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Abstract 

We investigate the behaviour of resonances as a function of the coupling strength be- 
tween bound and unbound states on the basis of a simple S-matrix model. Resonance 
energies and widths are calculated for weil isolated, overlapping and strongly over- 
lapping resonance states. The formation of shorter and longer time scales (trapping 
effect) is traced. We illustrate that the Cross section results froni an interference of all 
resonance states in spite of the fact that their lifetimes may be very different. 

1 Introduction 

High-resolution investigations of resonance phenomena in chemical, atomic and nuclear 
systems became possible in recent years. They require an adequate theoretical treat- 
ment of the individual resonance states since it is insufficient, generally, to calculate 
average values of, e.g., the widths. 

As an example, intensive experimental investigations of the large angle heavy-ion scat- 
tering have shown [I] that the standard nuclear reaction theory fails in describing the 
data due to the very complex reaction mechanism. The presence in the excitation fuuc- 
tions of both narrow and broad structures indicates that there is an interplay of various 
reaction times, ranging from the lifetime of the compound nucleus to the time assaci- 
ated with shape resonances in the ion-ion potential. As a conclusion, the authors of [I] 
state, a challenging problern is the development of a reaction theory twhich rncompassss 
simultaneousiy 60th ~ h o r k r  und longer time scales so that gross, intermediate a7ld/0~ 
fine structures und the gradual dissolution of one into the other can be qilanfitatively 
described. 

Much effort has been devoted to the theoretical investigation of the resoliance phe- 
nomena at high level density P] - [16]. The main result is the following: Whm the 



resonances start to overlap, a redistribution of the spectroscopic values takes place. 
The widths of a few resonance states increase while the widths of the remaining ones 
desrease. The resulting Separation of different time scales may amoitnt up to more than 
one order of magnitude. This so-called trapping effect is observed in the frame of dif- 
ferent models and in different many-particle systerns such as nuclei and molecules. In 
these theoretical investigations gross, intermediate and fine structures and the gradual 
dissolution of one into the other can be traced. 

The trapping effect occurs hierarchically [E]. In nuclear physics, this phenomenon is 
described by the doorway pictnre. A similar mechanism is discussed recently in quan- 
turn chemistry 11.51, [16]. This Situation corresponds to the most complicated one, in 
which long-lived and short-lived resonances appear and the interferences between thern 
cannot be neglected. 

It is the aim of the present paper to investigate the S-matrix landscape and the corre- 
sponding Argand diagrams together with the cross section as a function of the coupling 
strength a between bound and nnbound states. The coupling strength a determines the 
degree of resonance overlapping. The S-matrix landscape obtained in our calculations 
shows very clearly the formationof different time scales beyond a critical value a = amt. 
At a o! aWit the short-lived resonances are Seen in low resolution experiments while 
the long-lived ones do give almost no contribution to the cross section. In contrast to 
this, the long-lived resonances are relevant in liigli resolution experiments where they 
appear an the backpund of the short-lived resonances. At a acvit, short-lived and 
lang-lived resonances appear simultaneonsly. 

in Sect. 2 of the present paper, the model is sketched while the numerical results ob- 
tained are presented in Sect. 3 and discnssecl in Sect. 4. Some conclusions are drawn 
in the last section. 

2 Model calculations 

The model used is described e.g. in [17]. For convention, it will be outlined here. 

W are going to investigate a system of N bound states coupled to a set of 11 Open 
reaction channels. The total Kamiltonian of the system looks like 



where I Q;),i = I, ..., Ar,N » 1, are the wave functions of the IV bound states, 
1 ) I$) ,  C = 1 ,  .... A, A < iV, denote the wave functions of h decay channels coupled 
to tbe bound states by an interaction VC with components 

- 
T(&) = (V; 1 &V 1 x J E ) ) ,  i = 1, ..., ]V, C = 1, ..., A. (2) 

The coupling vectors VC [Y];=I, ...,,V are supposed to be pairwise orthogonal, so we 
neglect direct (fast) reactions. The average value of the coupling matrix element 

is a measure of the coupling strength to the corresponding channel. Here, E is the 
energy of the system. 

In the following, we restrict ourselves to a finite energy region where the vectors V C  rnay 
be considered as energy-independent. Further, we restrict onsselves to time reversible 
systems. In this case both, and VC , are real. 

We choose the .W X N matrix H by drawing the matrix elements raadomly &om a 
Gaussian distribution with 

For large N the spectxum is codned to the energy region j B I< 2iWeV 

Analogously, the coupling vectors VC are ddrwn froni a Gaussian witli meau v&e zero 
and variance ((V)') = cu. 

The scattering matrix Sd,a, b = 1, ..., A, corresponding t~ t'rie Wamiltonian (1) hoks ati 
P7, 71 

N 

where 
n 

Dzj(E) = E&, - Hij + i.i; ~ y .  
e=l 

(63 
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Table 1: Mean degree of overlap r / d  of all (second column) and all hut the three 
broadest resonances (third column) as a function of a 

- -  - 
a r / d  r,,/z 

column of fig.(2). The Argand diagrarn makes a circle-like move in the vicinity of res- 
onance energies. In correspondence to this, the cross section, U , shows almost isolated 
resonances. 

At a = 0.010 jfig. 2b), a = 0.015 (fig. 2c), a = 0.020 (fig. 2d) three poles are separat- 
ing froni the other ones. The remaining 13 poles can be identified with a proper energy 
resolution. The cross section, ull, does not longer show well isolated resonances. The 
Argand diagram occupies the vvhole space allowed due to the unitarity of the S-inatrix. 
Tlie slopes and kinks correspond to energies, where a broad resonance passes (in Re(E)) 
near a nasrow one (e.g. uear E N 0.025, E i s  in arbitrary units). 

The next coupling strength, a = 0.100 (fig. 213) is well beyond the critical region. Here, 
the three broad resonances in the cross sections are clearly formed (see columns 2 and - 
3 of table 1, where the overlap of the narrow resonances, I',/d, is compared to the total - - 
overlap r /d) .  This correspouds to the fact that A = 3 decay channels are Open. The 
landscape near the real axis is showii in fig. 3b. 

A further growing of the coupling strength, cu = 2.000 (fig. 2f), causes the formation of 
dips instead of resonances in the cross section. Three poles are well separated from t11e 
other ones (as a consequence of the sniall numher of Open decay channels N » h = 3). 
Their widths are much larger tlian the widths of the long-lived resonances near the real 
energy axis. The latter are shown in another scale in fig. 3c (note the smaller steps of 
1 &(E) I in the region 1.00 to 1.10). Orie clearly sees, that an accurate description of 
all resonances requires two energy resolution scales, at least in the presented theoretical 
treatment. For nearly all energies the phase of Si1 is now concentrated at  an argiiment 
of 6 = 71- what corresponds to the formation of dips in the cross section. 



The cross sections and Argand diagrams for a = 2.000 corresponding to the inelastic 
channels 1 + 2 and 1 + 3 are shown in fig. 4. Here, the cross sections show isolated 
resonances and the Argand diagrams are concentrated at  small Re(S12), Irn(Sli) and 
Re(S13), Im(&,), respectively. Note, that direct channel-channel coupling has been 
neglected in our calculations. 

4 Discussion of the results 

The study of Argand diagrams enables us to clarify the role of the unitarity of the 
S-matrix, S ~ S  = 1, in the interference picture of the cross section in each reaction 
channel. 

For well isolated resonances, e.g. fig. 2a , the Argand diagram represents a unit circle 
xound the origin in the complex Sil -plane. So, in the regarded channel in the vicinity 
of the resonance eriergy nearly all flux is concentrated on this resonance. The interfer- 
ences with other states are negligible. 

4 growing coupling constant a causes a stronger interfcrence with other resonances. 
Near a = it can no longer be neglected, cf. figs. 2b, 2c, and 2d, because an 
intensive exchange between resonances and different channels takes place. Here. the 
resonances start to overlap, cf. table 1. Intermediate and fine structures appear in tlie 
cross section. 

Further growing coupling strength a causes the phase 6 of SI* preferably to be near 
6 = n, see fig. 2f. That means, the resonances appear on a large background in the 
elastic chan~iel. Due to the unitarity of the S-matrix; this is possible only by €ormation 
of (isolated) dips in the cross section instead of (isolated) resonances (fig. 2f). The 
interference between sliort-lived and long-lived resonances becomes important: the av- 
eraged elastic cross section is not larger but smaller tlian the cross section caused by 
the short-lived states alone (for a nunierical example see [lS]). In the inelastic channels, 
resonances apppear. 

Regaxding the landscapes of I Sll(E) I one must state that in investigations with dif- 
ferent resolutions, different C-matrix poles are relevant. The long-lived resonances in 
figs. 3 3 ,  C and the short lived ones in fig. 2e, cannot be seeu simultaneously. 

These results show h w  gross, intermediate and fine structures arise in the cross section. 
They can be described only if the interferences between all resonances are taken into 
account. 



5 Conclusions 

We investigated the resonance phenomena as a function of the degree of overlap simu- 
lated in our calculations by the coupling strength CI between bound and unbouud states. 
We traced the picture from a situation with weil isolated resonances to  that one with 
strongly overlapping resonances. In any case, the theoretical description encompasses 
simultaneously both shorter and larger time - scales. - Most interesting is the critical re- 
gion, ~ ~ ~ ~ 0 . 0 1 0  to 0.020, corresponding to r / d  N 0.8 to 1.6, where the separation of 
different time scales starts. Here, the resonances overlap and the Argand diagrarn has a 
complicated structure. The cross section results from an intevference picfu~e to which 
all resonances give a contribution. 

We also investigated the separation of different types of S-matris poles. Our model 
provides a good demonstration of the trapping phenomenon for the relatively low nurn- 
ber, N = 16, of resonances. The results illustrate the formation of gross, intermediate 
and fine structures in the cross section corresponding to the existence of different time 
scales of the process. 

The existence of a hierarchy of short and lang h i n g  states is known in riuclear physics 
studies, e.g. in heavy ion scattering. It is; however, discussecl also in niany-body scat- 
tering problems of molecular physics ancl in problems of atomic and solid state physics, 
as well as in the scattering of electrons or light waves by disordered media. 
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Figure 1 

The widths Fi,i = 1, ..., Ar, in dependence on the coupling strength a. The N = 16 
bound states are distributed randomly. The calculation is performed in steps of 
h a  = 0.002. 

Figure 2 

Landscape of I Sii(E) I over the complex energy plane, the elastic coupling Cross sec- 
tions ali(E) =/ 1 - &(E) I', and Argand diagrams for N = 16 resonances and A = 3 
Open channels for different d u e s  of the coupling constant cu: (a) a = 0.002, (b) 
(2 = 0.010, - (C) - a. = 0.015, (d) a  = 0.020, (e )  cu = 0.100, ( f )  a  = 2.000, corre- 
sponding to F/d 0.15, 0.77, 1.20, 1.63, 10.20 and 202.54, respectively. The contour 
lines in the left column correspond to 1 Stl(E) I= 1.0, ..., 5.0 and are equidistant with 
a differente of 5 I Sll(E) I= 0.1 for figs. a, b, C and d, while they correspond to 
I Sl l(E) I= 1.0 ,..., 20.0 with h I Sll(E) I= 0.5 for fig. e and to 1 Sl i(E) I =  1.0, ..., 81.0, 
4 f Sll(E) I= 4.0 for fig. f. Note tIie different Im(E)-scaIe on the left hand side of figs. 



e and f! 

Figure 3 

Enlarged details of figs. 2a, 2e and 2f, correspondingly, showing the landscape of 
j SII(E) / near the real energy axis. Here, the contour lines correspond to I Sli(E) ]= 
1.0 ,..., 1.2,A 1 S„(E) I =  0.Olforfig. a, and to I Sii(E) I= 1.0 ,..., 5.0 ,4  1 Sll(E) I =  0.1 
for fig. b. For fig. C the contour lines run from I Sll(E) 1- 1.00, ..., 1.10 with a step of 
4 I &(E) I =  0.01 and from I &(E) I =  1.1,..„2.0 with a step of 4 / Sll(E) I =  0.1. 
Note the different Im(E)-scales! 

Figure 4 

The inelastic reaction Cross sections oiz(E) = I  &(E) 1' and PI@) = I  &(E) j2 ; and 
the corresponding Argand diagrams for N = 16 resonances, il = 3 Open decay channels 
and a = 2.000. 
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