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The features of vacuum particle creation in an external classical field are studied for simplest
external field models in 3 + 1 dimensional QED. The investigation is based on a kinetic equation
that is a nonperturbative consequence of the fundamental equations of motion of QED. The observed
features of the evolution of the system apply on the qualitative level also for systems of other nature
and therefore are rather general. Examples from cosmology and condensed matter physics illustrate
this statement. The common basis for the description of these systems are kinetic equations for
vacuum particle creation belonging to the class of integro-differential equations of non-Markovian
type with fastly oscillating kernel. This allows to characterize processes of this type as belonging to
the class of field induced phase transitions.

I. INTRODUCTION

In the present work we investigate the features of the
transition from an initial state of primordial vacuum os-
cillations to a final quantum field system of particles
and antiparticles due to an external field (the dynami-
cal Schwinger effect) as a field induced phase transitions
(FIPT). As an example we consider a 3 + 1 dimensional
QED system in the presence of a linearly polarized time
dependent electric field. This particular case allows a
rather simple kinetic description in the framework of the
quasiparticle representation. The corresponding kinetic
equation (KE) has a specific structure: it is an integro-
differential equation of non-Markovian type with a fastly
oscillating kernel describing the evolution of vacuum os-
cillations excited by the external field. The mathematical
structure of this KE is preserved also for other systems
with unstable vacuum. Therefore one can expect that
the investigated features of FIPT can be recognized also
in other quantum field systems of corresponding nature
in the presence of a strong classical external field.

The basic KE is given in Sect. II. Its numerical so-
lutions are discussed in Sect. III for some simple mod-
els for the external electric field. The characteristic fea-
tures in the description of the evolution of the particle-
antiparticle plasma created from vacuum are summarized
in Sect. IV.

II. KINETIC EQUATION

According to the general theory of systems with un-
stable vacuum (see, e.g., [1, 2]), two formulations of ki-
netic theory exist which are destined for the space-time
description of vacuum exitations. These are the KE in
the Wigner [3–5] and in the quasiparticle [6–8] represen-

tations. In Refs. [8, 9] the equivalence of these two ap-
proaches was demonstrated for the simplest external field
models in QED. For these simple, spatially homogeneous
field models both versions of the kinetic theory allow for
a reduction of the complicated original equations to a
rather simple system of ordinary differential equations
(ODE) for three functions: the distribution function
f(p, t) of the quasiparticle excitations and two auxiliary
functions for the description of the vacuum polarization.
The corresponding KE [7] describing vacuum electron-
positron plasma (EPP) creation in a homogeneous lin-

early polarized electric field E(t) = −Ȧ(t) with the vector
potential (in the Hamilton gauge) Aµ(t) = (0, 0, 0, A(t))
is

ḟ(p, t) =
1

2
λ(p, t)

t∫
t0

dt′λ(p, t′)[1− 2f(p, t′)] cos θ(t, t′),

(1)
where

λ(p, t) = eE(t)ε⊥/ε
2(p, t), (2)

θ(t, t
′
) = 2

∫ t

t‘
dτ ε(p, τ). (3)

Here λ is the amplitude of the vacuum transitions, and θ
is the high-frequency phase, describing the vacuum oscil-
lations which are modulated by the external field. Fur-
thermore, the quasienergy ε, the transverse energy ε⊥
and the longitudinal quasi-momentum P are defined as

ε(p, t) =
√
ε2⊥(p) + P 2, (4)

ε⊥ =
√
m2 + p2⊥, (5)

P = p‖ − eA(t). (6)

Here p⊥ = |p⊥| is the modulus of the vector p⊥ perpen-
dicular to the field vector and p‖ = p3 is the momentum
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component parallel to the field.
The quasiparticle distribution function f(p, t) is zero

in the in-vacuum state where the external field strength is
zero (Ein = 0 corresponds to Ain = A(t0)), i.e. Eq. (1) is
complemented by the initial condition f(p, t0) = fin = 0.

It is assumed also that the electric field is switched off
in the out-state (Eout = E(t→∞) = 0 and Aout 6= Ain).
Thus, the in- and out-vacuum states are different.

The non-Markovian integro-differential equation (1) is
equivalent to a system of three time-local ordinary dif-
ferential equations

ḟ =
1

2
λu, u̇ = λ(1− 2f)− 2εv, v̇ = 2εu, (7)

where u(p, t), v(p, t) are auxiliary functions describing
vacuum polarization effects. The dynamical system (7)
has the following integral of motion:

(1− 2f)2 + u2 + v2 = 1 (8)

compatible with the initial conditions fin = uin = vin =
0.

In the low density approximation 2f � 1, the KE
(1) has a closed formal solution in the form of a useful
quadrature formula [10]

f(p, t) =
1

2

t∫
t0

dt′λ(p, t′)

t′∫
t0

dt′′λ(p, t′′) cos θ(t′, t′′) . (9)

The total number density of pairs is defined as

n(t) = 2

∫
dp

(2π)3
f(p, t) , (10)

where the factor 2 corresponds to the spin degree of free-
dom.

In the present work the KE (1) is solved numerically
for two relevant models of the electric field:

(i) the Eckart-Sauter field with characteristic duration
of action T

E(t) = E0 cosh−2(t/T ), A(t) = −TE0 tanh(t/T ), (11)

and

(ii) the Gaussian envelope model of the laser pulse [11]

E(t) = E0 cos (ωt) e−t
2/2τ2

, (12)

A(t) = −
√
π

8
E0τ exp (−σ2/2) erf

(
t√
2τ
− i σ√

2

)
+ c.c.,

where σ = ωτ is a dimensionless measure for the
characteristic duration of the pulse τ connected
with the number of periods of the carrier field.

The Eckart-Sauter field (11) admits an exact solution
of the problem [6, 8, 12]; it is a benchmark case.

In order to introduce the Keldysh parameter γ =
Ecω/E0m for the discussion of the field model (11) one
can use the substitution ω → 1/T . In the limiting case
γ � 1 the tunneling mechanism (with participation of
an infinite number of photons) dominates, whereas for
γ � 1 pair creation is driven by the absorption of few
photons.

The vacuum oscillations (Zitterbewegung) play a cru-
cial role in the mechanism of vacuum EPP creation. The
usual energy of vacuum oscillations ε0 =

√
m2 + p2 is

transformed here to the quasienergy (4) in the presence
of the time dependent electric field. The memory effect
(non-Markovian character of the KE), the fastly oscil-
lating factor with the phase (3) and the frequency 2ε
(the dynamical energy gap) are the essential elements in
the KE (1). This equation contains two characteristic
time scales: a slow one associated with the time scale of
the external field period, 2π/ω, and a fast one given by
the Compton time τc = 2π/m. These scales are usually
vastly different, ω � m. The coupling of the dynamics
related to these two scales leads to a very complicated
structure of the distribution function, both in the first
stage (generation of the quasiparticle EPP (QEPP)) and
in the final stage (formation of the residual EPP (REPP))
[13].

III. FIELD INDUCED PHASE TRANSITION

In the considered situation, the FIPT appears as re-
arrangement of the vacuum state under the action of a
classical electromagnetic field. It leads to the t− nonin-
variant quasiparticle vacuum which corresponds to a non-
stationary Hamiltonian of the system (the S.Coleman
theorem [6, 14]). In this connection, the quasiparti-
cle electron-positron pairs are the massive analog of the
Goldstone bosons [6, 15].

Let us consider phenomena which accompany the
FIPT.

A. Transient stage

The typical picture of the EPP evolution under the
action of the smooth pulse (11) is presented in Fig. 1. The
left panel shows that the transient process of the fast EPP
oscillations divides the evolution of the EPP into two
domains, the QEPP and the REPP. After momentum
integration the fast oscillations of the transient process
are smoothed out, see the right panel of Fig. 1. The inset
of that panel shows the local production rate. The results
of the numerical solutions of the KE (1) (or (7)) coincide
with the exact solution [6, 9, 12]. On all figures the time
and frequency are scaled with the electron mass.

For qualitative orientation one can introduce here the
time interval of the strong oscillations limited by point
tin of the begin (that can be identified with the mo-
ment when the oscillations of the distribution function
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Figure 1: The transition from the QEPP plasma to the final state for the Eckart-Sauter pulse type (11) with E0 = 0.2 Ec and
T = 8. The labels tin and tout denote approximately the begin and the end of the transient stage. Left panel: Evolution of
the distribution function for the point p⊥ = p‖ = 0. Right panel: Evolution of the pair number density (10) and the local
pair production rate w(t) = ṅ(t) (inset).

reach for the first time the level of the REPP) and the
end tout (corresponding to the moment when the mean
level of oscillations approaches that of the REPP and
the elongation of the oscillations is significantly reduced).
This transient period of the Zitterbewegung separates the
smoothed QEPP stage from the REPP stage.

Under similar conditions strong oscillations are ob-
served also in other physical models with massive con-
stituents. For example, they appeared in the domain
of the relativistic phase transition with dynamical mass
generation (the inertial mechanism of particle creation)
including the Higgs mechanism [16]. Their existence can
be found also in the strong field dynamical models of
strongly correlated systems (see, e.g., Ref. [17]). Let
us underline that the appearance of the transient region
with strong oscillations takes place in the considered case
of a smooth impulse (11) without a carrier wave that
would possess a high frequency component.

For a better understanding of this phenomenon let us
consider the mechanisms of particle creation acting in the
KE (1) or in its approximate solution (9). We will trace
the evolution of the system in the smooth field (11) for
t > 0 which is accompanied by a field strength depletion.
If the electric field is rather strong, for t < tin the acceler-
ation mechanism represented by the force factor eE(t) in
the numerator of the amplitude (2) is dominant whereas
the fastly oscillating factor cos θ(t, t′) on the r.h.s. of the
KE (1) smoothes out. The vicinity of the moment tin
of the begin of the transient stage is characterized by
a weakening of the accelerating field action and by the
growth of the role of the fast oscillations with the fre-
quency 2ε(p, t) ≥ 2m, in which one can neglect now the
influence of a weak field so that the oscillation “beard”
in the transient stage appears Fig. 1. The subsequent
field depletion accompanied by the growth of the vector
potential (and the quasi-momentum P (t) (6)) in the de-
nominator of the amplitude (2) leads to the asymptotic

extinction of the oscillations and the approach of the final
REPP state.

Fig. 2 demonstrates the fine structure of the distri-
bution function in the transient period for varying field
strength at fixed momentum (left panel) and for vary-
ing p‖ = p3 at p⊥ = 0 and fixed field strength (right
panel). One can see from here that the behavior of the
distribution function depends on the selection of a point
p in momentum space. The maximum of the distribution
function is realised for p⊥ = 0 in different points p‖ = p3
at different time moments because the component p‖ is
contained in the amplitude (2) together with the vector
potential in the quasi-momentum P (t) (6). The features
of these oscillations are defined by the double quasienergy
2ε(p, t) and are reproduced well also by the numerical so-
lution of the KE.

These features of the transient process are complicated
in the case of a high frequency periodic field with a Gaus-
sian envelope (12), ω � 1/τ . Typical patterns are pre-
sented in Fig. 3. In this case the transient stage sepa-
rates into domains defined by the subcycle structure of
the pulse. They are traced well also on the density curve
of the EPP in the right panel of Fig. 3, showing the last
domain of the stage ”b”. Apparently, the effect of mutual
amplification of EPP production as a result of the nonlin-
ear interaction of the fast and slow components [18–20]
of the field (12) is illustrated here.

A new element now is the dependence on the carrier
frequency ω. When comparing with the right panel of
Fig. 1 we observe now the modulation effect which be-
comes apparent also in the area of the “beard”. The
previously discussed picture of the transient regime oc-
curs also at the end of each cycle of sub-pulses with a
half-period duration π/ω of the external field (12), but
it gets squeezed by the neighboring cycle. The general
transient process arises at sufficient depletion of the en-
velope amplitude at t > 0.
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Figure 2: Time evolution of the distribution function for the Eckart-Sauter pulse (11) with T = 8.24. Left panel: At
p⊥ = p‖ = 0 for subcritical fields E0/Ec = 0.05, 0.10, 0.15 and 0.20. Right panel: The details of phase transition at
E0/Ec = 0.2 and p⊥ = 0 for different values p‖ = −1.0,−0.5, 0.0, 0.5, 1.0.
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Figure 3: Transition from QEPP to REPP in the case of a harmonic field with Gaussian envelope (12) with σ = 5.0. Left
panel: The distribution function for the point p⊥ = p‖ = 0. Right panel: The density n(t) (10) in the transition region b.
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Figure 4: Details of the evolution of the distribution function in the case of a harmonic field with the Gaussian envelope (12)
with σ = 5.0 and wavelength 0.1 nm. Left panel: Evolution of the EPP under the action of a single subpulse with a half-period
duration. Right panel: The fine structure of the transient bubble (similar to Fig. 3, left).
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On the left panel of Fig. 4 we demonstrate this as-
pect of the evolution of the QEPP under the action of
a single sub-pulse. For clarity of the picture we have in-
creased here the wavelength in comparison with the case
shown in Fig. 3. Each such sub-pulse in the EPP evo-
lution comprises all the quasiparticle stages of evolution,
its transient stage and results in a partial REPP. The
next sub-pulse will start with some nonzero EPP distri-
bution. This leads to the accumulation of REPP in the
final out-state. The structure of the final transient re-
gion (the fragment “b” on the Fig. 3, left) is shown on
the right panel of Fig. 4.

The presence of a transient region of fast oscillations in
the distribution function is characteristic for every field
model. In this regard the discussed phase transition un-
der the action of a strong electric field is a universal effect
for quantum field systems with an energy gap. We re-
mark that in the case of massless 2+1 dimensional QED
(e.g., for graphene), the high-frequency transient region
is absent and the evolution of the particle-antiparticle
plasma distribution function is smooth [21].

The left panel of Fig. 5 demonstrates the dependence
of the EPP pair density (10) on the pulse duration at
fixed frequency ω in the field model (12). It exhibits a
nonlinear accumulation effect for which the slope is ap-
proximately constant for weak fields whereas for strong
fields we observe a saturation effect. Finally, the right
panel of Fig. 5 shows the dependence of the EPP pair
density in the out-state in comparison to the maximal
value attained within the entire period of the EPP evo-
lution (see, e.g., Fig. 1, right).

B. Strong nonequilibrium

The entire process of vacuum EPP creation is a strong
nonequilibrium one, including the final out-state. In the
first place, this conclusion follows from the exactly solv-
able models. The distribution functions of the out-state
turn out to be the same for both, the constant field model
E(t) = E0 [22] and the Eckart-Sauter model (11) for
T →∞ [2, 6]

fout(p) = exp

[
−Ec
E0

(ε⊥
m

)2]
. (13)

This function is degenerate w.r.t. p3 = p‖ and therefore
non-normalizable. This leads to the necessity to extend
the definition of macroscopic observables of the type (10).
As a rule, the substitution∫

dp‖ → eTE0 (14)

is introduced which results in the well known Schwinger
formula [23] for the EPP production rate. The constant
field model has been analyzed in detail in the recent work
[24].

The strongly anisotropic nonequilibrium distribution
(13) exists only in the presence of the external field and

is defined by its symmetry. Detailed consideration of the
nonequilibrium feature of this distribution can found in
the work [25].

The asymptotic distribution (13) in the constant field
model is a smooth function of the transversal energy
ε⊥(p⊥). In more realistic field models the structure of
the distribution function becomes very complicated. As
an example, see the right panel of Fig. 6.

C. Non-monotonic entropy growth

The transition from the in-state to the out-state is ac-
companied by an non-monotonic entropy growth. This
phenomenon was marked and discussed long ego (e.q.,
[22, 26, 27]). For example, the function (13) leads to the
following entropy production rate

Sout

T
=
m4

8π2

E0

Ec

(
1 +

E0

πEc

)
exp

(
−πEc

E0

)
, (15)

where the pulse duration is defined by the relation (14).
In Eq. (15) the definition of the information entropy with
the density s(p, t) = − ln f(p, t) was used. The most
complete investigation was implemented in the work [28]
on the basis of the KE (1). Let us notice that the KE
(1) or the system of ODE (7) is invariant with respect
to time inversion so that the entropy growth observed
here, apparently, results from transforming the primor-
dial vacuum fluctuations under the action of a strong
external field to the statistical ensemble of the EPP with
well defined entropy.

IV. SUMMARY

In this work, we have considered the field induced
phase transition from primordial vacuum fluctuations
to the final massive quantum field system of particle-
antiparticle pairs under the action of a strong external
field. This phenomenon possesses the following charac-
teristic features

(i) presence of three stages of evolution: quasiparticle,
transient and final;

(ii) presence of fast oscillations in the transient stage;
(iii) strong nonequilibrium character, including the out-

state;
(iv) non-monotonic entropy growth.
Apparently, these features are rather universal and are

characteristic on the qualitative level for physical systems
of different nature.

On the formal level this universality appears because
the corresponding KE’s belong to the united class of
integro-differential equations of non-Markovian type with
fastly oscillating kernel. Examples of this kind are, e.g.,
KE’s for description of the vacuum creation of scalar
bosons and of fermions in the FRW space-time [6], the
noncontradictory KE for massive vector bosons in the
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Figure 5: Influence of the parameters the field pulse on REPP production. Left panel: Influence of the laser pulse (12)
duration σ on the REPP density for the medium (E0/Ec = 0.1) and high (E0/Ec = 1.0) amplitude of the electric field.
For both values of the field the unit value of density is determined as the density of the REPP produced by a pulse with a
duration σ = 5. Right panel: Comparison of the maximum density of QEPP and density of the REPP in the range of values
0.1Ec ≤ E0 ≤ 1.0Ec for the laser pulse (12) with a wavelength 0.02426 nm (ω = 0.1) and σ = 5. The insertion shows the
transformation coefficient r(E0/Ec) = nres/nmax for the shown values of the densities.
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REPP distribution functions f(p⊥ = 0, p‖) for a short pulse σ = 4 and a long pulse σ = 64 with the same amplitude of the
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wavelength 0.1nm.

same metric [29] and the nonperturbative KE for descrip-
tion of the carrier exitations in graphene [21].

In the present work we have restricted ourselves to the
consideration of the domain of the tunneling mechanism
of particle creation, γ � 1. We plan to consider the few-
photon domain of particle creation (γ � 1) in a separate
work.
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