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Abstract: The Tilied Axis Cranking theory is used to describe the coexistence of high and low
K bands in yrast spectra of well deformed nuclei, magnetic rotation of transitional nuclei and to
calculate the parameters of a rotational hamiltionan with a fourfold symmetry axis that generates
Al = 4 staggering in the yrast band

The orientation of the deformed density distribution relative to the (space fixed) angu-
lar momentum vector becomes a useful concept at high spin. Tilted Axis Cranking (TAC)
[1] is the version of the meanfield theory that permits to calculate the the orientation of
the deformed field together with the parameters that define its shape. Since its introdue-
tion {2] it has turned out to be a reliable approximation to calculate both energies and
intra band transition probabilities. The possibility to construct classical vector diagrams
showing the angular momentum composition is of great help to understand the structure
of the rotational bands. In this talk I shall discuss three applications of TAC: i) multiband
spekira containing high and low K bands, ii} shears bands and magnetic rotation and iii)
an attempt to find the microscopic origin of Al = 4 staggering.

1 Multiband specira

In TAC one seeks HF solutions that rotate uniformly about the angular momentum axis
J that has a tilt with the symmetry axis of the deformed field. In order to find the angle
Y one diagonalizes the single particle routhian

h' = hgey — w(sin 91 + cos 7j3) w

where hg.; is the hamiltonian of the non rotating deformed field, containing pairing if
necessary. Fach configuration constructed from the single particle or quasiparticle levels
corresponds to a rotational band. Each band has its individual tilt that is determined by
minimizing the total routhian E'(w, ¥} at fixed w. At the minimum the angular momentum
vector and the angular velocity

J={3) &= (wsind,wcosd) {2}

are parallel [1]. As in the traditional cranking theory, which assumes that that axis of
rotation coincides with one of the principal axes of the deformed field (Principal Axis
Cranking - PAC), there exist several possibilities to calculate E’ from the single particle
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wavelunctions generated by (1), as e. g. Strutinsky renormalization or Skyrme HF. So
far, most calculations have been carried out in the HFB frame defined by the Pairing 4
QQ Interaction [1, 4]. If one is not interested in deformation changes it is sufficient to
minimize J5' = (A'). '

The results of the TAC calculations are interpreted in the following way:

¥ E'{w,d) has its minimum at ¥ == 0 the band has not started yet. These solutions
are disregarded. For each band there is a band head frequency (and spin as well) where
the curvature of £'(w, #) changes sign and the minimum begins to move towards 90°. The
band head frequency and spin are characteristic for each band and experimentally well
known.

Each TAC configuration represents a Al = 1 band (1. e. two degenerate signatures)
as long as 9 < 90°. When ¥ = 90° one has the ordinary PAC solution that is interpreted
as a Al = 2 band of the calculated signature. This change of interpretation leads to
a discontinuous description (what is a well known consequence of symmetry breaking).
However, there are no missing or extra states among the lowest bands. The only unphysical
feature is a jump of the unfavored signature branch instead of a continuous onset of
signature splitting,.

Using the constraint J = |J] = I+ 1 /2 one can fix the frequency w and calculate the
energy & = B’ + wJ. Often it is more convenient to introduce experimental routhians by
means of the relations

oI - 3) = 2 (E(D) - E(I-2)) 3)

B(I=3) = 3 (B(I)+ B(I = 2)) = (I ~ 2)(I - 3) (4)

The functions I{w)— 1 and E'(w), obtained in this way, can directly be compared with the
calculated quantities J(w) and E'{w). This has the advantage that one can choose how
accurately one wants to study the w - dependence. Fig. 1 gives an example. TAC calcu-
lations only are carried out for w = 0.15 and 0.30MeV. Ideally the calculated routhians




should lie at the intersections of the vertical lines with the experimental routhians. As
seen, there is reasonable correspondence. In particular, the relative position of the high
and low K bands is well accounted for. For the two bands denoted by K1 and K4 no
TAC solution is found at w = 0.15MeV. Accordingly they start above this frequency in
experiment. Note, eq.{3) differs from the definition of the frequency, usually used in CSM
(which corresponds to wy). Since no assumption about J3 (=K at the band head in CSM)
is imvolved, it i¢ free of any ambiguity.

The intraband transition probabilities are calculated by means of the semiclassical
expressions

BM1 = -S%Esin Tz + 2.9185, — 2.6153,) — cos H{J1n + 2.915;, — 2.6131;,)}2 (5)

BE2 = 51% [(sin )2eQ)” (6)

where the vectors of angular momentum , J, and of spin, § = {3) and the proton
quadrupole moment, Qo = {go) are calculated from the TAC conf. |). The free spin
magnetic moments are attenuated by a factor of 0.7. Examples of calculations of transi-
tion probabilities can be found in refs. [1, 3, 4, 5]

In order to test the reliability of the TAC approximation we have carried out extensive
comparisons of Two Particle + Rotor calculations with the TAC approximation to this
model. Typically it is found that TAC describes rather well both the energies and the
intra band transition probabilities of at least the lowest 5 bands. The agreement deteri-
orates with the excitation energy. It turns out that for high K bands only TAC gives a
reliable description, whereas the procedures based PAC become problematic. The version
that keeps J3 constant equal to the A value at the band head becomes inaccurate for
high spin, since even small changes of J3 lead to substantjal changes of the energies and
transition probabilities. The other procedure that uses J; = ./ (jg) fails if more than
one quasiparticle contribute to the total value of J3. For example, if the proton and the
reutron both have the same & then one has a K = 0 and a K = 2k band, whereas the
PAC prescription results in two bands with K = /2k.

2 Magnetic Rotation

The recently discovered shears bands in the nuclei around *°°Pb ( c. . e. g. [4] and the
lecture by M. Hiibel) represent a new kind of rotation, whose nature was first understood
in the framework of the TAC [1]. The experimental evidence is the observation of regular
sequences of magnetic dipole transitions in the irregular spectra that are characteristic for
spherical nuclei. The BM1 values are very large (several p%). If seen at all, the crossover
transitions have very small BE2 values {Q; < 1{eb)?). Thus, one observes very regulur
bands with a substantial dynamic moment of inertia (7% ~ 15..25MeV=1} in nuclei that
are almost spherical.

The explanation of this apparent paradox is the shears mechanism that is illustrated
in fig. 2. The active high j orbitals are iy3/y and hgs protons and i3/, nentron holes.
The nucleus has a slight oblate deformation {g5 ~ —0.1). This deformed field tends to
align the protons with the symmetry axis 3 and the neutron holes with the 1 - axis, since
the former have toroidal the latter dumbbell like density distributions. The bands start
with 7, perpendicular to 7x. Along the band angular momentum and energy increase by
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Figure 2: Angular momentum composition of the shears  band
ﬂ’hg/:z, Tz T [51/2 {Ww/z] n 198:200ph (from [4})

simultaneous alignment of both vectors with the total angular momentum J, which keeps
an angle of about 45° with the symmetry axis. The name "shears bands” alludes to the
similarity with closing a pair of shears for sheep {which has a spring to keep it open).

Calculations based on the Pairing + QQ version of TAC account well for the energies
and spins of the shears bands observed in *¥7-291Pb [1, 4]. It turns out that most of
the dynamic moment of inertia results from the shears mechanism, the part due to the
deformation is about TMeV 1. The very small BE2 values are also well reproduced. TAC
predicts BM1 values in the order of 5u%, which decrease with angular momentum. The
decrease is a direct consequence of the shears mechanism, since closing the blades reduces
the length of the component of the magnetic dipole moment perpendicular to J. The M1
lifetime measurements are discussed in the lectures by H. Hiibel [6] and R. Clazk [7]. Some
of the experimental BM1 values show the decrease with spin but some not. If seems to
be imaportant to clarify whether there exists a systematic discrepancy between theory and
experimens.

States that are related to each other by recoupling of high ] orbitals are quite com-
mon in nuclei with small deformation. They are also connected by fast M1 transifions.
However, they do not show the regular level spacings over many spin values that jus-
tify the name band. In order to find the relation between these "multiplets” and the
shears bands, we have studied the origin of the regular spacing by means of the spher-
ical shell model. In order to keep to computational effort within reasonable limits we
study the following model: The configuration space for neutrons is {iy3/5]™", n = 1,2 and
[pl/?:pSf‘.Z: fs72l®, m = 0,...,12. For the protons we assume the stretched configuration
[hgfztlgizz‘]“ 11 combined thh [s1/21” ~2, We use experimental spherical single particle lev-
els and a surface & - interaction, whose strength is adjusted to the spherical spectra of the
region. Effective charges and g -factors typical for the region are used. The physics of this
model amounts to freeze the proton blade of the shears but to let the neutrons do what
they like.

The calculations reproduce fairly well the energies and transition probabilities of the
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observed shears bands. The BM1 values show the characteristic decrease with spin. Fig. 3
shows as an example the function I{w) for two configurations in *°°Pb, where AB contains
two and AE only one viyasp holes. It illustrates the general tendency that the more high
j - orbitals are forming the blade the more regular the band becomes. This holds also for
the different proton configurations, which we have studied as well.

A second feature is illustrated by fig. 4 that summarizes the results for two 4;53/,
neutron holes and different even numbers of neutrons in the fp states. There is a general
increase of the energy with the angular momentum . This is a consequence of the short
range interaction, which prefers a perpendicular orientation of the angular momentum
vectors of the protons and neutron holes, because their spatial density distributions are
tori or dumbbells, respectively. The level spacings are irregular if the fp shell is empty
or full. The wavefunciions show that this irregularity is accompanied by changes of the
orientation of the two 7,379 neutron holes relative to each other. Regular bands appear only
in the middle of the fp shell, where the wavelunctions show that the two i35/ neutron holes
are predominantly coupled to J == 12. There is a gradual transition from the multiplets to
the shears bands. Hence, the fp neutrons act ag a kind of glue that keeps the two neutron
holes in stretched coupling. Such a long stiff neutron blade can take on many different
orientations with respect to the proton blade, resulting in a regular shears band.

How does the glue act? The wave function of the fp neutrons is mainly composed of
states with J = 0,2,4, which may combine to a slightly deformed density distribution.
The following feedback mechnism seems to be active:

On the one hand, the slightly deformed fp density aligns the orbitals forming a blade, on
the other hand, the spatial density disiributions of these orbitels induee the deformation
of the fp density. :

Regular shears bands appear only if this feedback is strong enough. If fewer high j orbitals
are involved or the low j orbitals are less polarizable, the sequence of the M1 transitions
becomes less regular. Also experimentally, the regular shears bands and the irregular
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multiplets are just the two limits of a variety of more or less regular M1 sequences.

The regular M1 sequences with the very weak crossover E2 transitions suggest the
concept of magnetic rotation. The name accounts for the fact that it is the magnetic
dipole vector what rotates about the angular momentum vector. In the case of the famil-
iar rotation of well deformed nuclei this role is played by the deformed electrical charge
distribution. Thus in this context, the name electrical rotation seems to be appropriate
for it. The analogies and differences of the two types of rotation are listed in the fable.
Magnetic rotation extends our concept of collective rotation, emphasizing the fact that it
is not always the spatial density distribution that defines the orientation.

Magnetic and electric rotation appear often combined, like e. g. in many high K bands
of well deformed nuclei. The new aspect is that there are cases when the electrical part is
strongly suppressed or almost absent. Fig. 5 gives an overview where such situations may
be expected. The shears bands in the light Pb isotopes and their neighbors are examples
of rather pure magnetic rotation. Many regular AJ = I sequences with high BM1 values
are also found around Z = 60 and N = 70. There, the electric part is stronger, since one
is further in the open shell where the deformation is larger. It would be interesting to

study the nuclei closer to Z = 50 and ¥ = 82 , where a smaller electrical component is
expected.



Electric and Magnetic Rotation

Al = 2 Characteristic of Al=1
ordinary bands rotational bands shears bands
regular

— Ey xl
gradual alignment gradual alignment

of many short vectors of few long vectors

s
1)

E2 enhanced transitions M1

possibily to define
the orientation
(with respect to

the a. m. vector)

electric quadrupole | large,collective magnetic dipole
mass distribution isotropy broken current distribution
_ "inertia”
classic and quantal J® = AI/AE, quantal
electric rotation magnetic

Table 1: The relation between electric and magnetic rotation
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Figure 5: Appearance of magnetic rotation. Full drawn lines indicate the location of the
high j particles and dashed ones of the high j holes. The grey scale gives the deformation.
The corners where fall and dashed lines intersect are particularly favorate for magnetic
rotation.

Weakly deformed nuclei may show regular rotational sequences. These are not related
to deformed configurations coexisting with the spherical ones. They are a the manifestation
the rotation of a long magnetic dipole vector, which breaks the spatial isotropy. ‘The finger

print of this magnetic rotation are bands with strong M1 and very weak E2 crossover
transitions.

3 Al=4 staggering

It has recently been found that some superdeformed AT = 2 bands in the mass 150 and 190
regions {8, 9] but also normally deformed nuclei [10, 11] show a slight Al = 4 staggering,
i. e. the curve found by interpolating the sequence I = Ip -+ 4n is by a few keV displaced
form the curve obiained by interpolating the sequence I = Iy+ 2+ 4n. This energy
displacement has been interpreted as a consequence of an inherent fourfold symmetry.
The subject is discussed in the lectures by I. Hamamoto, B. Mottelson and I. Pavlichenko
{12, 13}. Hamamoto and Mottelson ascribe the staggering to a nonaxial deformation that
makes the long axis of the nucleus to a fourfold (C4) symmetry axis. In their approach
the bands are described by the rotational hamiltonian

H= ML+ AR L By(I7~ 13, A=As— A= 5(7 -7 ) (7)
3 1




(We have added the first term that is unimportant for the staggering.) It is found that a
sizable staggering appears only if By/A > 10~2.

As an alternative to Hamamoto’s and Mottelson’s explanation of the origin of the
staggering we trace it back to the restriction of the basis in a bandmixing picture {c. {. also
the poster by A. Macciavelli et al. at this conference [14]). Using the conjugate variables
Iz and ¢ , where ¢ is the angle appearing for T in polar coordinates, the hamiltonian (7)
is given by (c. f. [12])

H = Ay 1%+ AL + ByI*(cos 2¢)7 (8)
In the basis | K’} of the eigenfunctions of /3 one has
K 2Ky = —nf L x5
(K(cos2¢)°| K"} = T OKK k4 + FOKK N o (9)

As a consequence of the Cy symmetry, the hamiltonian couples K only in steps of 4. The
eigenvalue problem corresponds to a harmonic oscillator with the spring constant ' = 24
an the mass parameter M = (2I431)"1. The ground state probability distribution has
the width AK = I(B;/A)*/4. There is the additional constraint that X < I. The fact
that all components with K > I must be equal to zero makes the yrast energy somewhat
larger than the one of the oscillator without the constraint. The constraint is relaxed
with increasing I but only in steps of 4, since the K values differ by 4. The AT = 4
staggering reflects the fact that every 4 units in I there is a relaxation giving rise to an
extra energy gain. However, sizable staggering appears only, if the wavefunction is large
enough for K = I to experience the constraint. The numerical calculaiions indicate that
this is the case for ¥(K = I)? > 5x 107% or Bj/A > 1072 From the uncertainty principle
it follows that the distribution in ¢ must must be sufficiently narrow (Aé ~ 1/AK). This
localization requires a sufficiently strong ¢ - dependence of H.

We have used TAC to investigate whether a deformation of the Cy type is able to
generate staggering. Our approach is the following: As any Cranking theory, TAC only
permits to calculate the classical energy. This function E(I,¥,¢) is compared with the
energy obtained from the rotational hamiltonian (7) by substituting for the angular mo-
mentum operator I the classical vector J. In other words, the rotational hamiltonian is
constructed by gquantizing the classical one calculated by means of TAC.

We find the single particle states generated by the TAC routhian

R = hmho(€2) = Buwoessp?(Via + Yacs) =& -7 (10)
& = w{sinJ cos ¢, sin J sin ¢, cos F) {11)

as functions of the orientation of the angular velocity, where h,,p.(22) is the standard
Nilsson hamiltonian. The classical energy is calculated as

E(I,9,8)= (Y +6-J {12)

where J = (7} and w is chosen such that J = I + 1/2.

As an example, we study Z = 80 and N = 114 with the deformations gp = 0.42 and
€4+=0.1 at the angular momentum J = 39 corresponding to w = 0.3MeV. The deformed
potential substantially deviates from axial symmetry. Its shape looks like of & double
pyramid with rounded edges. '

As seen from eq. (8), the fourth oder term disappears for ¢ = 45 and the angular
momenium components should be given by the relation

Ji = Rwsind Jz = Fawceosd {13}
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fixing the two moments of inertia. Fig. 6 shows the calculated angular momenta. The
component along the short axis shows the expected dependence, where J; = 0.13keV 1,
The function Js(?¥) shows steps, indicating rearrangements of particles. Hence, even with
the assumed large €44 value the long axis is not very collective and the application of a
pure rotor hamiltonian at such high angular momentum is problematic. Accordingly, the
determination of Js becomes to certain extend ambiguous. We find 73 = 0.07keV ™ if we
decide to follow the steps adiabatically or /3 = 0.02keV ! if the configuration at ¥ = 90°
is kept fixed { c. f. the dashed lines in fig. 6). Hence, our calculations place A in the
interval dkeV < A < 21keV.

The function E(J,? = 90°,¢) follows the expected (cos(2¢))* dependence to a good
approximation. For the coefficient we find By J* = 50keV and 370keV for the yrast and the
lowest neutron p - h excitation, which correspond to to By = 2X 1073keV and 1x 10 %keV,
respectively. Even if the lower limit A = TkeV is assumed the ratio By /A ~ 104,105
This is much too small to generate any sizable staggering. In order to localize ¢ sufficiently
one needs By > 1072 x A, corresponding to the coefficient By J* > 180MeV for J = 40.
It seems hard to imagine how a deformed potential could be capable of producing such a
high barrier between the four minima of E(¢).

Assuming a substantial Cy distortion for superdeformed 1% s we are able to construct
a classical hamiltonian that has the form of the rotational hamiltonian used by Hamamoto
and Mottelson to describe the AJ = 4 staggering. However, the calculated variation of
the energy when turning the angular momentum vector around the (4 axis is by far to
small to allow the quantized version of this hamiltonian to generate a staggering of the
observed order of magnitude.
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