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Abstract 

We study the effect of center-of-mass motiou and rotational corrections on hedge- 
hog meson fields in the bosonized two-flavor Nambu & Jona-Lasinio model. So re- 
move the spurious motion and to restore good spin and isospin we consider a boosted 
and rotating soliton instead a static soliton at rest. Modified meson fields are ob- 
tained by minimizing a corrected effective energy functional. The importance of the 
modification is estimated by evaluating expectation values of several obsembles. 

Stabile soiitonic configurations are obtained for M X 300MeV, while static soli- 
tons exists for iM > 350MeV only. Despite the considerable size of the energy 
corrections (30-50% of the soliton energy) the main features of the static soliton 
are preserved. Modified meson psofiles are somewhat narrower than static ones 
and have a different asymptotic hehavior, which depends on the isospin qnantum 
number. The modifications innease with increasing constituent quak mass. The 
valence-quark picture dominates up to very large constituent qnark masses. 

In the physically relevant mass region, the root-mean Square radius of the quark 
distribution is reduced by less than 10 percent. The A-nudeon mass-splitting is 
still weaker affected. 
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1 Introduction 

Chiral soliton models have proved to be a fruitful approach to the description of nucleon 
structure. We consider a soliton which is defined by the effective action of the bosonized 
form',2 of the Nambu & Jona-Lasinio (NJL) mode13. In mean-field approximation, the 
mesonic field is treated on the classical level (zero loop) and minimizes the Euklidean ef- 
fective action. Static classical meson fields are determined by an effective energy. Quark 
fields are obtained by diagoualizing a hamiltonian with quark-meson interaction. I&- 
nite sea-quark contributions have to be regularized. We apply Schwinger's proper-time 
scheme4. Solitonic meson fields restricted to spherical hedgehog configurations and to the 
chiral circle are uniquely determined by a profile function @(T), which depends on the 
separation T from the ceiiter of the soliton. Relating interaction strength, regularization 
parameter and current quark mass to tlie experimental values of the weak pion-decay 
constaut and the pion mass, the constituent quark mass is the only free parameter in 
the model. Solitonic hedgehog configurations have been obtained ior constituent quark 
masses M 2. 350 MeV. For recerit reviews see refs."'. 

Even though tlie fundamental NJL lagrangian possesses translational symmetry, the 
mean-field solution does not share this symmetry in general. The solitonic state is fixed to 
a definite spatial point and is not an eigenstate of the center-of-mass momentum operator 
P. So it happens that the expectation value (P )  vanishes for symmetry reasons, while 
the energy of the center-of-mass motion (CMM), which is proportional to (P2), has a 
finite value. The soliton is affected by the spurious CMM, whose kinetic energy is apar t  
of the total soliton energy. This spurious motion smears out the quark distribution and 
affects mean field, mass distribution and other observables. The restriction to hedgehog 
configurations creates another defect of the soliton. Spin J and isospin T fail to be 
good quantum numbers and the expectation values (J2) and (T~) do not agree with 
the experimental values of the nucleon or the A isobar. As a result of the restriction 
to hedgehog configurations the soliton is eigenstate of the grand spin G = J + T with 
eigenvalue G = 0, and one has J = T and (J2) = (T*) autoniaticallyg. 

To remove the spurious CMM exactly one would have to reduce the nunlber of degrees 
of freedom by introducing tlie center-of-mass coordinate explicitly and describing the 
quarks by intrinsic coordinates. Since tlie Dirac sea of quark strttes is involved in the 
model such a procedure is not feasible. For similar reasoiis it is not feasible to abandou 
the restriction to hedgehog configurations and to care about good spin and isospin frani 
the very beginning. So one usually accepts the shortcomi~tgs of a symmetry-violating 
mean field in liedgehog shape, calculates field configurations within the restricted bssis 
and tries to restore the correct values of (P '), ( J 2 )  and (P) afterwards. 

Several approximations have beeil developed to remove CMM and correct spin and 
isospinlO. We apply the semiclassical yushing and cranking approacheslL Instead of a 
field configuration at rest we consider the soliton in a frame boosted with the velocity V 
and rotating with tlie angular frequency C2 in isospacem-14. Both quantikies V and $2 are 
Lagrange multipliers and fixed such that tlie correct vahes {P') = 0 and {TZ) = T(T+ 1) 
are obtained. The pushing approach is the translational analogue to the cranking whicb 
itself is equivalent to a semiclassical approximation of the projection method by PeierEs 
and Yocc~z"~~~-~' .  

The energy of a boosted and rotating soliton diifers from the energy of a snlitun at 
rest by the kinetic energy of tlie collectirw motians. Both translaticanäl and rotatiotial 
energy are described by inertid parametzra ivhich clepend on tlm fie1d c0116guratioin. W- 



culating the inertial parameters or other expectation values in first-order perturbation 
approximation one uses meson fields which minimize the static soliton energy. The fields 
are assumed to be not affected by the collective motion (rigid rotation). In fact, the fields 
should be distorted by the relativistic boost and the centrifugal forces. The neglect of 
this response is equivalent to the variation before projection in the projection approach of 
symmetry restoration. 

Because of the considerable size of the energy corrections (See fig. 1) we improve this 
approach. Instead of static meson and quark fields vve use modified fields defined by a 
corrected effective energy which includes the kinetic energy of the collective niotions. This 
method is equivalent to the variation after projection. Now the inertial parameters are 
allowed to respond to the motion of the soliton (self-consistent pushing and cranking). 
Since the rotational energy depends on the isospin quantum number T one gets slightly 
different fields for nucleon and A isobar. 

It is the aim of this paper to evaluate the modified meson fields and the complementary 
quark fields. In order to study size and importance of the field modifications we evalu- 
ate expectation values of several observables. Possible modifications of the observables 
themselves, as a consequence of the collective motion, are not considered. 

In sect. 2, we define static soliton configurations and niodify them by CMM and rota- 
tional corrections. The numerical procedure used for the calculation of the modified fields 
is outlined and tested in sect. 3. Modified fields and expectation values are calculated in 
sect.4. Their deviations from the unmodified quantities are interpreted on the basis of 
quasi-classical arguments. Conclusions are drawn in sect. 5. 

2 Static, pushed and cranked solitons 

We start from the static soliton obtained in the bosonized version of the Nambu & Jona- 
Lasinio model for teinperature T = 0 aud finite chemical potential /I for quarks. Let 
us restrict tlie model to the two light quarks with a common current inass m and a 
chirally invariant combination of a scalar-isoscalar and a pseudoscalar-isovector quark- 
quark interaction. Introducing classical meson fields as the expectation values o(x) - 
(q(x)q(x)) and *(X) - (q(x) i~~. jq(x))  of bilinear combinations of quark operators q ( q  
with the vector 7. of Pauli matrices the System can be described by an effective Euklidean 
action Aef [U, +r], which is a functional of tlie mesonic fields. Restricting the mesonic fields 
to static hedgehog configurations arid to tlie chiral circle they are uniquely described by 
a Single profile function @(T), where r is the distance from the Center of the spherically 
symmetric fields. In the case of static meson fields the effective action is proportional to 
the Euklidean time interval J&, and an effective energy 

can be defined. The profile function O(r) minimizes the effective energy (1) 

aiid fulfills the equation of motion 



for a given chemical potential p. The effective energy (1) consists of a term Eq, which 
results from the Fermion determinant, and of a purely mesonic contribution Ern 

Within the restrictions we have imposed on the mesonic fields the latter reduces to 

which stems fron~ the mass term in the original NJL Lagrangian and breaks cbiral sym- 
metry explicitly. The quarlc coatribution to the effective energy is given by 

with the Euklidean Dirac operator 

and the quark harniltonian 

h(O) = cx.p + 9 f, ß (cos O + iy5 sin O +.T). (8 )  

The chemical potential p was inlroduced in the fermion determinant (6) as a Lagrange 
multiplier in order to adjust the baryon number B. The symbol S p  includes functional 
trace (Jd4xz) over the Euklidean space-time XE = (7 , r )  and matrix trace over Dirac 
(tr,), isospin (tr,) and color indices. The latter results in a factor N, = 3 due to color 
symmetry 

Sp (7 ?S fk tr, trT ZJ3 ( X E ]  0 / X E )  . (!J] 

The parameters m and f, dcnote current quark mass and weak pion-decay constant, 
respectively, and a, ß are Dirac matrices. The vacuum state is defined by O(r) 0 and 
marked by the npper index V. The vacuuin harniltonian hV r h(O r 0) describes quarks 
with a constituent mass M-g f,. 

In the following we mnsider B = 1 configuratio~is and assume the chemical potential 
to be fixed such that 

BW) = 1 (10) 

is fulfilled. Expectation values (0) as well as thc energies (4, 5, 6) are defined in accor- 
datice with the conditions (3) and (10) 

The quark energy (6)  can be split into a zraler~ce contribution E*,,) and a term E$ea 
which is called the Dirac-sea coat~ibution 

We sliould mention that the notation Dirac-sea contribution is conventioiial buk dotx not 
q r e e  with the Dirac sea tthe continuurn d stakes witb negative cenergy. i h e ,  a.18 the 



levels, both continuous and discrete, contribute to the Dirac sea. S~metirnes'~ it is denotes 
as vacvvm polarization but this may be misleading too. 

The sea contribution is UV divergent and is regularized within Schwinger's proper-time 
scheme4 introducing an regulator function RE(&, A) with an additional cut-off parameter 
A19720. Valence and regularized sea energy can be expressed by the eigeuvalues E, of the 
hamiltonian (8) 

Eval = N c  C E„ (13) 
occ,<ri 

and 

where we have subtracted the vacuum energy EV with the eigenvalues E: of hV from 
the sea contribution. A similar representation can be found for other observabless. The 
parameters A, g ,  X and m are fixed in the mesonic as well as the vacunm sector leaving 
the constituent quark mass M as the only parameter for the baryonic sector8J1. 

Generally a Profile function O(r) ,  which minimizes the effective energy (4), is numeri- 
cally determined. In foregoing papers1g'22 we calculated @ ( T )  iteratively using the equation 
of motion (3 )  and diagonalizing tbe quark hamiltonian (8 )  in the discrete basis introduced 
in rei. z3. We found solitonic, i. e. spatially restricted configuration for M N 350 MeV arid 
calculated their parameter~~~.2~. 

TO remove the spurious tianslationat and rotational degrees of freedom approximateiy 
and to equip the soliton with correct spin and isospin we apply the semiclassical pushing 
and cranking approaches". Instead of a static soliton at rest we consider a soliton pushed 
with the velocity V and cranked with tlie angular velocity L? in isospace. Expanding 
the corresponding effective action up to second order in V and L? one gets a corrected 
effective energyz5 

= E - ECMM t G O T r  (15) 
where E is the static effective action defined in eq. (1). If one fixes the parameter v2 such 
that the boosted Soliton has (P') = 0 one gets 

where the inertial parameter E is identicalz5 witli the effective energy (1). The energy 
correction (16) describes tlie spurious translational energy contained in the soliton en- 
ergy (1). It appears from the trauslational-symmetry violating mean field and has to be 
subtracted. 

The rotational correction EzOT is determined by quantiziug the rotational degree of 
freedom semiclassically according to 

and one getsZs 

T ( T +  1 )  914 - f or nucleons 
E:OT 

2 2  22 3 f o ~  A isobars . (18) 
4 2  



The first term describes the energy of a rotor in isospace with isospin T and moment 
of inertia S. The second term corresponds to the band-head energyi' and accounts for 
the finite value of (T') in the static hedgehog configuration. It results from the valence 
quarks only and describes the spurious rotational energy of the quarks interacting with a 
meson field of hedgehog sbape, which violates isospin symmetry. Both kinds of spurious 
energies, translational and rotational, are independent of tlie number N, of colors, while 
the energy of the rotor is proportional to N;'. 

The inertial parameters E and Z in eqs. (16) and (18) depend functionally on the 
meson profile @(T). They can be expressed by the eigenvalues of the quark hamiltonian 
(8) and by the matrix elements of the isospin operator i with the eigenfunctions of the 
quark hamiltonian. The moment of inertia Z is given by a regulated Inglis formulai4. In 

Figurre 1: Spurious center-of-inass 
energy EoMM (16) and abso- 
lute value lERoTl of the rota- 
tional energy (18) calculated for 
uncorrected meson profiles Oq), 
in dependence on the constituent 
qua~k mass M .  

M (MeV) 

fig. 1, we display the energy corrections calculated for static fields, i e. for mesonic fields 
which minimize the effective energy (1) and for tlie corresponding quark fields. The 
spurious part of tlie rotational eiiergy is given by 21ERoT1. 

Witliin the static approximation, center-of-mass energy (16) amounts to 15-30 percent 
in the physically relevant region of sind1 constituent qua& masses (35OMeV 5 M 5 
5OOMeV) and reachec 50 percent of tlie total soliton energy of rouphly 1240MeV for 
M=1000MeV. The rotational corrections (18) cancel out partly. On the whole they 
amaunt to roughly half of tlie Ch4M correction, for small constituent quark maises. 

The increase of the spurious energies with increasing mass para~neter ilf can be under- 
stood as follows. She inain contribution to the center-of-mass energy and to tlie moment 
of inertia is recruited from the valence quarks, which are confined &hin a srnall volume. 
Increasing the constituent quask mass this volume shrinks and the confined quarks geh 
a larger kinetic energy due to Weisenberg's principle. Increasing kinetic energy i n v o h s  
increasing center-of-mass energy2 which is a fraction of it. On the other hand, a more com- 
pact mass distribution has a smaller moment of inertia, which is in the denominator of 
the rotational energy (18). For cortstituent rnasses ilf 2 7750 MeV, the attraction between 
the quarks is so strong that the valence level dives into tlne negative-energy region. Now 
there is obviously no more valence coiitribution to any expectation value. T& former 
valence ievel, however, continues to be confiiied and to give tlic dotnlnatilig contribution. 



now as a member of the Dirac sea. 
The energy corrections in fig. 1 are in fair agreement with a calculation in the Gell- 

Mann-Le~ i~~  model using the Peierls-Yoccoz projection27. Comparing both resnlts one 
has to take into account that, in the bosonized NJL model, the mass m, of the cr meson is 
related to the constituent quark mass M via m(: = 4M2+mz,  while it is a free parameter in 
the Gell-Mann-Levi model. The spurious part of the energy corrections can be calculated 
also as quantum corrections to the mean-field approximation2% The evaluated corrections 
to the soliton energy dne to rotational Zero modes are in good agreernent with our spurious 
rotational energies, while the translational quantum Buctuatioris yield only half of our 
ChlM corrections. The difference can be explained by the truncation of the meson niodes 
in ref.26. 

The considerable size of the corrections led us to go beyond tlie first-order consideration 
and to determine CMM and rotational corrections self-consistently. For that aim we 
determine modified profile functions @zOd(r)  which minimize the corrected effective energy 
(15) instead of the effective energy E (1) 

The profiles @ ( T )  and O z o d ( r )  deviate from each other, since the correction terms (16) 
and (18) depend functionally on the meson profile @(T). Modified expectation values ase 
defined by 

d  - (o)[@l(pil 
O=o&RR, BW=l  

(20) 

Modified profiles depend on isospin, siuce the rotational correction (18) depends on the 
isospin quantum number T. Meson profiles for nucleons are different from profiles for A 
isobars. This may be the reason for different expectation values (e.g. the baryon root- 
mean Square radius), which are identical otherwise. 

kfodified profile functions fulfiil a modified equation of motion 

This equation is mucli more complicated than the unmodified equation (3) since the 
correction terms ECMM and E&,T depend on the profile function via the inertial parameter 
T and the expectation value (PZ). It is not feasible to determine @;,,(T) iteratively. We 
use a N-parameter representation of the profile function and minimize the corrected energy 
functionai (15) numericaliy. The procedure will be explained in the next section. 

3 Spline representation of the meson profile with 
predetermined asymptotic behavior 

With the aim to minimize the coFrected soliton energy (15) numerically we paranietrize 
the profile fnnction. Tlle asyn~mptotic beliavior of tlie uncorrected at small and large 



Separations T can be determined a n a l y t i ~ a l l ~ ' ~ J ~  

where m, is the pion rest mass and a,  b are parameters. In reLz2 we introduced a 
reference profile which interpolates smoothly between the two asyniptotic pieces. Now 
we parametrize the profile by N values O; G O(ri) (i = 1,. . . , IV) at the points +I, . . . , TN 

(knots) in the intermediate region. The values 01 and Q,v determine the parameters a 
and b in eq. (22). A spline interpolation determines the profile between the knots and 
eq. (22) is used for r L and T 2 rN. Within this representation, the effective energy 
is an ordinary functions of the parameters Oi (i = 1,. . . , N) and can be minimized by 
Standard methods. This procedure can be used for the static as well as the corrected 
energy functional. The method was tested for the static energy (4) first. Nere we can 
compare the result of the niinimizatioii (2) with the iterative solution of the equation of 
motion (3). We found that N = 7 knots distributed arouiid the average radius R defined 
by 

- - 

are sufficient for an accurate reproduction of the meson profile. The location of the knots 
is illustrated in the upper part of fig. 2. The first knots rl aiid 7-2 are situated at  R/2 and 
R, respectively. The last knot TJJ is located at a radius RasY. It marks the point where the 
meson profile is sufficiently well described by tlie asymptotic formula (22). Empirically 
we found ROSy X 5R. The other knots lie between R and RnJY. 

The accnracy of such a spline interpolation with predetermined asymptotic behavior 
was numerically checked. First we reproduced self-cousistently determined profiles by 
means of their values at the 7 selected knots. The central part of fig. 2 shows the deviation 
6 0  of the interpolation from the original for M=500MeV. The saine test was performed 
for the profites in the whole nmss region under investigation. The deviations did not 
exceeded 0.25'. After testing tlie 7-knots spline reproductions of a given profile functions 
we compared the iteratively deterrnined profile function with the result of the numerical 
minimization of the energy functional (2) using the 7-knots spline representation. Far 
M=500MeV, the differente between tlie two results is shown in the lower part of fig. 2. 
The deviations are less than O.35O in tlie whole mass region. 

Findly we tested the sensitivity of expectation values wibh respect to our approxi- 
mations. We compared expectation values calculated for iteratively determiried profiles 
with their values for spline-reproduced profiles and for profiles obtained by means of the 
minimization procedure. Using the 7-knots spline valence- and sea-quark encrgies vary by 
not more than 1 MeV. The mesonic energy (5) is more seiisitive to details of the rneson 
profile and varies up to 2 MeV. The variation of the root-mean square radius is limited 
to 0.02fm. Apart from constituent quark nlasses around 350 MeV, d e r e  the modifica- 
tions in tlie meson profile are very small, the effect of CMM and rotational corrections 
is remarkably larger than the uncertainties in the nurnerical procedure. So we onclude 
that the accuracy of tlie spline representation of the profiie function with predetennined 
asymptotic behavior and of the numerical minirnization procedure is adequate to the pre- 
tensions of the wliole model. A lai-ger number of knats increases the calcu8atiou time 
noticeably without irirproving the accuracy cansiderabiy. 

Before appfyiug tlie inethod to the corrected eiiergy functioaal (15) we have to consider 
the asymptotk behavior for + -3 uo for a rotatii>gsoliton, which deviates fmm eq. (22) dw 



to the action of the centrifugal forces. In the asymptotic region, the isovector 5r field of 
the bosonized NJL model has to fulfill the same differential equation as the corresponding 
field in the Skyrmemode12' and in the chiral sigma model of Gell-Mann and LeviZ9 as well. 
So we can exploit the insights obtained within these models. As shown e.g. in ref~.~'-~' 
the 5r field of a rotating soliton has the Same asymptotic behavior (32) as the static pro- 
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-30 with predetermined asymptotic 
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file function, however, in the components perpendicular to tlie rotational axis, the pion 
rest mass m, has to be replaced by tbe modified pion mass 

%r rotational frequencies lfal wliich are comparable with tlie pion rest mass, the rota- 
tionally improved soliton is much more diffused than the static one (51, < m,). If the 
rotational frequency, which is necessary to produce the correct expectation values of spin 
and isospin, is larger than the pion rest mass the Situation changes dramatically. Instead 
of vanishing exponentially the components of .ir perpendicular to C2 start to oscillate. This 
corresponds to the emission OE pions and may be used for tlie description of the decay of A 
isobars. Already for frequencies < m, the shape of the rotationally improved soliton 
deviates from the hedgehog. It is neither splierically symmetricnor is the direction of the 
isovector 5r field aligied with the direction of vector T .  Such fields can not be character- 
ized by a single profile function Op) and must be treated on a three-dimensional grid3*. 
Numerical tests have shown that quarlr observables are not sensitive to the asymptotic 



asymptotic behavior of the meson fields, in particular, if they are dominated by the va- 
lence contribution. So we retain the hedgehog structure with the asymptotics defined in 
eq. (22). In this way the effect of the centrifugal force is spherically syrnmetric spread 
over all directions. At large Separations r _< r ~ ,  the rotational correction may change the 
parameter 6 in the asymptotics only. The A isobar we are considering is an artificially 
stabilized particle. 

The manipulation of the asymptotic behavior is a weil known procedure in nuclear 
physics. Resonance states, which emit particles and should be described by oscillating 
wave functions can successfully be modeled by harmonic oscillator wave functions which 
decrease exponentially. These wave functions reproduce inost of the properties of the 
resonance state, in particular such properties which are determined by the interior of the 
wave function. Of Course, decay properties, which depend essentially on the asymptotic 
behavior, cannot be described within this approach. 

4 Profile functions and expectation values modified 
by pushing and cranking corrections 

Fig. 3 illustrates tlie general features of tlie modification in the pro& function cansed by 
pushing and cranking corrections in tlie effective energy functional. To get a clear effect 
we chose tlie relatively large constituent quark mass of 600MeV. For smaller masses tlie 
effect is analogous, only smaller in size. The asymptotic region Starts outside tlie figure 
at r = RaeY N 6M-I. The inner linear part is affected by the center-of-mass motion. The 
boost applied to the soliton is orientated such that a part of the kinetic energy of the 
quarks, mainly of the valence quarlm, is removed. The size of the soliton is balanced by 
the attraction between the quarks mediated by the meson fields, and by the motion of 
quarks inflating the soliton. Reducing the latter the soliton shrinks. For masses M 5 
350MeV the attractive forces are not strong enough to produce a stabile soliton. The 
reduction of the internal kinetic energy stabilizes the soliton. CMM corrected solitons are 
already stable for M 2 300 MeV. 

0 

-30 
Figure 3: Profile function 

-60 
z- O(r)  of tlie static soliton 

-90 (broken line) in compariso~i 
0 with the modified profiles of 

-1 20 nucleon and A isobar (fall 

-1 50 lines) for the constituent 
quark mass M=600 MeV. 

-1 B0 

r (M") 

UThile tlie CMM correction is the saine for nucleons nnd A isobars tlie rotatimal cor- 



rection has different sign. To get a A isobar one has to add rotational energy to the 
soliton and the centrifugal force presses the quarks outwards. The meson field, which is 
produced by the quarks, follows this trend (ba > b,t,ti,). The opposite is true for the 
nucleon. To get a particle with (iso)spin 2 one has to take out a certain amount of rota- 
tional energy and the resulting profile function tends to Zero more rapidly (biv < bStatic). 
Of Course, these are classical considerations, but they are adequate to the semiclassical 
way of calculating the energy corrections. 

Changing the constituent quark mass M we can study the dependence of the modifica- 
tions on the size of the correc- 
tion terms (cf. fig. 1). First 
let us consider the CMM correc- 
tion separately. Though the ab- 
solute size of the correction is not 
the crucial quantity the modifica- 
tions gow with increasing correc- 
tion term, i .e .  with increasing con- 
stituent qua& mass. The effect is 
rather controlled by the variation of 
the correction with the sliape of the 
profile in comparison with the vari- 
ation of static soliton energy (see 
eq. (21)). A larger correction term 
gives the variation a larger weight. 
A correction vvhich is entirely inde- 
pendent of the nieson profile does 
not at all modify tlie profile. For 
the static profile the static energy E 
is minimal. Starting from this pro- 
file Qr) is varied until the increase 
of static energy exceeds the loss of 
CMM and rotational energy. 

In the following we compare ex- 
pectation values calculated for 3 
kinds of particles: the static soliton, 
the nucleon and the A isobar. Each 
of them have been obtained witli the 
corresponding Ineson piofile and the 
resulting quark field. 

First let us consider the cor- 
rected soliton energy (15) displayed 
in fig. 5. The differente between bro- 

Fiqure 4: Profile functions @ ( T )  of the " 

static soliton (broken lines) in comparison 
with the corresponding CMM corrected 
profiles (full lines) for 3 values of the con- 
stituent quark mass M. 

- 
ken and full Iincs represents the gain of energy due to the Change from @ ( T )  to O;i;od(~).  
Aereement with the experimental nucleon mass is obtained for small coustituent quark 
masses. The niass of the A isobar is underestimated in the whole region of coustitueut 
quark masses. 

Now let us study the various contributions to the total soliton energy which turn out 
to be more sensitive to changes in the tneson profile. Fig. 6 shows valence- and sea- 
quark contributions, and tlie small rnesonic contribution as well. For tlie modified profile, 



the dependence of both valence and sea energy on the constituent quark mass is clearly 
weaker than for the static soliton. The energy of the valence quarks is mainly determined 
by the size R of the meson profile and by the meson-quark coupling-constant g, which is 
proportional to the constituent quark mass M. Increasing the constituent quark mass the 
meson potential gets deeper and the energy of the valence quark decreases. As shown in 
ref. 22 the self-consistent size of the unmodified meson profile is nearly independent of the 

Figure 5: CMM and ro- 
tationally corrected nucleon 
and A energies (15) cal- 
culated for the static so~li- 
ton (broken &&es) in corn- 
parison with the same en- 
ergies for modified profile 
functions (full lines). 
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constituent quark mass. The slirinliing of the modified profile couinteracts tlie decrease of 
the valence level and lowers tlie dope of E„r in dependenice on Af. It eveu prevcnts the 
valence level from leaving tlie vale~ice-energy region [O, F ] ,  tvhat happens at M - 750 MeV 
for tlie static sofiton. Tlw sea etwa is affected by thc reguiarization proccdure. When 
tlie profiie shrinlts some of tlic sea Levels leave the energy r&on takert inta i ~ c a i m t  far a 



fised regularization parameter A. This reduces the iucrease of sea energy in wmparison 
with the unmodified case. 

50 - 
Figu~e 7: RiIesonic energy (5) 
calculated for uncorrected 
profiles @(r)  (broken line) 
in comparison with modified 
profiles (full lines) for the nu- 
cleon and the A isobar, in de- 
pendence on the constituent 
quark mass M. 

40 . nucleon 

----__ 
W 
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Restricted to the chiral circle the energy Ern of the meson field is reduced to the term 
Eb' (5). This is a rather small quantity and considered in fig. 7 separately. As explained 
in ref. 21 it is related to the nuclear sigma comniutator. Apart from very small constituent 
quark masses the modifications in the meson profile decrease the meson energy noticeahly. 
Siuce it has only a small share in the total soliton energy it is not relevant for the stability 
of the soliton. 

Figure 8: Root-mean square 
radius (23) of the isoscalar 
density distribution calculated 
for unmodified (broken line) 
and modified profiles (full 
lines) in dependence on the 
constituent quark mass M 

M (MeV) 

Another quantity characterizing a soliton is the root-mean square (I. m. s. ) radius of 
the isoscalar mass distributioli. We consider 

where p ( r )  is the isoscalar baryon density. It is displayed in fig. 8 for unmodified and 
modified meson profiles. The r. m. s. radius is dominated by the contribution of the valence 
quark (see e. g. ref."). The valence quarks are localized in the neighhorhood of the Center 
of the soliton and hence hardly affected by rotational corrections. The main correction 



stems from the center-of-mass motion and decreases the radius slightly in accordance 
with the smaller size of the modified meson profile. This effect is independent of the 
isospin quantum number and results in identical corrections for nucleons and A isobars. 
Rotational corrections aEect only the loosely bound valence quarks for M 2 400MeV, 
which reach to larger Separations from the center. Here the faster rotating A isobar has 
a remarkably larger r. m. s. radius. The experimental nucleon radius is reached for hf N 

350 MeV, where the difference between nucleon and A isobar is not very pronounced. 

Figure 9: Moment of inertia S 
(upper part) and resulting A- 
nucleon mass-splitting SMAN 
(Lover part) calculated for un- 
modified (broken line) and 
modified profiles (full lines) in 
dependence on the constituent 
quark mass M. 

M (MeV) 

Now let us come back to the inertial parameters and forces we had introduced to 
remove center-of-mass motion aud to restore good spin and isospin. Fig.9 shows the 
moment of inertia and the resulting A-nucleon mass-splitting. The moment of inertia 
behaves similarly to the r. m. s. radius, but the dominante of the valence quarks is less 
pronounced. The sea quarks are responsible for the difference between nucleons and A 
isobars for larger masses M. The positive sign OE the rotational energy (18) for A isobars 
favors a wnfiguration with a larger moment of inertia. 

The difference between nucleon and A mass results mainly from the rotational energy 
(18). In the static case, both particles are described by a conimon profile function O(r) 
and have a common moment of inertia Z. In this case, the A-nucleon mass-splitting ir; 
exclusively given by different rotational energies 

Minimizing the corrected sditon energy one gets different meson profiles resulting in 
different static energies EN and EA, in different ChfM corrections E&fnr and E&Iz~f, 
and in different moments of inertia ZN and Zn. Now tlie A-nucleon rnass-splitting is 



- 

given by 

The third term can be written in the form of eq. (26) introducing an effective moment of 
inertia 

which is the harmonic average of the moments of nucleon and A isobar. The mass- 
splitting depends only on the effective moment of inertia (28) but not explicitly on ZN 
and I*. If the first two t e ~ m s  in eq. (27) are negligible and the static moment o£ inertia 
coincides with the average value (28) the mass-splitting for static and corrected meson 
profiles is the same. This is obviously the case (fig.9, lower part). The experimental 
mass-splitting is reproduced for M rr 430hileV. Here the moinents of inertia differ by 10 
percent. Nevertheless the mass splittiiig is excellently reproduced by the static moment. 

Finally we compare the energy corrections themselves. Fig. 10 illustrates the differ- 
ences between static and self-consistently determined energy corrections. Rotational cor- 
rections are practically the same in both cases. Merely the CMM energies are noticeably 
different for %f > 400Mev. 

nucleon 

A isobar 

M (MeV) 

5 Conclusions 

Figure 10: CMM and r o  
tational energy corrections 
for the nucleon (upper part 
and for the A isobar (lower 
part) calculated with the 
corresponding modified pro- 
file functions (full lines). 
The broken lines show the 
energy corrections for the 
static profiles. 

We considered center-of-mass and rotational corrections to solitonic field configurations 
of the bosonized Nambu & Jona-Lasinio model wliich can be ideiitified with the nucleon 
and the A isobar, respectively. We eeinployed energy correctioiis whicli had been derived 
within the semiclassical pushing arnd crsnking approaches. Tlie main contribution to the 
corrections stems from the valeiice quarlcs which are confined by the attractive meson field. 



We determined modified meson fields by minimizing the static soliton energy reduced by 
center-of-mass motion and rotational corrections. The investigated meson fields were 
restricted to the chiral circle and to the hedgehog shape. 

We evaluated modified meson and quark fields as well as expectation values of several 
observables in the region 300MeV C M C 600 MeV of constituent quark masses M. The 
results illustrate the response of the meson field to the corrections and qnantify their effect 
on expectation values. An iniportant effect of the pushing correction is the stabilization 
of solitons with light constituent quark masses. CMM corrected solitons exist for M 2 
300 MeV, wliile uncorrected solitons are unstable below M=350MeV. 

Despite the big energy corrections nieson and quark fields are only moderately affected. 
The exclusio~i of center-of-mass motion narrows the meson profile and the corresponding 
quark distribution. This effect prevents the valence level from diving into the negative- 
energy region untii very big constituent quark masses. Rotational corrections affect the 
asymptotic behavior of the fields at large radii. They depend on the Spin and isospin 
quantum-numbers and give rise to differences between nucleon and A isobar. Moreover 
tliey destroy the hedgehog symmetry. This effect was not considered in the paper. 

Both CMM and rotational corrections grow with increasing constituent quark mass. 
For h.I 2 500 MeV the energy corrections reach half of the total soliton energy and a 
perturbative treatment seems not to be justified any more. 

In tlie physically relevaut regiou of small constituent quark masses (350MeV C M 
C 450MeV), the dominating valence-quark picture was confirmed. The isoscalar - 
r. m. s. radius of tlie nucleon is reduced by a few percent (N 3-4 percent for M=350MeV, 
FZ 5 percent for M=500 MeV). Larger clianges were noticed when considering valence, sea 
or nieson coiitributions separately. Tlie slightly different moments of inertia and center- 
of-mass energies for nucleons aiid A isobars do practically not influence the A-nucleon 
iilass-splitting. Tlie mesonic field energy, which is related to the nuclear C commutator, 
is reduced by 20-30 percent. The geiieral features of the soliton in the bosonized Nambu 
& Jorta-Lasinio model are not essentially disturbed by the correctioris. 

The authors wish to acknowledge stimulating discussions with I i .  Goelte, H. Reinhardt, 
Th. Meißner, R. Alkhofer, H. Weigel, J. Berger and Chr. Christov. The paper was sup- 
ported by tlie Bnndesministerium für Forschung und Teclmologie (contract 06 DR 107). 
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