentation40 or electrical charg-
ing that can be interrupted41. On the other hand, in the
‘uninterrupted’ case (figure 1b), the sample evolves nat-
urally due to the environment it is placed in, for example
the pupation of a Chrysalis18 or the corrosion of a Magne-
sium alloy42. The protocol shown in figure 3a for acquir-
ing a series of time-lapse scans is similar for both cases,
with a series of scans each separated by an evolution pe-
riod. Whilst each step in the protocol is fairly simple, the
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FIG. 4. A shear cell specially developed for studying granular
segregation using CT.

major obstacle is controlling the x-ray system to perform
these tasks without user intervention. Each commercial
machine has scan modes that are tailored to the particu-
lar instrument, so the first step in a time-lapse protocol
is to use these pre-configured modes to start a scan and
wait for it to finish. For interrupted time-lapse, it is then
necessary to start the forcing mechanism and wait for
the forcing to finish, with the challenge lying in synchro-
nising the forcing rig with the x-ray system. Although
uninterrupted time-lapse simply requires waiting for a
timer to elapse to allow sufficient time for evolution to
occur, there are a number of other factors which must be
considered. The detector and source performance varies
over time, leading to differences of up to 1% in grey-scale
values in a series of scans performed after several hours
interval43. This has a significant impact when automatic
global grey-scale thresholding is used as the sole method
of segmenting time-series16, and more advanced segmen-
tation techniques are required. Variability in the source
can also be mitigated by warming the x-ray beam dur-
ing the evolution period whilst waiting for the next scan.
Once the evolution period has finished, a subsequent scan
must be automatically started.

A. Interrupted time-lapse CT: A synchronised shear cell

We highlight the potential for automated interrupted
time-lapse CT by studying granular segregation using
a shear cell specially adapted for CT. The shear cell
shown in figure 4 is of the same dimensions as used
previously44, but with the motors mounted vertically
above the unit. This allows the entire cell to rotate within
the CT machine without the motors passing through the

(i) 0 (ii) 1 (iii) 2 (iv) 3

(i) 0 (ii) 10 (iii) 20 (iv) 30

(b)

(a)

7 mm

FIG. 5. Segmented and colorised virtual central slices per-
pendicular to the shearing from two interrupted time-lapse
experiments of a granular shear cell filled with 6 mm (colorised
green) and 3 mm (red) borosilicate glass beads. (a) comprises
of 4 scans with 10 shear cycles between each scan, whilst (b)
shows scans separated by 1 shear cycle per scan. The small
particles can be seen to percolate downwards, whilst the large
particles migrate upwards.

x-ray beam. A USB TTL serial cable (FTDI, Glasgow,
UK) was used to create two-way communication between
the CT acquisition computer and the shear cell. When
the x-ray system is ready for the forcing, it sends a TTL
pulse to trigger the shear cell, which sends a return pulse
back to the acquisition computer when it has finished.
The shear cell was initially loaded with a mixture of 6 mm
borosilicate glass beads at the bottom and smaller 3 mm
beads on top. The shearing motion forces the mixture
of beads to segregate, with the smaller beads percolating
downwards and the larger beads squeezed upwards45.

The series of CT scans allows the three-dimensional
movement of the beads from each shearing motion to be
visualised. Figure 5 shows central vertical slices perpen-
dicular to the shearing from two experiments: (a) shows
4 scans with 10 shear cycles between each scan, whilst
(b) has 1 shear cycle between each scan. Although the
progressive segregation can be appreciated in the former
experiment, the large movement of the 6 mm particles
between each image means that it is difficult to track the
positions of individual spheres from one scan to the next.
The segregation is more gradual in the latter experiment,
but as the movements between images are smaller, it is
possible to track individual particles.

These preliminary results highlight the importance of
evolutionary time scales for time-lapse experiments, with
the mixing in (b) easily quantifiable. Although it may
take hundreds of shear cycles to reach full inversion with
the large at the top and small on the bottom44, the au-
tomatic synchronisation means that it is now possible to



5

have one scan for every shear cycle and further work is
currently under way to quantify segregation using CT.

B. Uninterrupted time-lapse CT: Mung bean germination

In order to demonstrate the value of an automated
uninterrupted time-lapse approach for collecting many
tomograms, we have applied the method to study the
germination36 of a mung bean (vigna radiata). These
green coloured beans are a vital food crop in South-East
Asia, and are often sprouted before eating to improve
their nutritional value46. Sprouting is the household
name for the germination process, during which the bean
structure changes significantly as the outer skin (testa)
ruptures and the new root (radical) emerges47. Although
the exact time is sensitive to the surrounding environ-
mental conditions, typically the entire germination pro-
cess can take the order of a few days, making it a suitable
specimen sample for evaluating our method35.

1. In-vitro method

A sample holder for the bean was created by gluing a
piece of 13 mm diameter polyimide tubing to a standard
sample mount, as shown in figure 6a. Wet tissue was
placed at the bottom of the sample holder, followed by
several layers of dry tissue. The bean was placed at the
top of the sample holder, with small pieces of dry tissue
placed around it to secure its position within the tube.
The tube was sealed with cling film to create a moist
micro-climate to counter the drying effect of the warm
environment inside the x-ray machine.

An initial dry scan was taken with a similar set-up
to that described above, except without the wet tissue.
The bean was then allowed to imbibe for 3.5 hours in
∼70◦C tap-water to initiate the germination process, be-
fore being carefully transferred back to the sample holder
set-up for the in-vitro scans. 54 CT scans were completed
during the germination phase at two-hour intervals, with
the sample remaining inside the machine. All scans com-
prised of 800 continuously acquired projections with a
708 ms exposure time, 4× binning, 2× frame averaging,
a voltage of 65 kV and a current of 100 µA. The recon-
structed voxel size was 18.3 µm3. Each scan took approx-
imately 18 minutes, with the automatic reconstruction in
the proprietary Nikon CT-Agent software taking an ad-
ditional 4 minutes.

A grey-scale slice from the final reconstructed volume
of the germination phase is shown in figure 6b. The vol-
umes were processed using TCL scripting in Avizo 9.
The raw reconstructed data were first filtered using a
2D non-local means filter. A mask was defined for the
region containing tissue paper, and an auto-intensity-
thresholded gradient image was subtracted from the en-
tire auto-intensity-thresholded image in this mask region
to separate the tissue from the mung bean. The volume

FIG. 6. (a) A photograph of the in-vitro set-up for mung
bean germination; (b) A slice of the reconstructed volume
showing the grey-scale levels; (c) The same slice colorised
using a manual single slice segmentation of the different bean
parts. The scale bar is the same size for (b) and (c).

of the segmented bean was calculated by performing a
label analysis. The poor intensity and textural contrast
between the different internal parts of the bean meant it
was impossible to further segment the bean. However,
a single slice was manually segmented to highlight the
main parts of the bean and is shown in figure 6c.

2. Results

Figure 7 shows 3D volume rendering and 2D slices from
different stages of the mung bean germination. Videos of
the entire process may be found in the supplementary
material (videos S1 & S2). Small tissue artefacts can be
seen, but the automated scripting was the most efficient
method of segmenting 54 datasets. Qualitatively, it can
be seen how the surface of the bean becomes crinkled af-
ter imbibing in water (B)48, before the surface smooths
as the bean expands and swells (C). Finally, the radi-
cal emerges (D) and elongates (E). Each of these phases
can be seen quantitatively in figure 8, which shows the
evolution of the bean’s volume over time. The growth
rate is highest between B and C, which corresponds to
the swelling of the cotyledons. Between C and D, the
growth of the cotyledons slows, but the radical emerges.
The slower growth between D and E is the elongation
of the radical. The growth rate of the bean within the
system was observed to be qualitatively similar to a con-
trol sample subject to the same water and temperature
conditions, but left outside of the CT system.

The novel use of CT to quantify the germination pro-
cess also opens doors for using the technique to com-
pare the development of other seeds, for example the
germination of seeds that are genetically modified for
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FIG. 7. Stages of mung bean germination captured through
micro XCT, with 3D virtual representation and 2D slices
shown at different times. The entire evolution can be ap-
preciated in videos S1 and S2 of the supplementary material.

harsh climates49, or the natural adaptation of seeds to
unfavourable conditions50.

III. CONTINUOUS GOLDEN-RATIO ACQUISITION:
PRECIPITATION OF BARITE

In many practical cases, one is not sure of the optimal
scan time in terms of frame rate vs signal-to-noise ratio.
In these cases, continuous acquisition with golden-ratio
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FIG. 8. The 3D volume of the mung bean over time. There
are several distinct regimes, with labels A-E representing the
times shown in figure 7.

angular sampling provides the flexibility to acquire the
data and then decide on the optimal frame rate ex post
facto.

Here we demonstrate the protocol for continuous
golden-ratio acquisition and evaluate its utility as ap-
plied to imaging mineral precipitation in porous media.
Mineral precipitation is a dynamic process where there
is a strong feedback between the reaction kinetics and
the reaction products, with the varying evolution rates
making it a suitable application for continuous golden-
ratio acquisition. The growing crystals progressively clog
the pore structure, which reduces ion transport and can
limit the precipitation rates51. Understanding the evolu-
tion of the 3D structure over time is crucial to be able to
control and predict the process in nature. This is impor-
tant to the oil, gas and hydrothermal energy-recovery
industries since fluid circulation through porous rocks
can induce precipitation. This in turn causes formation
damage, which undermines the efficiency of energy ex-
traction. Additionally, if controlled, precipitation in the
subsurface could have important environmental applica-
tions, e.g. CO2 sequestration and to remove radionu-
clides from contaminated fluids. Barite is an important
mineral since it can form during oil extraction due to the
mixing of formation waters rich in barium and injected
fluids rich in sulphate. It has also been proposed as a
barrier for radionuclides in spent nuclear fuel reposito-
ries and to remove radionuclides from contaminated flow
back water by co-precipitation with barite.

A. Protocol

It was chosen to use golden-ratio sampling28 of pro-
jection angles, with the angular increment ∆φ given by
equation (1). If the first projection is at 0°, then the ith
projection angle φi can be calculated as

φi = i ·∆φ mod 360, (2)
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Compared with the alternative approach of continually
making full rotations of 360° with a fractional angular
increment (see figure 9), this golden-ratio strategy has a
much larger angular increment and hence a longer time to
move between projections. However, there are a number
of advantages. Golden-ratio sampling succeeds in tempo-
rally distributing projections more equally across a full
circle. As an example, figure 9 compares the first 100
golden-ratio sampled projections with a scan of 100 equi-
angular projections (spaced by an angular increment of
3.6°). The first 20 golden-ratio projections have already
completed 7 full rotations whilst 20 equi-angular projec-
tions have only covered 72°. As golden-ratio sampling
continuously covers a circle every 3 projections, the ac-
quisition can be stopped at any point and a reasonable
reconstruction may still be achieved with a quality that
depends solely on the total number of projections. In a
certain sense golden-ratio angular sampling is optimal52

with each projection containing information about the
object as independent from previous projections as pos-
sible. It is also noteworthy that, as the golden ratio is
irrational, each projection angle is unique and never re-
sampled even if tens of thousands of projections are ac-
quired.

The basic protocol for golden-ratio continuous sam-
pling is shown in figure 3b. Given the longer time to
move the manipulator, the image save can be moved to
occur in parallel with the manipulator rotation. Whilst
the protocol appears to be a trivial set of steps, the great-
est challenge for commercial machines is gaining access to
the x-ray source, manipulator and imaging sub-systems
to implement each step. An extension module was suc-
cessfully coded for Nikon machines that is available for
download38.

B. Experimental acquisition

A column of sintered glass beads approximately 10 mm
long and 6 mm in diameter was vertically constricted by
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FIG. 9. Schematic showing a comparison between: (a) 100
golden-ratio sampled angular projections given by equation
(2) and; (b) a scan of 100 equi-angular projections. The first
20 projections are labelled and shown in black, with the re-
maining projections shown in grey.
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Projection index (i)

FIG. 10. Schematic showing how different time-series were
constructed from subsets of the same continuously acquired
projections. The black circles indicate which projection the
reconstruction is centered about. See table I for a summary
of the different series.

TABLE I. A summary of the different reconstruction time-
series.

Series Interval
Min
index

Max
index

Reconstructions in series

P100 100 100 4200 P
(100)
100 ,P

(200)
100 , . . . ,P

(4200)
100

P600 100 300 4000 P
(300)
600 ,P

(400)
600 , . . . ,P

(4000)
600

P∗
600 600 400 4000 P

(400)
600 ,P

(1000)
600 , . . . ,P

(4000)
600

P2000 100 1000 3300 P
(1000)
2000 ,P

(1100)
1000 , . . . ,P

(3300)
2000

heat shrink tube and connected to a flow rig developed at
HMXIF. Solutions of Barium Chloride (1 mmol BaCl2)
and Sodium Sulphate (1 mmol Na2SO4) were delivered at
a constant flow rate of 0.34 ml/min using high pressure
ISCO syringe pumps. The fluids have a mixing time of
approximately 1.8 min before entering the sample, which
is expected to be sufficient to induce significant crystal
nucleation53.

An initial dry scan was performed using the propri-
etary Inspect-X circular scan mode, with 3141 projec-
tions acquired at a voltage of 120 kV, a current of 67 µA,
2× binning, 4× frame averaging and an exposure time
of 1.4 sec. After completion of the dry scan, the flow
was started and the software extension used to contin-
uously acquire 4400 projections over 11 hours with the
same imaging conditions as the dry scan, except 1× frame
averaging. Each projection took an average of 8.9 s to
acquire, with ∼ 3.5 s to clear the detector buffer and cap-
ture the new image and ∼ 5.4 s to move the manipulator.
In other words, 60% of the time for each projection was
needed to move the manipulator whilst 40% for acquiring
the image. The final projections were 2000 by 2000 pixels
in size. The source-to-center and source-to-detector dis-
tances were 30.2 mm and 1404.0 mm respectively giving
a final reconstructed voxel size of 4.3 µm3 .

To investigate the spatial-temporal resolution trade-off
three time series of reconstructions P100, P600 or P2000
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were computed using 100, 600 and 2000 projection sub-
sets respectively, as shown in figure 10. The individual
reconstructions in each time series are centered about a
projection index i, indicated by a superscript, and spaced
apart by 100 projections. For example, the first recon-

struction in the P100 series is P
(100)
100 , which is centered

about projection 100 and uses projections 51-150 for the
reconstruction, whilst the second member of the series is

P
(200)
100 . The series are summarised in table I. The projec-

tions used in one P100 reconstruction do not overlap with
those used in the previous or next reconstruction. How-
ever, the P600 series implies an overlap of 500 projections
used between consecutive reconstructions. For instance
P
(300)
600 uses projections 1-600 and P

(400)
600 uses projections

101-700, with projections 101-600 common to both. As
a comparison, a subset of P600 known as P∗

600 with re-
constructions using non overlapping projections (i.e. an
interval of 600) was also used for quantitative analysis in
figure 14. The golden-ratio angular sampling scheme al-
lows this way of increasing the temporal resolution from
a single time lapse data set, however care must be taken
to interpret the results as projections are reused for dif-
ferent reconstructions. In practice this means that any
difference between consecutive reconstructions is due to
changes in the sample within the non-overlapping 100
projections.

The native Nikon XTek CTPro reconstruction software
uses an equi-angular FDK implementation and performs
many operations such as alignment automatically. Al-
though the golden-ratio subsets are not equi-angular, af-
ter reordering subsets of projections in ascending angu-
lar order and manually applying shading corrections, the
CTPro software can be used to obtain approximate re-
constructions. An in-house reconstruction scheme was
also constructed using a MATLAB implementation54 of
the iterative Conjugate Gradient Least Squares (CGLS)
algorithm55. The ASTRA Tomography Toolbox56,57 was
used to employ GPU-acceleration of the computationally
most expensive steps of forward- and back-projection. 50
iterations of the CGLS algorithm were empirically found
to provide the optimal trade-off between resolution and
noise, and were used in all cases. Prior to reconstruc-
tion the individual projection images were subjected to
global horizontal centering and rotation-stage tilt cor-
rections, with the parameters determined from the re-
construction of the static dry scan using the proprietary
Nikon X-Tek CTPro software. An additional individual
horizontal alignment of projections using the sharp edge
of the flow cell was found to improve reconstruction qual-
ity. The need for this correction is believed to originate
from slight sample movement due the fast rotation of the
rigid tubing connected to the flow cell.

C. Results

Single reconstructions P
(1000)
100 , P

(1000)
600 and P

(1000)
2000 were

performed using both the proprietary FDK and the it-

P
10

0
(1

00
0)

FDK

P
60

0
(1

00
0)

P
20

00
(1

00
0)

CGLS

0.5 mm

FIG. 11. Comparisons of reconstructions using FDK per-
formed using Nikon’s proprietary CTPro and a custom re-
construction implementing the iterative CGLS algorithm.
Greyscale regions of interest of size 2.15 mm by 2.15 mm
from the same horizontal slice are shown for reconstructions
P

(1000)
100 , P

(1000)
600 and P

(1000)
2000 . Barite is white, glass beads are

light grey and fluid (pores) is dark grey.

erative CGLS methods, with figure 11 showing 2.15 mm
by 2.15 mm region of interests (ROI). With as few as
100 projections, the FDK reconstruction produces a sig-
nificant amount of speckled noise that is difficult to dis-
tinguish from the crystals, and certainly could not be
accurately segmented. The CGLS reconstruction for

P
(1000)
100 is markedly clearer, with the crystals identifiable

from beads and pore spaces. FDK performance improves
with more projections, however upon close examination,
the iterative reconstructions still produce sharper crystal
boundaries. With significantly better performance for
P100, the iterative CGLS scheme was chosen to recon-
struct the entire time-series and perform analyses in the
remainder of this paper.

Comparing the P100, P600 and P2000 series, it can
be seen that larger number of projections give sharper
boundaries between the individual crystals. Distinguish-
ing the interfaces is important for an accurate quantifi-
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(a)(a) (b)(b) (c)(c)

P(3000)
600 P(2900)

100 P(3000)
100

A B A1 A2

20 µm

FIG. 12. Doubling of crystals can be found for higher num-
bers of projections in the reconstruction due to poor temporal
resolution. The seemingly two crystals A & B seen in the 3D

visualisation of P
(3000)
600 (a) are in fact one single crystal in the

P100 series, with the crystal in position A1 for P
(2900)
100 (b) but

in position A2 in P
(3000)
100 (c).

cation of the volume and surface area of crystals. For

example, the noise and low spatial resolution for P
(1000)
100

blurs the space between crystals making them undistin-
guishable (also see video S3 of the supplementary ma-
terial). As the barite has a highly contrasting greyscale
level, the blurring would likely lead to an overestimation
of the total volume and possibly an underestimation of
surface area. We also note that crystal boundaries are

sharper for P
(1000)
2000 than for P

(1000)
600 . Although this is ex-

pected for a static scan, it is seemingly counter intuitive
for a temporally evolving sample since the movement and
growth of crystals over the 5 hours needed to acquire 2000
projections would be expected to blur the crystal bound-
aries. This blurring would also be expected to be most

significant for P
(1000)
2000 since it corresponds to the first 4.9

hours of the experiment when the crystal growth rate is
highest. However figure 11 shows surprisingly sharp in-
terfaces of glass beads and crystals, possibly due to slow-
ing reaction rates over time with most crystals nucleating
within the earliest 1000 projections. A second interest-

ing observation is that the number of crystals in P
(1000)
100

is lower than for P
(1000)
600 and P

(1000)
2000 . The higher number

of crystals present for larger numbers of projections is a
consequence of low temporal resolution. That is, the pro-
jections used in P600 cover longer periods of time during
which more crystals have nucleated in the pore structure
than in P100. In the same manner, P2000 shows even
more crystals than P600. Consequently, during the ini-
tial growth period when the number of crystals invading
the pore structure is larger, the poor temporal resolution
of P600 and P2000 would result in the over-estimation of
the total volume of crystals.

Although the crystal boundaries for P600 and P2000 ap-
pear to show increasing clarity, the movement and growth
of crystals over the 1.5 and 4.9 hours necessary to acquire
600 and 2000 projections can lead to artefacts. Figure

12a seemingly shows two crystals A & B for P
(3000)
600 ; how-

ever, by comparing with the same spatial position in P100

at consecutive time steps (figure 12b,c) we can see that
it is in fact one crystal that has suddenly moved from

position A1 to A2. Although the crystal is in different

positions for the P
(2900)
100 and P

(3000)
100 reconstructions, pro-

jections containing the crystal in both spatial positions

are used for P
(3000)
600 and P

(3000)
2000 causing the doubling arte-

fact. If instead of a sudden change of position the crystal
continuously moved between positions A1 and A2, the
effect would be the formation of a header and tail that
makes the crystal artificially elongated in the moving di-
rection. Both cases lead to an overestimation of the crys-
tal volume and also surface area. In our experiment most
crystals settle over time as the pore structure clogs, thus
the overestimation of crystals is only temporary (videos
S4, S6, S8) and is expected to be progressively less im-
portant over time.

Figure 13 shows the precipitation of barite (white crys-
tals) over time for P600. Similar time-series for P100 and
P2000 can be found in the supplementary material. In
general, the number of crystals is higher closer to the
inlet (bottom of picture) and decreases further upwards
in the column. This is expected due to the high satura-
tion index used here that has been shown to cause nucle-
ation in the fluid53. These crystals can be transported in
the flow stream and eventually be deposited on the glass
surfaces. The deposition of crystals seems to take place
where faster flow is expected: First, at the center of the
column, and then once the main flow paths at the center
are clogged, accumulation is seen closer to the inlet and
spread throughout the diameter of the column. Crystals
are expected to get trapped by a filtration mechanism
as they grow and are transported through the permeable
flow paths.

From video S5 (see online supplementary material),
barite crystals can be observed in the pores in the first

reconstruction P
(300)
600 reconstruction. In the P100 series

(video S3), crystals can be visually identified first in

P
(300)
100 . Nevertheless, it was not possible to quantify the

volume of crystals before P
(400)
100 since in P

(300)
100 , crystals

could not be distinguished from noise by thresholding
the pixel intensity. This allows for an interesting analy-
sis of the methods efficiency to capture the early stages
of growth.

When the size of crystals are below what can be re-
solved before projections 300-400 it is expected that the

first reconstruction P
(300)
600 would show only very faint

crystals (as they appear only on the second half of the
projection set). Contrarily for P100, crystals are present
for example between projections 451 and 550. There-
fore, it is expected that the higher temporal resolution of
P100 would yield a more resolved reconstructed dataset
for more accurate quantification at least up to projection
700. This is when P600 can be used without the over-
lap of projections that we know do not contain spatially
resolvable crystals.

Bearing in mind the spatial and temporal artefacts dis-
cussed above, it is clear that the number of projections
can have an important impact on quantification of crys-
tal growth over time. Figure 14a shows that the volume
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1.24 hours 2.47 hours 3.71 hours 7.42 hours

1 mm

0.6 mm

P
600
(500) P

600
(1000) P

600
(1500) P

600
(3000)

(b)

(a)

FIG. 13. (a) Greyscale slices parallel to the flow direction (of size 4.3 mm×4.8 mm) and (b) 3D visualisations (of sub-volumes
2.15 mm×1.72 mm×1.72 mm at the center bottom of the sample) from the P600 series. In (a), the white corresponds to barite,
the light grey glass and dark grey fluid (pores). In (b) the pores and glass are set to transparent and only the crystals are
rendered. The colours direct relate to the absorption of crystals where hotter (more red) colours correspond to denser voxels.
Videos showing the full temporal evolution can be found in the online supplementary material, along with corresponding videos
for P100 and P2000.

of crystals measured from a different number of projec-
tions can differ up to a factor of 3. During the initial 1000
projections, the volume is smaller when fewer projections
are used in the reconstruction. Although it was predicted
from the observations that P600 and P2000 would overes-
timate the volume of crystals at early time due to low
temporal resolution, this is only true for P2000 with P100

and P600 showing similar values. After 1000 projections
the volume from P100 increases at a faster rate than P600

and P2000. This is possibly evidence of the volume over-
estimation as the space between neighbour crystals is ac-
counted for as crystal due to poor spatial resolution.

The growth rate at the i+1th projection was calculated
as53

Ri+1 =
∆V

Vm∆t

2

Ai +Ai+1
, (3)

with ∆V the change in crystal volume, ∆t the
change in time, Vm the ratio of the molecular weight
(233.4 g mol−1) to the density (4.48 g cm−3) and the sec-
ond fraction representing the average total surface area
of crystals over the time period. Interestingly, the growth
rate shown in figure 14b does not follow the same trends
observed for the volume, which implies that the spatial-
temporal artefacts discussed above have different effects
on the volume and surface area over time and should be

further investigated beyond this paper. The rates calcu-
lated from P2000 and P∗

600 are similar and do not allow
to draw any information from the beginning of the ex-
periment. P100 and P600 show an accentuated decrease
of growth rate during the first 3 hours of the experiment,
which is a consequence of reduced fluid mobility through
some flow paths5,58. We note that the rates calculated
from P100 are faster than P600, but that there is a higher
variability of the rate trend corresponding to P100. How-
ever these faster rates for P100 compared to P600 are diffi-
cult to explain based on the divergent increase in crystal
volume shown in figure 14a. This behaviour could be
related from the dense barite crystal observed for P100.
These artefacts lead to an over-estimation of the volume
and have unpredictable effects on the surface area. Since
the amount and type of each artefact varies with time,
and since their effects on volume are not proportional to
their effects on surface area, the differences in growth rate
for the different reconstruction methods are attributed to
the artefacts inherent to time-lapse CT.
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FIG. 14. Quantification of (a) the total volume of crystals and
(b) the overall crystal growth rate calculated from equation
(3) for each of the reconstruction modes shown in figure 10
and table I. Inset in (a) highlights the volume variation over
the initial 1100 projections. Note that the x-scale for both
graphs is the same, with the projection index labelled in (a)
and the time since the start of the experiment in (b).

D. Conclusion

In conclusion, by using continuous golden-ratio acqui-
sition coupled with an iterative reconstruction scheme to
visualise mineral precipitation, we have been able to anal-
yse spatial and temporal effects using 100, 600 and 2000
projections in the reconstruction. We identify two main
sources of error: 1) blurring of crystals for P100 due to
lower spatial resolution, and; 2) doubling of crystals for
P600 and P2000 due to lower temporal resolution. In an
ideal situation, it would be preferable to use 600 or more
projections, but with a higher temporal resolution. Cur-
rently the time taken to move the manipulator through
∆φ (1) is 5.4 s, which is 60% of the total time for each
projection. In contrast, the same CT machine with the
same exposure time takes 1.9 s to move through 3.6°(for
an equi-angular scan with 100 projections), which is 35%
of the total projection time. Hence one method for re-
ducing the movement time, and hence increasing the tem-
poral frequency, would be to decrease the magnitude of
∆φ. Smaller irrational angular increments such as ∆φ/7
or ∆φ/11 could be tested for improved performance.

One clear advantage of the golden-ratio scheme was
that reconstructions can be performed from the same
dataset with any number of projections. With tradi-
tional circular scanning this optimization would require
multiple experiments with varying temporal and spatial
resolution. With growth rates changing during an exper-
iment, golden-ratio scanning also allows different num-

bers of projections to be used at different points in the
experiment. Thus the present work can be seen as a step
toward “smart” reconstruction methods that adapt to
features found in the sample

We emphasise that CGLS was used in the present
work as a simple example of an iterative reconstruction
method providing advantages over FDK. In recent years
a substantial amount of work has been devoted to de-
veloping new reconstruction algorithms to compensate
for incomplete data such as few projections or a lim-
ited angular range. Notably, sparsity59–61 as well as
spatio-temporal62,63 regularisation methods have been
employed with great success to improve reconstruction
quality in case of few projections. More work is needed
to advance such methods for routine use, including ad-
dressing questions of how few projections suffice64,65 for
the methods to provide accurate reconstructions for dif-
ferent types of samples. This, however, is much beyond
the scope of the present work for which the focus was to
demonstrate the capability for enabling temporal CT on
existing laboratory CT instruments.

The continuous golden-ratio acquisition extension
would be useful to scan other laboratory set-ups involv-
ing flow cells19, but also to study other chemical processes
where the kinetics change during the course of a reaction.

IV. DISCUSSION AND FURTHER SCOPE

In this paper, we have advanced the automated tem-
poral CT capabilities of laboratory CT machines by im-
plementing generic protocols for: 1) Automated time-
lapse CT and; 2) A continuous golden-ratio acquisition.
These protocols overcome the restrictions placed on lab-
oratory machines by proprietary manufacturers software,
and three real applications were presented.

The generic protocol for time-lapse CT was presented
in II, with implementations of both the interrupted and
uninterrupted cases. The ability to automatically syn-
chronise a commercial system with an in-situ rig was
highlighted with a shear cell used to study granular segre-
gation. Automatic synchronisation of in-situ rigs would
be an invaluable development for other laboratory time-
lapse studies such as the compression of foams and other
materials66,67 or the charging of batteries68, and would
also be particularly advantageous for laboratory Digital
Volume Correlation (DVC) studies69. The capability for
automated uninterrupted time-lapse with large numbers
of tomograms was demonstrated through the first use
of CT to examine the uninterrupted germination of a
mung bean, with 54 scans performed over a 108 hour
period. This certainly opens up the possibility of acquir-
ing many datasets of evolving processes in the labs, and
could be used to build uninterrupted temporal pictures
of salt evaporation, fungal decay, the drying of plaster or
even battery degradation.

In section III we presented the first laboratory appli-
cation of continuous projection acquisition with golden-
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ratio angular sampling. An initial comparison showed
how an iterative reconstruction scheme gave significant
improvements in image quality over the standard FDK
algorithm usually used in commercial software, with
more resolved boundaries especially for lower numbers
of projections. Using the iterative scheme, we created
different time series using subsets of 100, 600 and 2000
projections in each reconstruction; in doing so, we were
able to examine the spatial and temporal effects of dif-
ferent numbers of projections in a reconstruction. Al-
though the crystals were constantly changing, the recon-
structions with 2000 projections were surprisingly sharp
as a result of the golden-ratio scheme giving an equal
temporal distribution of projections around a circle25.
However, whilst higher numbers of projections gave spa-
tially sharper images, they caused doubling of crystals
that moved during the time required to acquire those
projections. Lower numbers of projections has reduced
spatial resolution that blurs crystal boundaries, although
the temporal resolution is higher. Further work must be
done to quantify these spatial and temporal artefacts,
whilst the sampling method should also be optimised to
increase the temporal acquisition rate. A wider avail-
ability of iterative reconstruction schemes on commercial
machines would also aid their usefulness for time based
studies with high temporal resolution.

Clearly, these protocols by themselves unlock the
temporal capabilities of commercial available laboratory
CT machines. Whilst the particular software modules
have been implemented on CT systems running Nikon’s
Inspect-X, the general protocols could be ported to other
commercially available machines provided that software
libraries are supplied for programmatic control of the
systems. Similar approaches may also be possible for
other laboratory based tomography systems, for example
gamma-tomography70. Moreover, from a wider perspec-
tive, this paper serves to highlight the wide flexibility
of laboratory machines when they can be custom con-
trolled. It opens up the possibility of using laboratory
machines to generate customised datasets for new recon-
struction algorithms. As a first example, the golden-ratio
dataset from this paper could be used to test algorithms
for both local and global temporal smoothing71. Other
temporal schemes that give higher spatial resolution than
golden angle sampling such as ‘Time-interlaced model-
based iterative reconstruction’ (TIMBIR)26 can also now
be adapted for laboratory machines. Acquisition could
also be performed from non-custom geometries such as a
tilted rotate axis, opening the potential of standard CT
machines to perform laminography72.

SUPPLEMENTARY MATERIAL

Please see the online supplementary material for the
following videos associated with this paper:

S1: 3D visualisation of mung bean (vigna radiata) germination;
S2: 2D slice through a germinating mung bean (vigna radiata);

S3: 2D greyscale slice of barite precipitation in porous media
using P100;

S4: 3D visualisation of barite precipitation in porous media us-
ing P100;

S5: 2D greyscale slice of barite precipitation in porous media
using P600;

S6: 3D visualisation of barite precipitation in porous media us-
ing P600;

S7: 2D greyscale slice of barite precipitation in porous media
using P2000;

S8: 3D visualisation of barite precipitation in porous media us-
ing P2000.

In addition, the data for reproducing figure 2 is also pro-
vided in Supp. Table 1.
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