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R. Zöllner and B. Kämpfer
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Abstract

The soft wall model is extended to accommodate at the same time (i) approximately linear ρ 

meson Regge trajectories at zero temperature T , (ii) various options for the thermodynamics with 

reference to QCD (cross over or second-order transition or first-order transition at Tc), and (iii) the 

appearance of vector meson states at T . Tc. While the vector meson masses display some modest 

model dependence very near to Tc, they stay below Tc to good accuracy independent of the 

temperature, that is nearly as at T = 0, thus being very consistent with the thermo-statistical models 

widely employed in analyses of the hadron yields in relativistic heavy-ion collisions in a region where 

baryon densitiy effects can be neglected and the vacuum hadron masses are used.
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I. INTRODUCTION

The soft wall (SW) model [1] is a particular realization of ideas rooting in the AdS/CFT

correspondence [2–4]. It can be considered as holographic bottom-up model allowing for the

access to the excitation spectrum of vector mesons. (For extensions to other meson species,

see [5–8].) Vector mesons (V ), such as ρ, ω, φ and J/ψ, are of special interest for dilepton

(ll̄) spectroscopy in relativistic heavy-ion collisions [9, 10] since they couple as JPC = 1−−

states to photons V → γ∗ → ll̄ and allow to seek for medium modifications via their spectral

functions (cf. [11–14] for surveys and [15, 16] for investigations related to ρ mesons). For

that, the SW model has to be extended to accommodate non-zero temperature effects. This

has been accomplished, e.g. in [5], with the finding of the disappearance of vector mesons

at a temperature scale significantly below Tc (cf. also [17]), where Tc refers either to the

cross over temperature of QCD or the critical temperature of first-order/second-order phase

transition of QCD in the chiral/nearby chiral limit. As shown in [18], a suitable modification

of the SW model can serve for both, an accurate description of the Regge trajectories of

radial excitations and a disappearance temperature of O(Tc). Even an extension to finite

baryon density effects is possible [19]. The construction in [18, 19] is tightly related to

the Hawking-Page phase transition, implying a first-order phase transition at Tc, where at

temperatures T below Tc the thermal gas solution applies, i.e. the hadron states are as at

T = 0.

It is the aim of the present paper to report on the thermodynamics which is encoded in our

extension of the SW model in relation with QCD thermodynamics and the option of tuning

the holographic model such to have vector meson states only at T . Tc. The picture we

have in mind is as follows. At T > Tc, no hadron states exist. At Tc (or in a narrow corridor

centered at Tc), hadron states appear and persist toward smaller temperatures. In other

words, considering an expanding and therefore cooling piece of strongly interacting matter

in the course of a relativistic heavy-ion collision, hadronization happens at Tc. Guided

by the success of the thermo-statistical model [20–25], we argue that the emerging hadron

states are statistically distributed according to maximum entropy. In line with arguments in

[26], the inelastic hadron reaction rates drop extremely rapidly upon further cooling, i.e. the

chemical composition freezes out (f.o.) at Tf.o. ≈ Tc. (For a more differential analysis within

transport models, cf. [27].)
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Altogether, we provide a holographic model in the spirit of the SW model with Tdis ≈ Tf.o. ≈

Tc, where Tdis is the temperature at which hadron states appear upon cooling (or disappear

when heating a piece of strongly interacting matter). At the same time, an approximately

linear Regge trajectory with proper ρ ground state at T = 0 is used as input for the QCD-

hadron scale setting. For the thermodynamic scale setting we employ Tc ≈ 150 MeV, as

turns out from lattice QCD calculations [28, 29] for 2+1 flavors with physical quark masses,

where the label ‘c’ refers to ‘cross-over’, albeit we discuss also the options of a second-order

phase transition and a first-order phase transition which are enabled in 2+1 flavor QCD for

special quark mass parameters according to the Columbia plot, cf. [30]. In our model, these

various cases are steered by the continuous change of a single parameter. Finally, we show

that parameter tuning allows for the scale setting such to accomplish Tdis
∼= Tc. As a result

of these scale settings we find only tiny medium modifications at T < Tc, here caused by

the ambient hot medium wherein the selected hadrons (vector mesons) are immersed. This

is in agreement with the thermo-statistical analyses of data on hadron abundances which

employ successfully the hadron spectrum at T = 0.

Our paper is organized as follows. In Sec. II we introduce the extended SW model and

present the vector meson spectrum at T = 0. The thermodynamics is discussed in Sec. III,

and Section IV contains the features of the vector meson spectrum at non-zero temperature,

in particular the systematics of Tdis. We summarize in Sec. V. The Appendix provides a

brief recourse to the Hawking-Page transition.

II. THE EXTENDED SOFT WALL MODEL AND SETTING THE HADRON

SCALE

The holographic approach to vector mesons arises from a stack of Nc (number of colors) co-

incident D3-branes resulting in a ten-dimensional space-time. In the spirit of the AdS/CFT

duality it is AdS5 × S5, where AdS5 is a five dimensional anti-de Sitter ‘universe’ and S5

is a compact sphere which drops out in the strong coupling limit. Nf (number of flavors)

coinciding D7-branes are then included to supply flavor gauge fields [31–34]. This approach

leads to a general action including the massless real-valued scalar dilaton background field

Φ, a bulk tachyon field as well as the gauge field strength tensors squared [35]. In the probe

3



limit and focusing on the vector-like gauge field VM the action simplifies to [1]

SV =
1

k

∫
dz d4x

√
ge−Φ(z)F 2, (1)

where F 2 = gMM ′
gNN

′
FMNFM ′N ′ with FMN = ∂MVN − ∂NVM (M,N = 0, . . . , 4) denoting

the field strength tensor of the U(1) vector field V , where the gauges V4 = 0 and ∂µVµ = 0

can be applied by Klein-Kaluza decomposition. Vµ is then sourced by a current operator

q̄γµq in the boundary theory in the spirit of the field-operator correspondence. z is the

holographic bulk coordinate; the determinant of the metric gMN is g, and k = 12π2L/Nc

stands for the gauge coupling with the AdS radius L. Greek indices run in the range 0 . . . 3.

The vector field Vµ = εµϕ(z) exp(ipνx
ν) has the polarization described by εµ; the important

part of the wave function is the amplitude ϕ(z) beyond the phase pνx
ν . The metric, now

asymptotically AdS with a black hole embedded optionally, can be read off the infinitesimal

line element squared

ds2 = eA
(
f(z)dt2 − d~x 2 − dz2

f(z)

)
. (2)

The resulting equation of motion can be cast into the form of a one-dimensional Schrödinger

equation (
∂2
ξ − (UT −m2

n)
)

= 0 (3)

by a coordinate transformation z → ξ with dξ(z)/dz = 1/f(z) and the transformation

= ϕ exp{−1
2
(A− Φ)}. Note that k drops. The potential reads

UT =

(
1

2
(
1

2
∂2
zA− ∂2

zΦ) +
1

4
(
1

2
∂zA− ∂zΦ)2

)
f 2 +

1

4
(
1

2
∂zA− ∂zΦ)∂zf

2. (4)

The case T = 0 is equivalent to setting f = 1.

The vector meson states correspond to normalizable solutions of (3) with masses squared

m2
n = pµp

µ. Since the field Vµ is considered in the probe limit, i.e. the remaining warp

factor A(z) and the dilaton profile Φ(z) are adjusted to recover at T = 0 a Regge type

spectrum m2
n = β0 + β1n + β2n

2 + . . . with |βn>1| � β0,1 and n = 0, 1, 2, . . . (see [1, 36–38]

for discussions of the Regge trajectories). In line with the original SW model [1], an easy

ansatz is A(z) = −2 ln(z/L) and Φ(z) = (cz)p. We put L = 1/c and obtain c = 291 MeV,

p = 3.77 for the ρ meson and the first three radial excitations, see Fig. 1-left. The ground

state (g.s.) and the first two excitations are in fact on a linear trajectory with β0 = 0.49

GeV2 and β1 = 1.34 GeV2; the third excited state suffers from some modest offset. Such
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FIG. 1: Selection of states (circles with error bars) belonging to the ρ Regge trajectory according

to [39] (left panel) or to [8] (right panel). The crosses exhibit solutions of Eq. (3) for f = 1 with

c = 291 MeV, p = 3.77 (left panel) and c = 399 MeV, p = 2.09 (right panel). The straight lines

are for m2
n = β0 + β1n with the values of β0,1 quoted in the text.

a spectrum is advocated in [39]. Reference [8], in contrast, employs another sequence of

excitations with β0 = 0.68 GeV2 and β1 = 0.72 GeV2 which can be captured very well up to

n = 6 by c = 399 MeV and p = 2.09, see Fig. 1-right. These latter values are fairly well in

agreement with the scale setting and quadratic dilaton profile in the original SW model [1].

In such a way, the hadron energy scale c is fixed by properties of the considered hadron

spectrum. This highlights also the role of the dilaton field as conformal symmetry breaker.

III. THERMODYNAMICS AND SETTING OF Tc

It is important to note that in the extension to non-zero temperatures we retain the above

quoted warp factor A(z). This implies, in the presence of a black brane, the Bekenstein-

Hawking entropy density is s(zH) = (2π/κ) exp{3
2
A(zH)} (the constant κ is related to the

five-dimensional gravitational constant G5 via κ = 8πG5), meaning s ∝ 1/z3
H . To have

asymptotically an AdS geometry, one requires f(z → 0) = 1 and ∂kz f(z) |z→0= 0 for
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k = 1, 2, 3, i.e. z → 0 is the AdS boundary in the coordinate system (2). The black brane is

facilitated by a simple zero f(z = zH) = 0, implying T (zH) = −4π∂zf(z) |z=zH . Both, the

Bekenstein-Hawking entropy density s(zH) and the Hawking temperature T (zH) combine to

the equation of state in parametric form, resulting finally in s(T ). At vanishing net baryon

density, general thermodynamics dictates for the pressure p(T ) =
∫ T
T0

dϑs(ϑ) + p0, where p0

is a scale set at temperature T0. The velocity of sound squared is c2
s = ∂ lnT/∂ ln s; it has

the advantage to be free of any further scale setting for L and c.

Our ansatz for the blackness function is

f(z) = 1− z4

z4
H

(
1 +

2(πzHT (zH)− 1)

exp{2
e
(πzHT (zH)− 1)}

[(
z

zH

)2 exp{ 2
e

(πzHT (zH)−1)}

− 1

])
(5)

(see appendix in [19]). It is, of course, not unique, but constructed in such a manner to

meet the above criteria for f(z). What remains is a suitable model for T (zH). In agreement

with the above quoted three QCD related options, as offered by the Columbia plot in [30],

we utilize:
T (zH)

Tx
=

1

θx
+ 1− 3b

θ
+

3bx

θ
− x2

θ
, (6)

where θ = πzxTx, x = zH/zx, and Tx sets the thermodynamic scale and θ (or zx) is a

parameter. As shown below, the dimensionless parameter b steers the order of the transition

from the high-temperature (plasma or deconfined) phase to the low-temperature (hadron or

confined) phase.

Graphs of T/Tx vs. zH/zx (left column), κc3s/T 3 (second column), c2
s (third column) and

κp/T 4 (right column) are exhibited in Fig. 2 for three values of the parameter θ = 2
3

(blue

curves), 1 (green curves) and 4
3

(red curves). We have chosen several ad hoc values of

p0/T
4
x to shift the curves of the scaled pressure (right column). For b > 1, the curves

T/Tx vs. zH/zx (left top panel) display a local minimum and a local maximum; the scaled

pressure obeys the loop with a self intersection at Tc, as characteristic for a first-order phase

transition. The unstable sections are shown by dashed curves, and the thin curves are

for the metastable branches, also used for the scaled entropy density and squared sound

velocity (middle panels). The solid curves are for the stable branches. In contrast to the

Hawking-Page transition and the related thermal gas solution (see Appendix), below Tc,

the medium has a non-zero sound velocity, entropy density and pressure as exhibited in the

top row. One can tentatively attribute the medium at temperatures above Tc to a plasma

(deconfined) state, while below Tc it would correspond to a hadron (confined) gas state, as
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stressed above. Since the present holographic approach does not have some analog of the

running QCD coupling, we refrain to study the high-temperature region. Analogously, too

far below Tc the rich hadron physics is probably also not accessible in such a simple model.

That is why we confine ourselves to the region around Tc.

For b = 1 (middle row), the temperature T/Tx vs. zH/zx exhibits a stationary turning

point at zH = zx; the pressure loop just vanishes, and the sound velocity vanishes at Tc =

Tx. These features are characteristic for a second-order phase transition, which is at the

demarcation of first-order phase transition and cross over according to the Columbia plot.

For b < 1, the temperature drops continuously with increasing zH (left bottom panel),

and scaled entropy density and pressure are monotonously increasing with temperature (see

bottom row). Still, the velocity of sound exhibits minima, corresponding to softest points

of the medium. We use these minima to define a Tc, with the meaning of ‘cross over’. The

ordering of the various curves for different values of θ in Fig. 2 does not change with b.

Figure 3 exhibits a contour plot of the above defined values of Tc scaled by Tx above the θ-b

plane. Thinking of a scale setting of Tx = 150 MeV, this figure unravels that Tc is about

Tx for b uncovering the interval 0.5 . . . 1.5, thus accommodating the QCD relevant cases of

first-order (b > 1), second-order (b = 1) transitions as well as the cross over (b < 1) for not

too large values of θ.

IV. APPEARANCE OF VECTOR MESONS AT Tdis

After setting the thermodynamic scale by fixing Tx we turn to the impact of non-zero tem-

peratures on the spectrum of vector mesons. In contrast to thermodynamics, where only

T (zH) matters (together with s ∝ 1/z3
H), now the explicit form of the blackness function

Eq. (5) becomes important. To get an impression of the shape of the potential Eq. (4) we

exhibit in Fig. 4 view graphs of UT (z, zH). Due to temperature effects the asymmetrically

U-shaped potential UT=0 becomes at the r.h.s. strongly deformed. It is the zero of f at

the horizon z = zH which bends also UT to zero there. The wall nearby z < zH becomes

quadratically lower with smaller (larger) values of zH (T ), implying that less states as nor-

malizable solutions of Eq. (3) can be accommodated. In addition, the states still existing

get a width due to a finite barrier penetration probability. At a certain value of zH (or T ),

the r.h.s. wall is so low that even the ground state cannot be longer accommodated. This
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FIG. 3: Contour plot of Tc/Tx over the θ-b plane. Tc is either determined by the first-order phase

transition (b > 1) or the second-order phase transition (minimum of sound velocity, b = 1) or the

minimum of the sound velocity (b < 1).

is our definition of T g.s.
dis . At T > T g.s.

dis hadron states do not exist at all. As launched in [18]

we consider this as an emulation of deconfinement, here proven only for the vector channel.

It is now a matter of the steepness of the ramp of the r.h.s. wall of UT whether all hadron

states (dis)appear at once or gradually, i.e. T g.s.
dis = T 1st

dis = . . . or T g.s.
dis > T 1st

dis > . . ., where 1st

labels the first excited state.

Figure 5 quantifies T g.s.
dis /Tx as a contour plot over the θ-b plane for Tx = 150 MeV, as

identified in the above scale setting for QCD relevant thermodynamics. One infers from

that figure that a suitable value of θ can be chosen to arrive at T g.s.
dis = Tx. We focus here

on the region b ≤ 1, as most relevant for mimicking QCD features. Variations of Tx by

±(10 . . . 20) MeV do not change the pattern displayed in Fig. 5.

The final step is to arrive at T g.s.
dis = Tc = 150 MeV. For quantifying the options we exhibit

in Fig. 6 the quantity (Tc − T g.s.
dis )/Tx as contour plot over the θ-b-plane, again focusing on

b ≤ 1. The fat gray curve with label 0 is in fact the Tc − T g.s.
dis = 0 locus. That is, one can

indeed synchronize the thermodynamics at Tc with the deconfinement emulation.

Figure 7 exhibits the temperature dependence of the lowest three vector meson states. There

is a very weak temperature dependence, and the states appear in a narrow corridor centered

at Tc upon cooling. The width of the hadronization corridor can be dialed by selecting other

parameters θ and b, e.g. for b = 1 and θ = 2.5 it shrinks to 3 MeV. In contrast to the finding
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FIG. 4: An example of the potential UT (z, zH)/c2 over the z-zH plane for the parameters p = 2.09,

c = 399 MeV, Tx = 150 MeV, θ = 2.3 and b = 0.94. Left panel: contour plot, right panels: 3D

view with contours UT = constant (top) and cross sections UT (z, zH = constant) for various values

of zH (bottom). The l.h.s infinite wall at z → 0 is hardly influenced by temperature effects.

FIG. 5: Contour plot of T g.s.
dis /Tx over the θ-b plane for Tx = 150 MeV and for parameter choices

as in Fig. 1.
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FIG. 6: Contour plot of (Tc − T g.s.
dis )/Tx over the θ-b plane for Tx = 150 MeV and for parameter

choices as in Fig. 1.

in [18], here the impact of increasing temperature is a dropping of the masses near Tc. We

can trace back that difference to details of the function f(z) near zH : Even for the same

slope of f(z = zH), the slopes of f(z = zH [1− ε]) can differ (ε is a small number.). The net

effect is that the r.h.s. of UT is squeezed or stretched relative to UT=0 with the implication

of kicking up or down mn(T ≈ Tc). For z � zH , UT suffers only from minor modifications

relative to UT=0, see Fig. 4. That is the reason for mn(T < Tc) ≈ constant as seen in Fig. 7.

Figure 7 unravels also the option of a sequential hadronization: T g.s.
dis > T 1st

dis > T 2nd

dis would

imply T g.s.
f.o. > T 1st

f.o. > T 2nd

f.o. in a ‘strict freeze-out model’ wherein hadron species are statisti-

cally distributed just at the maximum temperature at which they exist. Interestingly, such

a refinement of the thermo-statistical freeze-out models is currently matter of debate. For

instance, [40] disputes a data-enabled scenario with lower freeze-out temperature of light-

quark dominated hadrons in comparison with heavy-flavor dominated hadrons. Our present

approach, however, is restricted to the light-quark sector and must not be related to the

multi-flavor scenario in [40]. In addition, considering hadron states above the ground state

as resonances, a plethora of potentially obscuring effects needs to be considered, such as

regeneration reactions in the confined phase and issues of the (experimental) reconstruction

of rapidly decaying resonances in the hadronic environment which distorts the decay prod-

ucts and obstructs the reconstruction of the parent resonances [41, 42]. These facets call
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FIG. 7: The first three vector meson masses squared as a function of the temperature for parameters

p = 3.77 and c = 291 MeV (left panel) or p = 2.09 and c = 399 MeV (right panel) as in Fig. 1.

The additional parameters for both panels are Tx = 150 MeV, θ = 2.3 and b = 0.94. For these

parameters corresponding to the QCD relevant cross over, sequential hadronization happens in the

vertical gray corridor centered at Tc (vertical line). Bullets depict the values of m2
n at T = 0.

for an improvement of understanding the hadronization dynamics during the QCD cross

over transition in relativistic heavy-ion collisions. For further discussion and citations of

hadronization issues in the particularly interesting charm sector we refer the inquisitive

reader to [43].

V. SUMMARY

In summary we employ an extended soft wall model with the following properties: (i) approx-

imately linear Regge trajectory of the first few excitations of the ρ meson, (ii) various options

of the thermodynamics related to QCD (e.g. cross over or second-order phase transition or

first-order phase transition), (iii) disappearance of vector meson states for temperatures

larger than the cross over or transition temperatures. In the particularly important case

of the cross over, the relevant temperature scale is about Tc ≈ 150 MeV, both for thermo-

dynamics and the emulation of deconfinement as disappearance of hadron states. Such a

holographic model - even quite schematic and restricted to vector mesons in the light quark

sector - is consistent with the thermo-statistical model analyses of hadron yields since the

hadron states at T < Tc are as the spectrum at T = 0, with the exception of tiny tempera-

12



ture effects in a narrow corridor centered at Tc, meaning no noticeable medium effects below

Tc.

Obvious refinements within the given framework should address other Regge trajectories

(e.g. heavy-quark vector mesons [44–46] and heavy-light quark vector mesons) up to pseudo-

scalar, scalar, axial-vector and tensor channels, thus generalizing the model to many more

degrees of freedom (both beyond vector mesons and the dilaton ‘dynamics’) towards the

goal to source with them in a dynamical way the holographic gravity beyond the probe limit

and include back reactions. For extensions to non-zero net baryon density, the baryons and

related order parameters must be included too.

Acknowledgments

The work is supported by BMBF and Studienstiftung des deutschen Volkes.

Appendix A: Hawking-Page transition

We supplement here the thermodynamics for the model considered in [18] for

T (zH)

Tmin

=
1

θ̂x̂
+ 1− 2

θ̂
+
x̂

θ̂
, (A1)

where, instead of Tx, zx, we now consider Tmin and zmin as parameters, and use here x̂ =

zH/zmin, θ̂ = πzminTmin. T (zH) displays a global minimum at Tmin and zmin.

In the spirit of Fig. 2, the scaled temperature, velocity of sound and scaled pressure are

exhibited in Fig. 8. The pressure loop construction is special here: p(T (zH →∞)) = 0 is an

element thereof, i.e. p0 = 0 and T0 = ∞. In the thermal gas (low-temperature) phase the

pressure is assumed to scale with N0
c , where Nc is number of colors, while in the black hole

(high-temperature or plasma) phase it goes as N2
c , i.e. p ≈ 0 represents the thermal gas [47].

Accordingly, below Tc - determined by p = 0 of the black hole solution - there is a nearly

pressure-free and nearly zero-entropy ‘medium’, where also the sound velocity is near zero.

Obviously, such a construction relying on the Hawking-Page transition is less adequate for

describing qualitatively QCD features for realistic quark masses.
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[18] R. Zöllner, B. Kämpfer, Phys. Rev. C 94, 045205 (20016).
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