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Shapes and Free Energies of Molten Sodium Clusters
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The shell correction method is formulated to calculate the
shapes and free energies of hot alkali clusters. The equilibrium
shapes of Na clusters with mass 50 to T00 are calculated by
minimizing simultanously with respect to two deformation pa-
rameters. For T' = 700°K strong deviations from spheroidal
shape including reflection asymmetric shapes are found to sur-
vive in the ceater of the open shells. The second derivative
of calculated free energy correlates with the derivative of the
experimental cluster abundances, showing prominent spikes
related to the change between spherical and deformed shape.

PACS aumbers :36.40-32.Bv-

The shell correction method (SCM} developed in nu-
clear physics has turned out to be an efficient theory to
calculate the deformation energy of alkali clusters {1-5].
All these calculations assume zero temperature for the
valence electron sysiem, whereas in experiment clusters
are formed at several 100 °K. We generalize the SCM to
finite temnperatures by writing the total free energy of the
cluster as the sum of a hquid drop part Frp and a shell
correction

F=Fip-+4&F {1}

Here, Frp is the free energy of a classical drop of neutral
liquid Na consisting of N atoms.

Frp = fN +4mriN* 308, )/ Ss. (2)

This expression is justified for molten clusters, which
are produced in smoke sources. It will not be suited
for cold clusters when the ions tend to arrange into ge-
ometrical structures [§]. For a typical temperature of
T = BO0°K one has f = —1.427 eV, rg = 2.194 and
o = 0.0105¢V/A®, which are, respectively, the bulk val-
ues of Tree energy per atorn, the Wigner - Seitz radius
and surface tension, as given in ref. {10,11]. The surface
area S{a, a3, orq) depends on the deformation parameters
¢, vz, g, which fix the quadrupole, octupole and hexade-
capole moments, respectively 1,

The term §Fis the shell correction. It is the difference
between the the free energy Fy of the valence electrons
w the average potential I/ generated by them and the

“This is correct for not too lasge deformation. The accurate

definition of the deformation parameters can be found in rel.
)
il

ions and the free energy Fy of the unguantized” valence
electrons in the same potential.

§F = By — Fy (3

The energies e; of the valence electrons are caleulated for
the Woods Saxon Potential

2
b 2ot U1+ eap(i(@)/ )] (4)
where {(Z) measures the distance of the point # from the
surface U(Z) = 1/20/,. The shape of this equipotential
surface is the same as the one used to calenlate the surface
area S{N, a, ag, a4) in the liquid drop part. The volume
of the equipotential surface is kept constant to

41

Vo= N
s 3

rh, rp=2954 (5)
The diffuseness of surface is chosen to be d == 0.744 and
Uy=-feV is the depth of the well {for details ¢, f. ref.
[1]).

The ealculation of the free energy is based on the
canonical ensemble of the valence electrons. This is im-
portant, since typical experiments study mass selected
cluster beams. The free energy of N independent elec-
trons is calculated as

L r
Fy = AN — Tfn[%ze"“—i‘i {1+ e~ I (6)
=l H

For L — oo this is the exact expression. * We find that
L = 16 gives the canonical free energy with an relative
accuracy better than 102, provided } is chosen such that
the mean value of the particle number in the correspond-
ing grand canonical ensemble is equal to N. Our method
to evalnate the canonical partition function is different
from the one suggested by Brack et al. {8]. It seems to
be numerically faster. The accuracy can be controlled by
changing L.

The smooth free energy Fy is caleulated in the same
way as Fy from a set non bunched levels &;. This smooth
specirum is constructed by integrating numerically the
smooth level density §(e), calculated by means of the
Strutinsky averaging procedure from the spectrum ¢; (for
the accurate definition of §(e), ¢. f. ref. [1]}.

¥This can be scen best by using the projected statistics rep-
resentation of refs. {6,7].




We have minimized the free energy simultanously with
respect to a, g Tor all even Na clusters in the mass range
50 < N < 310 and for the pairs o, o4 and o, o3 in the
mass range 310 < N < 730. Three different tempera-
tures, 7" = 0,0.04 and 0.06 eV , i.e 0,465 and 97°K
have been studied. The deformation parameters of the
average equilibrium shapes are shown in figs. 1 and 2.
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FIG. 1. Shell contribution Fsp to the {ree energy and the
deformation parameters e and oy of molien Na - clusters. The
deformation parameters are shown only for T = ¢ {diamonds)
and T = (.06 eV {stars}. The full drawn lines are the the zero
lines for Fsy.
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FIG. 2. Shell contribution Fsy to the free energy and the

deformation parameters @, o3 and o4 of molten Na - clusters.
The deformation parameters are shown only for T = 0 {dia-
monds) and T = 0.06 eV (stars). The full drawn lines are the
the zero lines for Fgpy.




We also display in figures 1 and 2 the shell coniribution
to the [ree energy Fsyr, which is defined as as the free
energy at the minimum relative {o the {ree energy of the
spherical drop:

Fspg = F - Frp(sphere) (7
Note, in the figures the zero line of Fgy is not horizontal!

The thermal fluctuations tend to wash out the shell
structure. The difference between the caleulationsat T =
# and T = T00°K increases with the mass number N.
This is expected, because the the parameter controjling
the supression of the shell structure is the ratio T'/hw,
where fiuw ~ 4eV N~1/3 is the spacing of the shells. Thus,
a temperature of 700°K is rather low for N < 50. In
good approximation the valence electron system can be
considered as being at zero temperature. For N > 300
the same temperature causes a significant suppression of
the shell structure.

As cluster deformation is a consequence of the shell
structure, it also is suppressed by the thermal fluctua-
tions. Figures 1 and 2 demonstrate that this does not
occur as a general decrease of the magnitude of the de-
formation in the first place. Rather, the regions of sh-
perical shape around the magic numbers are expanding
with T and . It is also seen that the role of the higher
maultipoles {a3 and e4) remains as important as for zero
temperature, 1. e. the average shapes are about the same
as for T' = 0, provided the cluster s not spherical. One
may say that "parts of the deformed regions are melt
away”. Nevertheless, even for ¥ =~ 600 and T = TO0°K
substantial islands of deformation are left in the center
of the open shells.

Such & behavior is a conseguence of the fact that the
surface Fyp{eo, og, oy, T) is similar to the T° = § surface
Fer{a, oy, aq). Only the scale of the relief is reduced
and it is smoothed. The deformed minima of the clusters
sear the magic N are relatively shallow. They become at
finite T so shallow that they can no longer compete with
the practically T independent term Fpp, which drives
towards spherical shape. On the other hand, in the center
of the open shells the minima of Egy are deep enough
that the reduction of their depth is not large encugh to
make Fyp competativ. They will appear in the total F
surfaces at only slightly reduced deformation.

The deformations shown in figures 1 and 2 represent
the guerage shape of the ensemble. There are thermal
fuctuations around themn. The amplitude of these fue-
Luation is

Do~ JT{d2Ffde?)? (%)

lu the centers of the spherical and of the deformed regions
vhe term Fspy reduces the thermal fluctoeations. In the
wansitional regrons, where the deformalion melts, the
contribution of d* Fegp /da® to the total value of d° F'fda®
s minall, There, the thermal fluctuations are much larger,
»f the order of the fluctuations of the classical drop,
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FI1G. 3. Secand differences of the free energy

Fig. 3 shows the negative second differences of the free
energy

ApF(N) = i(-}-F(N ~ )~ PN+ F(N+2)) ()

calculated from the equilibrium values of F(N). The
negative spikes correspond to the magic numbers, where
Fsp(N) has a large positive curvature. The shell closure
at N == 254 is not clean. This is a particular feature of
the Woods Saxon potential that shifts the the 3F - level
into the shell gap. As a consequence the negative spike is
washed out at the considered temperature. The positive
spikes appear at beginning and the end of the regions of
deformed clusters. [f one does not allow for deformation
between two magic numbers, the function Fgy{N} has
the shape of an inverted parabola {e. [ rel. [B]}. As
seen in figs. 1 and 2, the deformation culs away the
upper part of the parabelas rather sharply, leading to
the high curvature al the intersection points that shows
up as the positive spikes in fig. 3. The behavior reminds
of a second erder phase transition. For small systems,
as the considered clusters, one must take into account
the fluctuations around the average shape in caleulating
Ay F{N). These would tend to smooth out the transition,
resuiting in broader bumps instead of sharp spikes, Our



negative spikes correlate very well with the calculation of
Ay F{N) in ref. [8]. The positive spikes are absent there,
since only sherical shapes are studied,
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FiG. 4, The first difference of the logarithm of the experi-
mental cluster abundances T as calculated in ref. [5] from the
measurments of ref. [12}.

For a quantitative comparison of the caleulated free
separation energies and the experimental abundances one
neads a theoretical model for the evaporation cascade.
Such work I in progress [13]. Here, we only point out
that the shell structure seen In the second differences of
the free enargies seems to correlate rather well with the
shell structure seen in the first differences of the loga-
rithm of the abundances. Not ony the negative spikes
caused by the closed shells appear at the the predicted
atom numbers, but also the positive spikes cause by the
deformation jumps ssem o correlate with peaks of the
function &yfnlf), which are visible up to ¥ = 300,

In sumnary, we have generalined the shell correction
approach to finite temperaturss. A new rencrmalization
procedure basing on the canonical ensemble has been sug-
gested. For the clusters lyving in the center of the open
shells the deformation survives thermal Quctuations cor
responding to temperatures of hot clusters forming the
beam. The higher multipoles of the sphape remain a im-
partant as for sero temperature. The regions of spherical

shape around the magic numbers expand with increas.
ing temperature and mass number. The onset and the
disappearance of deformation seems to show up in the
abundancy distribution.
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Magnetic Properties of Sodium Clusters
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Axial and triaxial shapes of Na clusters are determined
by means of the shell correction method [1]. The orbital
paramagnetistn and the diamagnetism of small Na clusters
is calculated. Odd axial clusters may have substantial or-
bital paramagnetic moments, which are quenched for triaxial
shapes. Even clusters show diarmagnetism, which is maximal
for spherical and attenuated for deformed shape.

PACS numbers :36.40-32.Bv-

It has been demonstrated by de Heer that it is possi-
ble to measure the magnetic moments of the lightest Na
clusters (N < 10) by deflection of the cluster beam in
a Stern Gerlach magnet with a field strength of 1T [2].
The deflection z is given by

u o dw
= gt 2 1
TECNMY iz O

where ¢ is an apparatus constant, N the number of atoms,
M ihe atom mass and v the beam velocity. The magnetic
moment p is measured in units of the Bohr magneton

b7
Ik S 0579 x 10-%eV/T {2)
2mc

and the magnetic field B is given as the cyclotron fre-
quency

hw = pph {3)

For B = 1T one has iw ~ 0.5 x 107%V. In de Heer’s
experiments the ratio u/N that determines the deflection
of a cluster is about §.1.

The response of the electrons to the magnetic field is
described by the Hamiltonian [3]

2z
H = H 4 w(ly +255) + %w(y2 +2%) (4)

where H is the Hamiltonian at zero field and the direc-
tion of the local field defines the x - axis. For N < 1000
the spacings between the electron levels are large enough,
such that the magnetic field can be treated as a small
time independent perturbation. The magnetism of clus-
ters is similar to the one of molecules. The magnetic
moment consists of a paramagnetic (Oth order} and a
diamagnetic (1st order } term.

B=jipar + fiDia (5)

I. PARAMAGNETISM

We decompose the the magnetic moment i with re-
spect to the principal axes 1, 2, 3 of the cluster. The
orbilel paramagnetic moment for the axis { is

pi o= — (i) (6)

where [} is the ground state of the valence electron sys-
tem. If 1 is a symmetry axis, the orbital angular momen-
tum projection A is a good quantum number, It gives the
orbital paramagnetic moment. The projection A takes
integer values between 0 and n, the shell number. If the
spin orbit coupling is neglected, the levels with A = 0
are twofold degenerate (spin up and down) and the lev-
els with A # 0 fourfold (sign of A). For the harmonic
oscillator n = (N/3)'/3, leading to a deflection ratio of

;‘\‘7 ~1x N3 )

The measured deflection profile, I{z) is obtained by aver-
aging over all cluster orientations with equal probability.
Since there 1s only one symmetry axis in an axial clus-
ter, the width of the distribution will be reduced by 1/3.
Thus, effective deflection parameters of 0.1 and 0.01 are
expected for N = 10 and 100, respectively. Such values
should be detectable with an apparatus like the one used
by de Heer.

The orbital paramagnetism appears in odd axial clus-
ters. Since the degeneracy of the A # 0 levels is 4, the
magnetic moment is equal to A of the last valence elec-
tron. Fig. 1 shows the orbital paramagnetic moments
calculated for odd Na clusters under the assumption that
the cluster is axial. The shapes are determined by means
of the shell correction method using a2 Woods Saxon po-
tential (WS) for the valence electrons { c. {. below). Fig.
2 shows a similar calculation based on a somewhat differ-
ent potential, which we call Kohn Sham Nilsson (KSN).
Here we also allow for triaxial deformations. The val-
ues of the triaxiality parameter v are given in the lower
panel.

Comparing the axial values of the two figures one notes
that the exact cluster numbers N, where the odd elec-
tron takes a certain value of A, are different, though the
general trend is similar. Slight differences in the valence
eleciron potential leads to some reordering of the lev-
els near the Fermi surface, in particular for the heavier
clusters. Thus, measuremenis of the orbital paramag-
netic moments could provide information about the finer



details of the deformed valence electron patent%al- Com-
parison with the measured magnetic moments Is used to
fine tune the deformed potential of nuclei.
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FIG. 1. The orbital magnetic moments of odd Na clusters
calculated for the arial Woeds Saxon potential,

As seen in fig.2, for an appreciable number of clusters
the axial shape is not stable. There is a lower triaxial
minimum. For these cases we find that {4} = 0 for all
three axes, i. e. the orbital paramagnetism s quenched.
The quenching of the orbital paramagnetic moment in
a nonaxial crystal field is a well known phenomenon in
solid state physics [3]. There is also a number of clusters
with stable axial shape and strong orbital paramagnetism
predicted. Thus, the orbital paramagnetism could serve
as a sensitive probe {or the deviation of the cluster shape
from axiality. It should be noted that we consider only
ellipsoidal like shapes. There is also the possibility of
nonaxial shapes of higher multipolarity. Their effective-
ness in quenching the orbital paramagnetism remains to
be studied. It is also necessary to investigate the conse-
quences of the potentials generated by the discrete ions,
which are expected to atienuate the magnetic moments.

The electron levels are quasi degenerate with respect
to the spin. In odd clusters the all the spins of the elec-
trons are paired off, except the one of the odd electron
on the Fermi level. In addition to the orbital part it also
generates spin paramagnetism in odd clusters. The in-
teraction with magnetic field will tend to align the spin
with direction of the field, but the spin orbit coupling will
tend to lock the spin direction to the body fixed frame of
the cluster. The clusters in the beam have a thermal ro-
tational energy. This rotation generates a Coriolis force
that tends to align the spin with the axis of rotation of
the cluster. The angular velocity of the thermal rotation
is of the order of the cyclotron frequency, i. e

hw ~ hwgor ~ 107V (8)

(T =5300°K, N = 100). Hence the Coriolis force and
the torque of the magnetic field are of the comparable.
A deeper analysis of this interplay goes beyond the scope

of this study, but potentially it contains interesting infor-
mation on the spin orbit interaction. A thorough study
for the trimer has been carried out by de Heer [2]. Ex-
perimentally, the spin efiects should be best studied for
clusters with no orbital paramagnetism.
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FIG. 2. The orbital magnetic moments of odd Na clusters
calculated for the Kohn Sham Nilsson potential. Dots display
the lowest axial minima and triangles triaxial misima. The
quenching of the orbital magnetic moment by triaxial defor-
mation is demonstrated by the vertical lines, The jower panel
shows the irtaxiality parameter 7.

In even triaxial clusters the orbital angular momentum
is quenched and the spins are paired off, since the election
levels are only twofold degenerate (Kramers degeneracy).
Such clusters do not show paramagnetism. In even axial
chusters two possibilities exist: H the Fermi level has A =
0 the spins are paired off and there is no paramagnetism.
If the Fermi level has A 3£ 0 there is the question of how
the two electrons occupy the 4 quasidegenerate levels.
Most likely, they will follow Hund’s rule, i. e. the two
spins will align. Then there is no orbital paramagnetic
moment and the coupling of the spin is governed by the
samme interactions as mentioned above for the spin of the
odd particle.

Ii. DIAMAGNETISM

The first order term for the component i of the mag-
netic moment is




pi o —(NOr + 0 — Tihn (9)

It consists of the three contributions:
1) The magnetic suscepiibility of the Na ions

NG = (% - 1)%mr};N ~05INR%Y-T (10

2} The valence slectron diamagnetic susceptibility

Oi=m f p(3)(a2,, + 2245) % ~ 0.26N/2h2ey

(11)
where p(T) is the electron density
3) The van Vieck term
< el + 25037
Js b ; Ef; — Eo (12)

where 10) and jn) are the ground and excited (particle -
hole} states of the electron system. The term is zero for
a symmetry axis else it is positive, i. e. paramagnetic.
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FiG. 3. Magnetic susceptibility of the valence electrons of
even Na clusters calenlated for the azial Woods Saxon po-
tential, The susceptibility is the difference between the van
Vieck term J and the diamagnetic term €,

In most even clusters the paramagnetic moments are
paired off {c. {. discussion above). Only the diamag-
netism remains. Maximal deflection occurs for spherical
clusters, since the van Vleck term is zero. For B = 17
one has

# -4
e ~ 025 x 10 1
(N)ION * (13)
M -4 nr2/3
- ~ f} 1
(N)ML 0.12 x 107N (14)

The valence electron part is 0.5 x 1071 and 21 = 1074 for
N = 16 and 100, respectively. Hence, for experimental

detection of the diamagnetism one would need two or
ders of magnitude higher sensitivity as compared to the
paramagnetism.

Fig. 3 shows a calculation the magnetic susceptibility
of the valence electrons, which for our choice of the units
becomes a moment of inertia. It is the difference between
the diamagnetic and the van Vieck term, both displayed
in the figure. The calculation is done for the WS po-
tential assuming axial shape. The largest contribution
comes from the the symmetry axis 3, for which the van
Vieck term is zero. For the 1- and 2- axes the van Vieck
term partially compensates the diamagnetic term. The
difference remains negative for all deforrnations, 1. e. the
cluster is diamgnetic. The deflection is determined by
the average of the three axes. It is maximal for spherical
clusters and attenuated for deformed ones.
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FIG. 4. Van Vleck term of the magnetic susceptibility of
the valence electrons of even Na clusters calculated for the
Kohn Sham Nilsson potential. The diamagnetic term € is
expected o be similar to the one for the Woods Saxen pe-
tential, For triaxial ground states the circle and the triangles
display the different values for the three axes, The lower panel
shows the triaxiality parameter .

Fig. 4 shows a calculation of the van Vieck term for the
KSN potential. The axial values are similar to the WS
values. We have not calculated the diamagnetic term.
It is expected to be very similar to the one for the WS
potential, since it is an integral over the electron density,
which is not very sensitive Lo the fine details of the po-




tential. For the clusters with triaxial ground states we
also show the values of J; for the three different axes. It
is seen that the triaxiality just leads to two large values
and one small value of J; instead to J3 = Jo and T3 =0
for axial shape. Triaxiality is not expected to change the
deflection in a raajor way, since it is determined by the
average over all three axes. _—

For N=84 we find J) = 86A%eV ™}, Jp = 366R°V
and J3 = 4523h%V 1. The large value of J5 is the
cousequence of a very low lying particle - hole excitation
with a finite matrixelement of I3, which dominates the
sum (12). This is an example of van Vleck paramag-
netism [3], since the term overcompensates the diamag-
netic one. For 1T the magnetic moment is about 0.2,
i. e. it reaches one tenth of the paramagnetic moments
of the odd clusters. The term is strongly temperature
dependent, decreasing with T,

The deflection due the diamagnetism has been esti-
mated to increase oc N2/3, For large clusters this increase
will taper out, since the estimate is only correct as long
as the zero temperature expression {12) is still valid. The
question of what happens at finite temperature has been
discussed in the context of nuclear rotation [4,5]. There,
the expressions for the diamagnetic and van Vleck term
ari called the rigid body and cranking moments of iner-
tia. It turns out, that for sufficient high temperature the
cranking moment of inertia approaches the rigid body
moment. A small difference remains, which is the sum of
the Landau diamagnetism and the Pauli paramagnetism
of the electron gas ( for the two eflects c. f. [3]). Where
this happens for the clusters remains to be investigated,
but presumably it will occur for a temperature of 500°K
in the mass region of several 100 atoms. This damping of
the strong diamagnetism can be interpreted as an average
canceliation between the persistent micro currents gen-
erating the para- and diamagnetism of the many states
excifed in the thermal ensemble. For clusters above 1000
the coupling of the valence electron motion to the jonic
degrees of freedom begins to play a role. This is the onset
of the transition from the molecular regime discussed in
this paper to the macroscopic regime, where the Ohmic
eddy currents, induced while entering and leaving the
magnetic field, play the dominating role.

III. CALCULATION OF THE CLUSTER
DEFORMATION

The cluster shapes are found by means of the shell
correction method. The details are given in refs. [1,6].

Two different deformed potential are used to calculate
the shell correction and to generate the electron wave-
functions entering the matrixelements of the expressions
for the magnetic moments:

1} The azial Woods Saxon potential, which has a Fermi
function profile. The shape is parametrized by the low-
et five multipoles of the harmenic expansion around the
sphere f1].

2) The triazial Kohn Sham Nilsson potential, which
consists of a spherical Kohn Sham pari and a deformed
harmonic oscillator part {6}, For the shape parametriza-
tion used, the difference of the three principal axes from
Ro is

Ey i=1,23 (15)

§R; o gqcos(y + 3

defining the deformation parameter €3 and the triaxial-
ity parameter . This shape is sornewhat modified by a
hexadecapole correction.

Na s
g,=0.11

o

(1A U ¢ B T ¥

FIG. 5. The deformation energy of Na;s calcnlated for the
Kahn Sham Nilsson potential. The radius gives the magni-
tude of the deformation ez and the triaxiality parameter ¥ (c.
I. eq.{13}}. One contour line corresponds to 6.08 eV.

We have demonstrated that axial odd Na clusters with
a mass below 100 zre expecited to show substantial or-
bital paramagnetism, which should be detectable by de-
flection of the cluster beam in a strong magnet. Triaxial-
ity quenches the orbital paramagnetism and, thus, may
serve as an experimental probe for triaxiality. The di-
amgnetism in even clusters is two orders of magnitude
weaker. Tt is attenuated by deformation.
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POTENTIAL ENERGY SURFACES OF SODIUM CLUSTERS
WITH QUADRUPOLE, HEXADECAPOLE AND
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Combining a modified Nilsson-Clemenger model with the shell correction methed, the potential en-
ergy surfaces of sodium clusters with sizes of up to N = 200 atoms are ealculated, including nonaxial
deformations. For spherical clusters, the model potential is fitted to the single-particle spectra obtained
from microscopically selfconsistent Kohn-Sham-calculations using the jelium model and the local density
approximation. Employing Strutinsky’s shell correction method, the surface energy of the jellium model
is renormalized to its experimental value. The ground-state shapes are determined by simmuitanecns min-
imization of the deformation energies for quadrupole, hexadecapole and triaxial cluster deformations.

K. Clemenger was the first to interpref the fine struc-
ture of sodinm mass spectra 1] between the magic num-
bers N = 2,40,58,92... by spheroidal deformations [2].
In close analogy to the methods of nuclear physics, using
a modified Nilsson Hamiltonian [3] without spin-orbit in-
teraction he could show that it is indeed the splitting of
the energy levels due to the loss of spherical symmetry,
that yields stable deformed ground states. As a conse
quence of the Jahn-Teller effect, the subshell structure
leads to enhanced cluster stabilities between the spheri-
cal shells predicted first by W. Ekardt in the framework
of density functional theory [4]. In the meantime, cluster
deformations have been extensively studied using vari-
ous techniques. For clusters with N < 40, the results
of Clemenger’s phenomenological model have been con-
firmed by self-consistent caleulations (5,6}, which for axial
deformations recently have also been extended to hexade-
capole and octupole deformations [7]. Using Strutinsky’s
shell correction method {8], spheroidal [9,10] and gen-
eral axial shapes [11] of sodium clusters have been deter-
mined for much larger elusier sizes up to N = 800 atoms.
Using a deformed Woods-Saxon potential, a systematics
of cluster deformations for simultancous minimization of
five-dimensional multipolarity is given in Ref. [11].

In the present article, we extend the spheroidal
Nilsson-Clemenger model to triaxial cluster shapes. In
the original model, the equilibrium state of each cluster
is determined by a simple minimization of the sum over
the lowest occupied single-pariicle energies ;. It is al-
ready known from nuclear physics, that the sum of the
single-particle energies fails to correctly describe the de
formation energy of an interacting system. ‘Therefore,
we determine the total binding energy of a cluster by use
of the Strutinsky method {8] which ensures that the po-
tential energy is not double-counted. Furthermeore, the
surface energy of the jellium model can be renormalized
to its experimental value. The main idea of the Kohn-
Sham-Nilsson model (KSN) is to construct a mean-field
potential which in the spherical limit approximates the
single-particle spectra of selfconsistent Kolin-Sham

caleulations using the jellium model and the local density
approximation. Neglecting the spin-orbit term, we start
from the single-particle Hamiltonian

H = Hy, — U - higl®
1 {4
with Hp, =T+ ”g“ﬁwopz[l - -255'2 "‘I’;E' cosy - Yag +
2 47 sin
+ ‘3”52\/ ra '“"‘?‘T(Yzzz + Yo a) +
9 3 .
+ 2e4(cos*(3v/2) + 5 sin®(3v/2)) Y4 —

10 .
— 254% sm2(37/2)(Y43 + Y4_2) -+

Vo
+ 2e4 T sin®(3v/2)(Yas + Ya_a)}. §3]
We use the sirechted harmonic oscillator basis with the
three frequencies

Wi = w, (1 - ;e‘z-cos('y + 5-2-_—1}) , i=1,2,8 (2

The hamiltonian 1 has already been extensively used in
order to study the ground state shapes, isomeric siates
and fission barriers barriers. Using triaxially stretohed
coordinates as originally proposed by Nilsson {3],

M.
B
p° = 5 x;? is the radius vector in stretched coordinates.
As it has been shown in the originial work by Nilsson [3]
and later on for triaxial deformations by Larsson el al.
{12], the sirechted coordinates transform away the cou-
plings of states between different cscillator shells, which
simplifies the numerical caleulations very effectively. Fur
thermore, as the parity I = {1} is a good quantum
number, the single-pariicle states of even and odd par-
ity can be calculated separately, The eondition of volwne
consérvation is fulfilled by a scaling of wp. For a mote de-
tailed description of the triaxial Nilsson model we refer

to (121

Xi =T



The 12-term in Eq. 1 yields an intermediate between
a pure oscillator potential (I = 0} and a square well, It
has been shown in Ref. [9], that already the simple I*-
form of the Hamiltonian reproduces the spherical specira
of selfconsistent Kohn-Sham calculations extremely well.
Ii is therefore possible to determine the model parameter
U directly from the Kohn-Sham results of Ref. [13] and
to obtain a close conformity of the spherical spectrum
of the Hamiltonian { 1) with selfconsistent caleulations.
The detailed procedure is given in Ref. [9].

The overall energy scale of the potential is determined
by the value of Awp. In order to adjust it to the scale
of the KS spectrum, we relate it to the corresponding
mean square radius. For a harmonic oscillater, the virial
theorem yields

_ R¥(Ne+3/2)
ST

We use Eqg. 4 to determine (fiwg)Vodfor each main shell
Ng using the weighted average (r?)y, given by the KS
caleulations.

The cluster shapes are generated by the coordi-
nates €z, €4 and -, respectively. Hereby, £2 represents
quadrupole—, s4 hexadecapole—, and + axially asymmet-
ric deformations, According to the nomenclature of Hill
and Wheeler, v = 0° describes prolate and vy = 60°
oblate cluster shapes. Reflection asymmetric shapes are
not studied in the present work, we refer to [11,7) for a
more detailed study. Note, that the sign of ¢4 is cho-
sen opposite to the parametrization used in Refs. [11,7}
following the “Lund convention”.

As usual, the renormalized deformation energies are
calculated as the sum of the shell correction energy 0F,
and the smooth liquid drop part, for which we consider
only the deformation-dependent surface correction Eges
to the spherical drop energy '

(4)

AE.,urf = a2, - (Baurj(ﬁ'z,iq,"r) — 1) . N?/.‘S (5)

where a, = 0.79eV, N is the number of atoms and Byupy
is the? ratio of the 313{?{&(:(3 areas of the deformed and
spherical clusters keeping the volume constant. Curva-

f.tll‘e terms are not _incl\ided in the present calculations,
The total deformation energy is given by

Eﬂfﬂj(£?:£4: _:") = &Esurf -+ 58(52, [ T} (6)

D aleulats
é;:jr E.'ne ca.icmatxo'n of the shel] correction energy
’ J} 2', :,:, ¥), in Str.uhmsky’s averaging procedure we use
;»UE ‘:;1 ure correchion polynomial of the order 2M = 6
{cf. [14]}, w}nc.h {'ulﬁ-iﬁs the plateau condition with respect
Lo the averaging widths ¥ very well. In most cases, a
:,moau‘nnlg;;\itdths o;f -,ia 125wy is appropriate. For the
s;m:;:r;sa. .migos;aizsa:wzon! a sufficient number of shells
N, F - 3 1 .
B 3 18 included in the oscillator basis, such that con-

vergence i
g of the shell correctjng enetgies is reached within
a reasonable accuracy, .

B TR

In Figure 1 we show the contours of the deformation
energy surfaces of the clusters with N = 12,16,86 and
132 as an example, showing stable or meta-stable con-
figurations of ex and -, respectively. The the potential
energy surfaces (PES) are calculated at their hexade-
capole ground state deformation €4 given in the diagram.
For Na-12, the PES shows a single pronounced minimum
ab g9 == 0.52,e4 = ~0.03 and v = 32°*. The PES of
Na-16 has 2 minimum slightly more on the oblate side
(g2 = 0.48,24 = 0.69,y = 37°} and shows a prolate iso-
mer at £4 = 0.68, separated from the ground state by
a barrier of approximately (.3eV. Self-consistent calcula-
tions of nonaxial quadrupole deformations only find tri-
axiality for Na-12 and Na-16 [15]. The clusters Na-10,
Na-14 and Na-18 have been found to be axially symmet-
ric, which 1s in conformity with the KS results. The PES
of gquadrupole and hexadecapole deformations for axial
shapes {y = 0°,80°) agree very nicely in a range N < 30
with KSN. The sphericity of Na-40, however, is not re-
produced by the KSN. This is due to the KS spectrum
for a steep jellium, which places the 2p level in the middie
between the 1f and lg levels, destroying the NV == 40 shell
gap. Below and above the critical region around 40, how-
ever, the model is in accordance with the selfconsistent
and WS-calculations,

For larger clusters (Na-88 and Na-132 are shown in
the lower part of Figure 1), the PES show a tendency of
decreasing quadrupole deformations and show almost no
metastable minima for 2 Z0.5.

The minimized ground state deformations and shell en-
ergies are shown in Figure 2 for a size range 10 < NV <
200. Between the dominant spherical shells, strong sub-
shell closings appear between the so-called ‘magic num-
bers' N = 20, (36),58, 92,138, 192... indicated in the di-
agram. Tor large clusters, similar to the results of [11],
deformations on the prolate side {7y < 30°) predominate,
and most of the axial deformations on the oblate side
found in Ref, [9] become triaxial. Similar trends are
known from atomic puclet.

In summary, we have shown that stable triaxial ground
states exist for sodium clusters in a size range N < 200,
The dominant effects in deformation energies, however,
come from axially symmetric quadrupole and hexade-
capole effects, and triaxiality is expected to play a miner
role in order to explain subshell closings in the abundance
spectra. A more detailed analysis of the results, and in
particular the comparison of the separation energies to
the experimental cluster abundances of the Copenhagen
group for & < 400 [18], will be given elsewhere.

We thank M. Brack and Th. Hirschmann for extensive
discussions, which have been valuable contributions to

this work.
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Figure captions

Figure i: Contour diagrams of the PES for N =
12,16, 86, 132 for (&9, v) calculated at minimized £4. v =
0° corresponds to prolate, v+ = 60° to oblate cluster

shapes.

Figure 2: Shell energies and the corresponding ground
state deformations {£3,£4,7) for N < 200. In the up-
per part, the deformation energies corresponding to one-

and two-dimensional minimization of axially symmetric
shapes are also shown,
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