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Abstract

We study the effect of center-of-mass motion and rotational corrections on hedge-
hog meson fields in the bosonized two-flavor Nambu & Jona-Lasinio model. To re-
move the spuricus motion and to restore good spin and isospin we consider a boosted
and rotating soliton instead a static soliton at rest. Modified meson fields are ob-
tained by minimizing a corrected effective energy functional. The importance of the
modification is estimated by evaluating expectation values of several observables.

Stabile solitonic configurations are obtained for M = 300 MeV, while static soli-
tons exists for M & 350MeV only. Despite the considerable size of the energy
corrections {30-50% of the soliton energy) the main features of the static soliton
are preserved. Modified meson profiles are somewhat parrower than static ones
and have a different asymptotic behavior, which depends on the isospin quantum
pumber. The modifications increase with increasing constituent quark mass. The
valence-quark picture dominates up to very large constituent quark masses.

In the physically relevant mass region, the root-mean square radius of the gquark
distribution is reduced by less than 10 percent. The A-nucleon mass-splitting is
still weaker affected.
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1 Introduction

Chiral soliton models have proved to be a fruitful approach to the description of nucleon
structure. We consider a soliton which is defined by the effective action of the bosonized
form™? of the Nambu & Jona-Lasinio (NJL} model®. In mean-field approximation, the
mesonic field is treated on the classical level (zero loop) and minimizes the Euklidean ef-
fective action. Static classical meson fields are determined by an effective energy. Quark
fields are obtained by diagonalizing a hamiltonian with gquark-meson interaction. Infi-
nite sea-quark contributions have to be regularized. We apply Schwinger’s proper-time
scheme®. Solitonic meson fields restricted to spherical hedgehog configurations and to the
chiral circle are uniquely determined by a profile function ©(r), which depends on the
separation r from the center of the soliton. Relating interaction strength, regularization
parameter and current quark mass to the experimental values of the weak pion-decay
constant and the pion mass, the constituent quark mass is the only free parameter in
the model. Solitonic hedgehog configurations have been obtained for constituent quark
masses M 2 350 MeV. For recent reviews see refs.> 8.

Even though the fundamental NJL lagrangian possesses translational symmetry, the
mean-field solution does not share this symmetry in general. The solitonic state is fixed to
a definite spatial point and is not an eigenstate of the center-of-mass momentum operator
P, So it happens that the expectation value (P} vanishes for symmetry reasons, while
the energy of the center-of-mass motion (CMM), which is proportional to (P?), has a
finite value. The soliton is affected by the spurious CMM, whose kinetic energy is a part
of the total soliton energy. This spurious motion smears out the quark distribution and
affects mean field, mass distribution and other observables. The restriction to hedgehog
configurations creates another defect of the soliton. Spin J and isospin T fail to be
good quantum numbers and the expectation values {J?) and {T%) do not agree with
the experimental values of the nucleon or the A iscbar. As a result of the restriction
to hedgehog configurations the soliton is eigenstate of the grand spin G = J + T" with
eigenvalue G = 0, and one has J = 7" and (J?) = (T} automatically®,

To remove the spurious CMM exactly one would have to reduce the number of degrees
of freedom by introducing the center-of-mass coordinate explicitly and describing the
quarks by intrinsic coordinates. Since the Dirac sea of quark states is involved in the
model such a procedure is not feasible. For similar reasons it is not feasible to abandon
the restriction to hedgehog configurations and to care about good spin and isospin from
the very beginning. So one usually accepts the shortcomings of a symmetry-violating
mean field in hedgehog shape, calculates field configurations within the restricted basis
and tries to restore the correct values of (P ?), (J*) and {T?) afterwards.

Several approximations have been developed to remove CMM and correct spin and
isospin'®. We apply the semiclassical pushing and cranking approaches'!. Instead of a
field configuration at rest we consider the soliton in a frame hoosted with the velocity V
and rotating with the angular frequency {2 in isospace’® ™. Both quantities V and 2 ave
Lagrange multipliers and fixed such that the correct values {P*} = 0 and {T%) = T{T+1)
are obtained. The pushing approach is the translational analogue to the cranking which
itself is equivalent 1o & semiclassical approximation of the projection method by Pelerls
and Yoccoz!115817,

The energy of a boosted and rotating soliton differs from the energy of & soliton at
rest by the kinetic energy of the collective motions, Both translational and rotational
energy are described by inertial parameters which depend on the field configuration. Cal-

i



culating the inertial parameters or other expectation values in first-order perturbation
approximation one uses meson fields which minimize the static soliton energy. The fields
are assumed to be not affected by the collective motion (rigid rotation). In fact, the fields
should be distorted by the relativistic boost and the centrifugal forces. The neglect of
this response is equivalent to the variation before projection in the projection approach of
symmetry restoration.

Because of the considerable size of the energy corrections (see fig. 1) we improve this
approach. Instead of static meson and quark fields we use modified fields defined by a
corrected effective energy which includes the kinetic energy of the collective motions. This
method is equivalent to the wvariation after projection. Now the inertial parameters are
allowed to respond to the motion of the soliton (self-consistent pushing and cranking).
Since the rotational energy depends on the isospin quantum number T one gets slightly
different fields for nucleon and A isobar.

It is the aim of this paper to evaluate the modified meson fields and the complementary
quark fields. In order to study size and importance of the field modifications we evalu-
ate expectation values of several observables. Possible modifications of the observables
themselves, as a consequence of the collective motion, are not considered.

In sect. 2, we define staiic soliton configurations and modify them by CMM and rota-
tional corrections. The numerical procedure used for the calculation of the modified fields
is outlined and tested in sect. 3. Modified fields and expectation values are calculated in
sect.4. Their deviations from the unmodified quantities are interpreted on the basis of
quasi-classical arguments. Conclusions are drawn in sect. 5.

2 Static, pushed and cranked solitons

We start from the static soliton obiained in the bosonized version of the Nambu & Jona-
Lasinio model for temperature T' = 0 and finite chemical potential g for quarks. Let
us restrict the model to the two light quarks with a common current mass m and a
chirally invariant combination of a scalar-isoscalar and a pseudoscalar-isovector quark-
quark interaction. Introducing classical meson fields as the expectation values o(z) ~
{Gezyq(zy) and F(x) ~ (§@)iysT qz)} of bilinear combinations of quark operators g(x)
with the vector ¥ of Pauli matrices the system can be described by an effective Euklidean
action A,¢f [o, #], which is a functional of the mesonic fields. Restricting the mesonic fields
to static hedgehog configurations and to the chiral circle they are uniquely described by
a single profile function ©(r), where r is the distance from the center of the spherically
symmetric fields. In the case of static meson fields the effective action is proportional to
the Euklidean time interval [dr, and an effective energy

E[@Jun fdr = Acys[Olum (1)

can be defined. The profile function ©(r) minimizes the effective energy (1)

E = min E[© 2
tw = min E®]un ()

and fulfills the equation of motion

6B Ol
5§y =0 (3)
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for a given chemical potential p. The effective energy (1) consists of a term F?, which
results from the Fermion determinant, and of a purely mesonic confribution E™

Ew = Eun + B™. 4
Within the restrictions we have imposed on the mesonic fields the latter reduces to

2
E'm = Ebr = mf’f%m/dsr [3“ — COS 9(7‘)]} (5)

which stems from the mass term in the original NJL Lagrangian and breaks chiral sym-
metry explicitly. The quark contribution to the effective energy is given by

B fdr = ~SpLog (B — uf) (6)

with the Buklidean Dirac operator

d
Be = 8 (3 +1(0)) @
and the quark hamiltonian
BO) = a-p+ gfx Fcos© + iys8in O 7-7). (8}

The chemical potential g was introduced in the fermion determinant (6) as a Lagrange
multiplier in order to adjust the baryon number B. The symbol Sp includes functional

~ trace ( f d“mp;) over the Iuklidean space-time zg = (7,7) and matrix trace over Dirac

(tr,), isospin (ir,) and color indices. The latter results in a factor N, =3 due to color
symmetry

SpO = Nytr,tr, /d‘%}g (mg[@lmp;) . (9)

The parameters m and f, denote current quark mass and weak pion-decay constant,
respectively, and o, # are Dirac matrices. The vacuum state is defined by Q@) =0 and
marked by the upper index V. The vacuum hamiltonian AY = (0 =0) describes quarks
with a constituent mass M =g f,.
In the following we consider B =1 configurations and assume the chemical potential
to be fixed such that
By =1 (10)

is fulfilled. Expectation values (O} as well as the energies (4, 5, 6) are defined in accor-
dance with the conditions (3) and (10)

(O) = (O)[Olw
s

(13)

=0, Bzl

The quark energy (6} can be split into a vaelence coniribution E.. and a term Eo,
which is called the Dirac-sea coniribution

£ = Evai + Esm- {12)

We should mention that the notation Dirac-sea contribution is conventional but does not
agree with the Dirac sea as the continuum of states with negative energy. Here, all the
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levels, both continuous and discrete, contribute to the Dirac sea. Sometimes®® it is denotes
as vacuum polerizetion bui this may be misleading too.

The sea contribution is UV divergent and is regularized within Schwinger’s proper-time
scheme? introducing an regulator funciion Rgle, A) with an additional cut-off parameter
A Valence and regularized sea energy can be expressed by the eigenvalues g, of the

hamiltonian (8)
'vaf N Z Eas (13)

OSeay

and

ERes = BReO(y=0) BV (=) = ~-—~Z [RElea,A) leal — Relel, A) |€§H, (14)

where we have subtracted the vacuum energy EY with the eigenvalues €/ of AV from
the sea contribution. A similar representation can be found for other obqervabless. The
parameters A, g, A and m are fixed in the mesonic as well as the vacuum sector leaving
the constituent quark mass M as the only parameter for the baryonic sector®?,

Generally a profile function ©(r), which minimizes the effective energy (4), is numeri-
cally determined. In foregoing papers'®*? we calculated ©(r) iteratively using the equation
of motion (3) and diagonalizing the quark hamiltonian (8) in the discrete basis introduced
in ref. 3. We found solitonic, 1. e. spatially restricted configuration for M 2 350 MeV and
caleulated their parameters?®4,

To remove the spurious translational and rotational degrees of freedom approximately
and to equip the soliton with correct spin and isospin we apply the semiclassical pushing
and cranking approaches'®. Tnstead of a static soliton at rest we consider a soliton pushed
with the velocity V' and cranked with the angular velocity £2 in isospace. Expanding

the corresponding effective action up to second order in V and £2 one gets a corrected
effective energy™®

Eforr = E— Ecau + Exors (15)

where E is the static effective action defined in eq. (1). If one fixes the parameter V' such
that the boosted soliton has (P?) = 0 one gets

P?
Eonne == (2;, (16)

where the inertial parameter E is identical®® with the effective energy (1). The energy
correction {16) describes the spurious translational energy contained in the soliton en-

ergy (1). It appears from the translational-symmetry violating mean field and has to be
subtracted.

The rotational correction Egoz’ is determined by quantizing the rotational degree of
freedom semiclassically according to

@ =or = jg =Y )
and one gets?®
T(T+1)  9/4 {c“ff for nucleons (s)

T
Eror = ol — Lo = . _
2 for A isobars

27 27




The first term describes the energy of a rofor in isospace with isospin T and moment
of inertia Z. The second term corresponds to the band-head energy'! and accounts for
the finite value of (T?) in the static hedgehog configuration. It results from the valence
quarks only and describes the spurious rotational energy of the quarks interacting with a
meson field of hedgehog shape, which violates isospin symmetry. Both kinds of spurious
energies, translational and rotational, are independent of the number N, of colors, while
the energy of the rotor is proportional to N1

The inertial parameters £ and 7 in eqs. (16) and (18) depend functionally on the
meson profile ©r). They can be expressed by the eigenvalues of the quark hamilionian
(8) and by the matrix elements of the isospin operator #+ with the eigenfunctions of the
quark hamiltonian. The moment of inertia I is given by a regulated Inglis formula**. In

600

Figure 1: Spurious center-of-mass
o~ 400} energy Foayy {16) and abso-
% lute value |[Egpor| of the rota-
>3 tional energy (18) calculated for
w o200t uncorrected meson profiles ©(r),

in dependence on the constituent

_ quark mass M.
D 11111 Al L 1 ermcdens et

200 300 400 500 600 700 800

M (MeV)

fig. 1, we display the energy corrections calculated for static fields, i. e. for mesonic fields
which minimize the effective energy (1) and for the corresponding quark fields. The
spurious part of the rotational energy is given by 2|Enror]-

Within the static approximation, center-of-mass energy {16) amounts to 15-30 percent
in the physically relevant region of small constituent quark masses {350MeV < M <
500 MeV) and reaches 50 percent of the total soliton energy of roughly 1240 MeV for
M=1000 MeV. The rotational corrections (18) cancel out partly. On the whole they
amount to roughly half of the CMM correction, for small constituent quark masses.

The increase of the spurious energies with increasing mass parameter M can be under-
stood as follows. The main contribution to the center-of-mass energy and to the moment
of inertia is recruited from the valence quarks, which are confined within a small volume.
Increasing the constituent quark mass this volume shrinks and the confined quarks get
a larger kinetic energy due to Heisenberg's principle. Increasing kinetic energy involves
increasing center-of-mass energy, which is a fraction of it. On the other hand, a more com-
pact mass distribution has a smaller moment of inertia, which is in the denominator of
the rotational energy (18). For constituent masses M 2 750 MeV, the attraction between
the quarks is so strong that the valence level dives into the negative-energy region. Now
there is obviously no more valence contribution to any expectation value. The former
valence level, however, continues to be confined and to give the dominating contribution,
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now as a member of the Dirac sea.

The energy corrections in fig. 1 are in fair agreement with a calculation in the Gell-
Mann-Levi®® model using the Peierls-Yoccoz projection?”. Comparing both results one
has to take into account that, in the bosonized NJL model, the mass m, of the & meson is
related to the constituent quark mass M via m? = 4M*+m?2, while it is a free parameter in
the Gell-Mann~Levi model. The spurious part of the energy corrections can be calculated
also as quantum corrections to the mean-field approximation®. The evaluated corrections
to the soliton energy due to rotational zero modes are in good agreernent with our spurlous
rotational energies, while the translational quantum fluctuations yield only half of our
CMM corrections. The difference can be explained by the truncation of the meson modes
in ref.2®,

The considerable size of the corrections led us to go beyond the first-order consideration
and to determine CMM and rotational corrections self-consistently. For that aim we
determine modified profile functions ©F _(r) which minimize the corrected effective energy

mod

(15} instead of the effective energy £ (1)
EgORR,mod = Egom[eﬁad] = Ig(f)l Egonn[@]- (19)

The profiles O¢) and @ﬁad{r} deviate from each other, since the correction terms (16)

and (18) depend functionally on the meson profile O(r). Modified expectation values are
defined by

(OYmoa = (O)O)() - (20)
=07, pp, Blm=1
Modified profiles depend on isospin, since the rotational correction (18) depends on the
isospin quantum number T. Meson profiles for nucleons are different from profiles for A
isobars. This may be the reason for different expectation values {e.g. the baryon root-
mean square radius), which are identical otherwise.
Modified profile functions fulfill a modified equation of motion

§ELonnl®}

§0(r) = (21)

e“efnad

6 E[O]
§0(r)

_ SBounl®l| , 8EfoslO]

= Q.
o=ar 80(r) e=0T 60(r) =07 _,

This equation is much more complicated than the unmodified equation (3) since the
correction terms Egyrps and E}{OT depend on the profile function via the inertial parameter
7 and the expectation value {(P*. 1t is not feasible to determine QT r) iteratively. We
use a N-parameter representation of the profile function and minimize the corrected energy
functional (15) numerically. The procedure will be explained in the next section.

3 Spline representation of the meson profile with
predetermined asymptotic behavior

With the aim to minimize the corrected soliton energy (15) numerically we parametrize
the profile function. The asymptotic behavior of the uncorrected profile at small and large
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separations r can be determined analytically!0:?!

—#(l —ar) for r—0
O(r) , (22)

—pitFaT =M for T oo

where m, is the pion rest mass and a, b are parameters. In ref.?? we introduced a
reference profile which interpolates smoothly between the two asymptotic pieces. Now
we parametrize the profile by N values ©; = Oy ({1 == 1,..., N) at the points ry,..., 7y
(knots) in the intermediate region. The values ©; and Oy determine the parameters a
and b in eq. {22). A spline interpolation determines the profile between the knots and
eq. {22) is used for r < 7y and r > ry. Within this representation, the effective energy
is an ordinary functions of the parameters ©; (i = 1,..., N) and can be minimized by
standard methods. This procedure can be used for the static as well as the corrected
energy functional. The method was tested for the static energy (4) first. Here we can
compare the result of the minimization {2) with the iterative solution of the equation of
motion (3). We found that N = 7 knots distributed around the average radius R defined
by

O(R) = 3 [0(0) ~ O(c0)] = ~2 (23)

are sufficient for an accurate reproduction of the meson profile. The location of the knots
is illustrated in the upper part of fig. 2. The first knots ; and ry are situated at R/2 and
R, respectively. The last knot ry is located at a radius B*%¥. It marks the point where the
meson profile is sufficiently well described by the asymptotic formula (22). Empirically
we found R**¥ =~ 5R. The other knots lie between R and R*¥,

The accuracy of such a spline interpolation with predetermined asymptotic behavior
was numerically checked. First we reproduced self-consistently determined profiles by
means of their values at the 7 selected kaots. The central part of fig. 2 shows the deviation
60 of the interpolation from the original for M=500MeV. The same test was performed
for the profiles in the whole mass region under investigation. The deviations did not
exceeded 0.25°. After testing the T-knots spline reproductions of a given profile functions
we compared the iteratively determined profile function with the result of the numerical
minimization of the energy functional (2) using the 7-knots spline representation. For
M=500 MeV, the difference between the two results is shown in the lower part of fig. 2.
The deviations are less than 0.35° in the whole mass region.

Finally we tested the sensitivity of expectation values with respect to our approxi-
mations. We compared expeciation values calculated for iteratively determined profiles
with their values for spline-reproduced profiles and for profiles obtained by means of the
minimization procedure. Using the 7-knots spline valence- and sea-quark energies vary by
not more than 1 MeV. The mesonic energy {5) is more sensitive to details of the meson
profile and varies up to 2MeV. The variation of the root-mean square radius is limited
to 0.02fm. Apart from constituent quark masses around 350 MeV, where the modifica-
tions in the meson profile are very small, the effect of CMM and rotational corrections
is remarkably larger than the uncertainties in the numerical procedure. So we conclude
that the accuracy of the spline representation of the profile function with predetermined
asymptotic behavior and of the numerical minimization procedure is adequate to the pre-
tensions of the whole model. A larger naumber of knots increases the calculation time
noticeably without improving the aceuracy considerably.

Before applying the method to the corrected energy functional {15} we have to copsider
the asymptotic behavior for r — oo for a rotating soliton, which deviates from eq. {22) due

L
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to the action of the centrifugal forces. In the asymptotic region, the isovector # field of
the bosonized NJIL model has to fulfill the same differential equation as the corresponding
field in the Skyrme model®® and in the chiral sigma model of Gell-Mann and Levi®® as well.
So we can exploit the insights obtained within these models. As shown e.g. in refs. %
the # field of a rotating soliton has the same asymptotic behavior (22) as the static pro-

1. 2.8.4.5. & 7.
0 oosr
Figure 2: Spline representation
-30 with predetermined asymptotic
-60 behavior and 7 knots.
& Upper part: Shape of the pro-
o % file function O(r) for M=500 MeV
-120 and position of the knots indi-
150 cated by arrows.
Central part: Deviation of the ite-
-180 ‘ ' : + ' ratively calculated profile from its
] T-knot spline representation with
o1 /\ /\ predetermined asymptotic behav-
ior.
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-0.1

0.3
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0-0 P
-0.1 -
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file function, however, in the components perpendicular to the rotational axis, the pion
rest mass m, has to be replaced by the modified pion mass

My = 1/m2 — Q% (24)

For rotational frequencies [§2] which are comparable with the pion rest mass, the rota-
tionally improved soliton is much more diffused than the static one (i, < m,). If the
rotational frequency, which is necessary to produce the correct expectation values of spin
and isospin, is larger than the pion rest mass the situation changes dramatically. Instead
of vanishing exponentially the components of # perpendicular to £2 start to oscillate. This
corresponds to the emission of pions and may be used for the description of the decay of A
isobars. Already for frequencies |§2] < m, the shape of the rotationally improved soliton
deviates from the hedgehog. It is neither spherically symmetric nor is the direction of the
isovector @ field aligned with the direction of vector . Such fields can not be character-
ized by a siugle profile function ©(r) and must be treated on a three-dimensional grid®!.
Numerical tests have shown that quark observables are not sensitive to the asymptotic
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asymptotic behavior of the meson fields, in particular, if they are dominated by the va-
lence contribution. So we retain the hedgehog structure with the asymptotics defined in
eq.{22). In this way the effect of the centrifugal force is spherically symmetric spread
over all directions. At large separations r < ry, the rotational correction may change the
parameter b in the asymptotics only. The A isobar we are considering is an artificially
stabilized particle.

The manipulation of the asymptotic behavior i1s a well known procedure in nuclear
physics. Resonance states, which emit particles and should be described by oscillating
wave functions can successfully be modeled by harmonic oscillator wave functions which
decrease exponentially. These wave functions reproduce most of the properties of the
resonance state, in particular such properties which are determined by the interior of the
wave function. Of course, decay properties, which depend essentially on the asymptotic
behavior, cannot be described within this approach.

4 Profile functions and expectation values modified
by pushing and cranking corrections

Fig. 3 illustrates the general features of the modification in the profile function caused by
pushing and cranking corrections in the effective energy functional. To get a clear effect
we chose the relatively large constituent quark mass of 600 MeV. For smaller masses the
effect is analogous, only smaller in size. The asymptotic region starts outside the figure
at r = R*Y = 6M~1. The inner linear part is affected by the center-of-mass motion. The
boost applied to the soliton is orientated such that a part of the kinetic energy of the
quarks, mainly of the valence quarks, is removed. The size of the soliton is balanced by
the atiraction between the quarks mediated by the meson fields, and by the motion of
quarks inflating the soliton. Reducing the latter the soliton shrinks. For masses M <
350 MeV the attractive forces are not strong enough to produce a stabile soliton. The
reduction of the internal kinetic energy stabilizes the soliton. CMM corrected solitons are
already stable for M 2 300 MeV.

0 - : T —
30 | nucleon =

i o Figure 3: Profile function
o~ -60 s O(r) of the static soliton
= -80 + g ' A isobar (broken line) in comparison
© a with the modified profiles of
120 1 4 nucleon and A isobar (full
-150 t ,:" static soliton lines) for the constituent

180 ' quark mass M =600 MeV.

1 2 3 4

r (MY

While the CMM correction is the same for nucleons and A isobars the rotational cor-



rection has different sign. To get a A isobar one has to add rotational energy to the
soliton and the centrifugal force presses the quarks outwards. The meson field, which is
produced by the quarks, follows this trend (ba > bstatic)- The opposite is true for the
nucleon. To get a particle with (iso)spin I one has to take out a certain amount of rota-
tional energy and the resulting profile function tends to zero more rapidly (bn < bytatic)-
Of course, these are classical considerations, but they are adequate to the semiclassical
way of calculating the energy corrections.

Changing the constituent quark mass M we can study the dependence of the modlﬁca«
tions on the size of the correc-

tion terms {(c¢f. fig. 1).  First 0
let us consider the CMM correc- =30 |
tion separately. Though the ab- -60 |
solute size of the correction is not S .90 ;
. . . o M = 350 MaV
the crucial quantity the modifica- 120 |
tions grow _with‘inc‘reasing. correc- 150
tion term, i.e. with increasing coun- 180
stituent quark mass. The effect is B B
rather controlled by the variation of -30 '
the correction with the shape of the . -60 © 4
profile in comparison with the vari- ey -90 ! M = 450 MoV
ation of static soliton energy (see 120 |
eq. (21)). A larger correction term 180 |
gives the variation a larger weight. 180 S
A correction which is entirely inde- et
.30 | -
pendent of the meson profile does e
not at all modify the profile. For — -80 |
the static profile the static energy E Py -90 | !
. - . . i M = 600 MaV
is minimal. Starting from this pro- -120 |
file ©r) is varied until the increase 150 | 4
of static energy exceeds the loss of -180 - . .
CMM and rotational energy. 0.0 0.5 1.0 1.5 2.0
In the following we compare ex-
pectation values calculated for 3 r (im)

kinds of particles: the static soliton,
the nucleon and the A isobar. Fach
of them have been obtained with the
corresponding meson profile and the
resulting quark field.

First let us consider the cor-
rected soliton energy (15) displayed
in fig. 5. The difference between bro-
ken and full lines represents the gain of energy due to the change from O(r) to OF ,(r).
Agreement with the experimental nucleon mass is obtained for small constituent quark

masses. The mass of the A isobar is underestimated in the whole region of constituent
quark masses.

Figure 4: Profile functions O(r) of the
static soliton {broken lines) in comparison
with the corresponding CMM corrected
profiles {full lines) for 3 values of the con-
stituent quark mass M.

Now let us study the various contributions to the total soliton energy which turn out
to be more sensitive fo changes in the meson profile. Fig. 6 shows valence- and sea-
guark contributions, and the small mesonic contribution as well. For the modified profile,
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the dependence of both valence and sea energy on the constituent quark mass is clearly
weaker than for the static soliton. The energy of the valence quarks is mainly determined
by the size B of the meson profile and by the meson-quark coupling-constant g, which is
proportional to the constituent quark mass M. Increasing the constituent quark mass the
meson potential gets deeper and the energy of the valence guark decreases. As shown in
ref. 22 the self-consistent size of the unmodified meson profile is nearly independent of the

Figure 5: CMM and ro-
tationally corrected nucleon
and A energies (15) cal-
culated for the static soli-
ton (broken lines) in com-
parison with the same en-
ergies for modified profile
functions (full lines).
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Figure 6: Valence (13), sea-
quark (14) and mesonic con-
tributions (5) to the tfo-
tal soliton energy for the
static soliton configuration
(broken lines) in comparison
with the corresponding en-
ergies for the modified me-
son profiles {full lines).

In the upper part, the pro-
file @3,::;/ * modified for nu-
cleons was used. The lower
part shows the same en-
ergies for ieson profiles

G%&‘—"af ? modified for the A

constituent quark mass. The shrinking of the modified profile counteracts the decrease of
the valence level and lowers the slope of E,.; in dependence on M. It even prevents the
valence level from leaving the valence-energy region [0, u], what happens at M = 750 MeV
for the static soliton. The sea energy is affected by the regnlarization procedure. When
the profile shrinks some of the sea levels leave the energy region taken into account for a

i1



fixed regularization parameter A. This reduces the increase of sea energy in comparison
with the unmodified case.

50 I
4p b nucleon
Figure T: Mesonic energy (5) A T NS
calculated for uncorrected % 30 @~ -
profiles ©(r) (broken line) 2
in comparison with modified £ 20 | Aisobar
profiles {full lines) for the nu- i
cleon and the A isobar, in de- 10 |
pendence on the constituent

0 - —
300 400 500 600

quark mass M.

M (MeV}

Restricted to the chiral circle the energy E™ of the meson field is reduced to the term
EY (5). This is a rather small quantity and considered in fig. 7 separately. As explained
in ref. 2! it is related to the nuclear sigma commutator. Apart from very small constituent
quark masses the modifications in the meson profile decrease the meson energy noticeably.
Since it has only a small share in the total soliton energy it is not relevant for the stability
of the soliton.

1.4

1.2 + A isobar

1.0 Figure 8: Root-mean square
T - radius (25) of the isoscalar
“ Q0B density distribution calculated
i - for unmodified (broken line)

0.6 | nucleon — TS ] and modified profiles (full

0.4 ¢ | lines) in dependence on the

0.2 constituent quark mass M

300 400 500 600
M (MeV)

Another quantity characterizing a soliton is the root-mean square {r.m.s.) radius of
the isoscalar mass distribution. We consider

B= () = [ f d31'rzg('r)]

where p(r} is the isoscalar baryon density. It is displayed in fig. 8 for unmodified and
modified meson profiles. The r.m. s. radius is dominated by the contribution of the valence
quark (see e. g. ref.??). The valence quarks ars localized in the neighborhood of the center
of the soliton and hence hardly affected by rotational corrections. The main correction

1
F3
L)

(25)

12



stems from the center-of-mass motion and decreases the radius slightly in accordance
with the smaller size of the modified meson profile. This effect is independent of the
isospin quantum number and results in identical corrections for nucleons and A iscbars.
Rotational corrections affect only the loosely bound valence quarks for M < 400 MeV,
which reach to larger separations from the center. Here the faster rotating A isobar has
a remarkably larger r.m. s. radius. The experimental nucleon radius is reached for M =~
350 MeV, where the difference between nucleon and A isobar is not very pronounced.

25 | A isobar
—~ 2.0 ¢
3_«5, 1.5 ¢
T
1.0 ¢
0.5 |
0.0 : ’ d ' Figure 9: Moment of inertia 7
600 | . {(upper part) and resulting A~
< 500} ] nucleon mass-splitting AMan
) 400 | ] (lower part) calculated for un-
2 exp modified (broken line) and
< 300 | ‘ modified profiles (full lines) in
< 200 ; dependence on the constituent
100 } ; quark mass M.

300 400 500 600

M (MsV)

Now let us come back to the inertial parameters and forces we had introduced to
remove center-of-mass motion and to restore good spin and isospin. Fig. 9 shows the
moment of inertia and the resulting A-nucleon mass-splitting. The moment of inertia
behaves similarly to the r.m.s. radius, but the dominance of the valence quarks is less
pronounced. The sea quarks are responsible for the difference between nucleons and A
isobars for larger masses M. The positive sign of the rotational energy (18) for A isobars
favors a configuration with a larger moment of inertia.

The difference between nucleon and A mass results mainly from the rotational energy
(18). In the static case, both particles are described by a common profile function 9
and have a common moment of inertia Z. In this case, the A-~nucleon mass-splitting is
exclusively given by different rotational energies

3

Minimizing the corrected soliton energy one gets different meson profiles resulting in

different static energies BV and E®, in different CMM corrections Eyyay and By,
and in different moments of inertin Iy and Za. Now the A-nucleon mass-splitting is

13



given by

- 371 1
AMEGRR = [E* — BN = [Eguns — Ecan] + i (“i—’; + f;) . (27)

The third term can be written in the form of eq. (26) introducing an effective moment of

inertia 1 171 .

-3 (=4 5) (28)
Tesr  2\Za 2In

which is the harmonic average of the moments of nucleon and A isobar. The mass-
splitting depends only on the effective moment of inertia (28) but not explicitly on Zn
and Ta. X the first two terms in eq.(27) are negligible and the static moment of inertia
coincides with the average value (28) the mass-splitting for static and corrected meson
profiles is the same. This is obviously the case {fig.9, lower part). The experimental
mass-splitting is reproduced for M = 430 MeV. Here the moments of inertia differ by 10
percent. Nevertheless the mass splitting is excellently reproduced by the static moment.
Finally we compare the energy corrections themselves. Fig. 10 illustrates the differ-
ences between static and self-consistently determined energy corrections. Rotational cor-

rections are practically the same in both cases. Merely the CMM energies are noticeably
different for M 2 400 MeV.

8OO
nucleon
600 ¢
3
= 400}
L
200 + Figure 10: CMM and ro-
tational energy corrections
o for the nucleon {upper part
and for the A isobar (lower
600 } part) calculated with the
% corresponding modified pro-
= 4007 file functions (full lines).
T The broken lines show the
200 | energy corrections for the
static profiles.
c

5 Conclusions

We considered center-of-mass and rofational corrections to solitonic field configurations
of the bosonized Nambu & Jona-Lasinio model which can be identified with the nucleon
and the A isobar, respectively. We employed energy corrections which had been derived
within the semiclassical pushing and cranking approaches. The main contribution to the
corrections stems from the valence quarks which are confined by the attractive meson field.
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We determined modified meson fields by niinimizing the static soliton energy reduced by
center-of-mass motion and rotational corrections. The investigated meson fields were
restricted to the chiral circle and to the hedgehog shape. |

We evaluated modified meson and quark fields as well as expectation values of several
observables in the region 300 MeV < M < 600 MeV of constituent quark masses M. The
results illustrate the response of the meson field to the corrections and quantify their effect
on expectation values. An important effect of the pushing correction is the stabilization
of solitons with light constituent quark masses. CMM corrected solitons exist for M 2
300 MeV, while uncorrected solitons are unstable below M =350 MeV.

Despite the big energy corrections meson and quark fields are only moderately affected.
"The exclusion of center-of-mass motion narrows the meson profile and the corresponding
quark distribution. This effect prevents the valence level from diving into the negative-
‘energy region until very big constituent quark masses. Rotational corrections affect the
asymptotic behavior of the fields at large radii. They depend on the spin and isospin
quantum-numbers and give rise to differences between nucleon and A isobar. Moreover
they destroy the hedgehog symmetry. This effect was not cousidered in the paper.

Both CMM and rotational corrections grow with increasing constituent quark mass.
For M 2 500 MeV the energy corrections reach half of the total soliton energy and a
perturbative treatment seems not to be justified any more.

In the physically relevant region of small constituent quark masses (350MeV S M
S 450MeV), the dominating valence-quark picture was confirmed. The isoscalar
r.1m. 5. radius of the nucleon is reduced by a few percent (= 3-4 percent for M=350 MeV,
~ 9 percent for M=500 MeV). Larger changes were noticed when considering valence, sea
or meson contributions separately. The slightly different moments of inertia and center-
of-mass energies for nucleons and A isobars do practically not influence the A-nucleon
mass-splitting. The mesonic field energy, which is related to the nuclear ¥ commutator,
is reduced by 20-30 percent. The general features of the soliton in the bosonized Nambu
& Jona-Lasinio model are not essentially disturbed by the corrections.

The authors wish to acknowledge stimulating discussions with K. Goeke, H. Reinhardt,
Th. Meifiner, R. Alkhofer, H. Weigel, J. Berger and Chr. Christov. The paper was sup-
ported by the Bundesministerium fiir Forschung und Technologie {contract 06 DR 107).
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