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Abétract

We investigate the behaviour of resonances as a function of the coupling strength be-
tween bound and unbound states on the basis of a simple S-matrix model. Resonance
energies and widths are calculated for well isolated, overlapping and strongly over-
lapping resonance states. The formation of shorter and longer time scales (trapping
effect) is traced. We illustrate that the cross section results from an interference of all
resonance states in spite of the fact that their lifetimes may be very different.

1 Introduction

High-resolution investigations of resonance phenomena in chemical, atomic and nuclear
systems became possible in recent years. They require an adequate theoretical treat-
ment of the individual resonance states since it is insufficient, generally, to calculate
average values of, e.g., the widths.

As an example, intensive experimental investigations of the large angle heavy-ion scat-
tering have shown {1] that the standard nuclear reaction theory fails in describing the
data due to the very complex reaction mechanism. The presence in the excitation func-
tions of both narrow and broad structures indicates that there is an interplay of various
reaction times, ranging from the lifetime of the compound nucleus to the time associ-
ated with shape resonances in the ion-ion potential. As a conclusion, the authors of {1]
state, a challenging problem is the development of a reaction theory which encompasses
simultaneously both shorter and longer time scales so that gross, intermediate and/or
fine structures and the gradual dissolution of one inlo the other can be quantitatively
described,

Much effort has been devoted to the theoretical investigation of the resonance phe-
nomena at high level density {2] - [16]. The main result is the following: When the .




resonances start to overlap, a redistribution of the spectroscopic values takes place.
The widths of a few resonance states increase while the widths of the remaining ones
desrease. The resulting separation of different time scales may amount up to more than
one order of magnitude. This so-called trapping effect is observed in the frame of dif.
ferent models and in different many-particle systems such as nuclei and molecules. In
these theoretical investigations gross, intermediate and fine structures and the gradual
dissolution of one into the other can be traced.

The trapping effect occurs hierarchically [12]. In nuclear physics, this phenomenon is
described by the doorway picture. A similar mechanism is discussed recently in quan-
tum chemistry {15], [16]. This situation corresponds to the most complicated one, in
which long-lived and short-lived resonances appear and the interferences between them
cannot be neglecied.

It is the aim of the present paper to investigate the S-matrix landscape and the corre-
sponding Argand diagrams together with the cross section as a function of the coupling
strength « between bound and unbound states. The coupling strength o determines the
degree of resonance overlapping, The S-matrix landscape obtained in our calculations
shows very clearly the formation of different time scales beyond a critical value o = agy.
At a > oy the short-lived resonances are seen in low resolution experiments while
the long-lived ones do give almost no contribution to the cross secti.on. In contrast to
this, the long-lived resonances are relevant in high resolution experiments whﬁere they
appear on the background of the short-lived resonances. At o & o, short-lived and
long-lived resonances appear simultaneously.

In Sect. 2 of the present paper, the model is sketched while the numerical results ob-

tained are presented in Sect. 3 and discussed in Sect. 4. Some conclusions are drawn
in the last section.

2 Model calculations
The model used is described e.g. in [17]. For convention, it will be outlined here.

We are going to investigate a system of N bound states coupled to a set of A open
reaction channels. The total Hamiltonian of the system looks like
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where | ¥;),i = 1,..,N,N > 1, are the wave functions of the N bound states,
bxehe = 1,..,A,A & N, denote the wave functions of A decay channels coupled
to the bound states by an interaction V* with components ‘

Ve(e) = (W | vaV [ xe(e)), i = 1, N, e=1,.,A, (2)

The coupling vectors V¢ = [V];=,.. v are supposed to be pairwise orthogonal, so we
neglect direct (fast) reactions. The average value of the coupling matrix element
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is a measure of the coupling strength to the corresponding channel. Here, ¢ is the

energy of the system.

In the following, we restrict ourselves to a finite energy region where the vectors V° may
be considered as energy-independent. Further, we restrict ourselves to time reversible
systems. In this case both, H;; and V¢ , are real.

We choose the N x IN matrix H by drawing the matrix elements randomly from a
Gaussian distribution with
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For large N the spectrum is confined to the energy region | £ |< 2MeV.

Analogously, the coupling vectors V* are drawn from a Gaussian with mean value zero
and variance ({V)%) = o

The scattering matrix S, @, b = 1,..., A, corresponding to the Hamiltonian {1} lnvoks as
(17, 7]
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Egs. (5),(6) allow us to find the S-matrix poles as the complex eigenvalues, E; — 3l
of an effective Hamiltonian. :

A
Hif'e; = (Hy - ix Yy VEVF) 0, (1)

cu]

From these poles, the energies, E;, and widths, I';, of the resonances are found. It is just

equation(7) that is numerically treated in the present paper for a randomly choosen set
of Hy; and V7 VF .

Finally, we have to emphasize that the model used works far from thresholds. It starts
with /V resonances states and neglects the direct reaction part as well as channel-channel
coupling,.

3 Results

We have calculated the widths of the resonant states, the landscapes of
| S1a(E) [, =1,2,3, in the complex energy plane (i.e. the lines of equal values of
[ S1a(E) | in the (Re(E),Im(E)) - plane), the elastic and inelastic cross sections
O1n =| 81 — Sin(B) ’,n = 1,2,3, and Argand diagrams for N = 16 resonance states
and A = 3 channels { the Argand diagrams being the energy dependent location of
the S-matrix values in the (ReS,, ImS;,) - plane, where only the real energy axis is
regarded, i.e. Im(E) = Q). The coupling strength « is varied between @ == 0.002 and
o = 2.000. This corresponds to a I'/d = 0.15 to I'/d = 200 (where T', d denote the
average resonance widths and distances, respectively), so covering an area from well
isolated to strongly overlapping resonances, see table 1.

In fig. 1 we have shown all [';(e),7 = 1,..., N, i order to illustrate the critical value
@& = Crriy around which the redistribution of resonance widths takes place.

In the left part of fig. 2, the motion of the poles of Si; can be seen from the
| $11.(£) |-landscapes, while in the middle the cross section is represented and in the
right part the Argand diagrams. A significant absorption into other channels can be
seen, | 511(£) |< 1. Note that for all regarded cases Sy; in the Argand diagrams moves
counterclockwise with growing energies.

As long as the coupling strength « is small, o = 0.002, all the poles of the S-matrix are
close to the real energy axis (fig. 2a). This region is enlarged represented in fig. 3a.

The phase, §, of 511, 6 = arctan (%%), is concentrated near § = 0 (see the right
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Table 1: Mean degree of overlap I'/d of all (second column) and all but the three
broadest resonances (third column) as a function of &

o T/d T

0.002 015 0.12
0.010 0.77 0.51
0.015 120 066
0.020 163 0.75
0.100 10.20 0.70
2.000 20254 0.04

column of fig.(2). The Argand diagram makes a circle-like move in the vicinity of res-
onance energies. In correspondence to &his, the cross section, ¢ , shows almost isolated
resonances.

At o = 0.010 {fig. 2b), o = 0.015 (fig. 2¢), @ == 0.020 (fig. 2d} three poles are separat-
ing from the other ones. The remaining 13 poles can be identified with a proper energy
resolution. The cross section, o171, does not longer show well isolated resonances. The
Argand diagram occupies the whole space allowed due to the unitarity of the S-matrix.
The slopes and kinks correspond to energies, where a broad resonance passes (in Re( E))
near a narrow one {e.g. near £ = (0.025, E is in arbitrary umits).

The next coupling strength, o = 0.100 (fig. 2e) is well beyond the critical region. Here,
the three broad resonances in the cross sections are clearly formed (see columns 2 and
3 of table 1, where the overlap of the narrow resonances, ', /d, is compared to the total
overlap T'/d). This corresponds to the fact that A = 3 decay channels are open. The
landscape near the real axis is shown in fig. 3b.

A further growing of the coupling strength, o = 2.000 {fig. 2{), causes the formation of
dips instead of resonances in the cross section. Three poles are well separated from the
other ones (as a consequence of the small number of open decay channels N >» A = 3).
Their widths are much larger than the widths of the long-lived resonances near the real
energy axis. The latter are shown in another scale in fig. 3c (note the smaller steps of
| S11(E) | in the region 1.00 to 1.10). One clearly sees, that an accurate description of
all resonances requires two energy resolution scales, at least in the presented theoretical
treatment. For nearly all energies the phase of 51; is now concentrated at an argumnent
of § = = what corresponds to the formation of dips in the cross section.



The cross sections and Argand diagrams for o = 2.000 corresponding to the inelastic
channels 1 = 2 and 1 = 3 are shown in fig. 4. Here, the cross sections show isolated
resonances and the Argand diagrams are concentrated at small Re(Sy;), Im(S12) and
Re(S13), Im(Sy3), respectively. Note, that direct channel-channel coupling has been
neglected in our calculations.

4 Discussion of the results

The study of Argand diagrams enables us to clarify the role of the unitarity of the

S-matrix, S tg = 1, in the interference picture of the cross section in each reaction
channel.

For well isolated resonances, e.g. fig. 2a , the Argand diagram represents a unit circle
around the origin in the complex Si; -plane. So, in the regarded channel in the vicinity
of the resonance energy nearly all flux is concentrated on this resonance. The interfer-
ences with other states are negligible.

A growing coupling constant o causes a stronger interference with other resonances.
Near & = o it can no longer be neglected, cf. figs. 2b, 2c, and 2d, because an
intensive exchange between resonances and different channels takes place. Here, the
resonances start to overlap, cf. table 1. Intermediate and fine structures appear in the
cross section.

Further growing coupling strength « causes the phase § of Sy preferably to be near
§ = =, see fig. 2f. That means, the resonances appear on a large background in the
elastic channel. Due to the unitarity of the S-matrix, this is possible only by formation
of {isolated) dips in the cross section instead of (isolated) resonances (fig. 2f). The
interference between short-lived and long-lived resonances becomes important: the av-
eraged elastic cross section is not larger but smaller than the cross section caused by
the short-lived states alone (for a numerical example see [18]). In the inelastic channels,
Tesonances appear.

Regarding the landscapes of | $1;(F) | one must state that in investigations with dif-
ferent resolutions, different S-matrix poles are relevant. The long-lived resonances in
figs. 3b, ¢ and the short lived ones in fig. 2e, cannot be seen simultaneously.

These results show how gross, intermediate and fine structures arise in the cross section.
They can be described only if the interferences between all resonances are taken into
account.




5 Conclusions

We investigated the resonance phenomena as a function of the degree of overlap simu-
lated in our calculations by the coupling strength & between bound and unbound states.
We traced the picture from a situation with well isolated resonances to that one with
strongly overlapping resonances. In any case, the theoretical description encompasses
simultanecusly both shorter and larger time scales. Most interesting is the critical re-
gion, ai=0.010 to 0.020, corresponding to I'/d & 0.8 to 1.6, where the separation of
different time scales starts. Here, the resonances overlap and the Argand diagram has a
complicated structure. The cross section results from an interference picture to which
all resonances give a contribution.

We also investigated the separation of different types of S-malzix poles. Our model
provides a good demonstration of the trapping phenomenon for the relatively low num-
ber, N = 16, of resonances. The results illustrate the formation of gross, intermediate
and fine structures in the cross section corresponding to the existence of different time
scales of the process.

The existence of a hierarchy of short and long living states ¢ known in nuclear physics
studies, e.g. in heavy ion scattering. It is, however, discussed also in many-body scat-
tering problems of molecular physics and in problems of atomic and solid state physics,
as well as in the scattering of electrons or light waves by disordered media.
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Figure 1

The widths I';,¢ = 1,..., NV, in dependence on the coupling strength o. The N == 16
bound states are distributed randomly. The calculation is performed in steps of
Ac = 0.002.

Figure 2

Landscape of | 511{E) | over the complex energy plane, the elastic coupling cross sec-
tions o {£) =] 1 — $11(F) [, and Argand diagrams for N = 16 resonances and A = 3
open channels for different values of the coupling constant a: (a) a = 0.002, (b)
a = 0.010, (¢) a = 0.013, {d) « = 0.020, (¢) ¢ = 0.100, (f) a = 2.000, corre-
sponding to I'/d = 0.15, 0.77, 1.20, 1.63, 10.20 and 202.54, respectively. The contour
lines in the left column correspond to | Snu(E) = 1.0,...,5.0 and are equidistant with
a difference of A | 51{EF} I= 0.1 for figs. a, b, ¢ and d, while they correspond to
g SnéE} é: 13, .-.,26.0 With A ! Sll(E) iﬂ 0.5 fOI ﬁg. [+] and to i Sn(E) ]= }.6, ...,Sl.g,
A S4{E) |= 4.0 for fig. f. Note the different Im(E)-scale on the left hand side of figs.
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Figure 3

Enlarged details of figs. 2a, 2Ze and 2f, correspondingly, showing the landscape of
| S11(E) | near the real energy axis. Here, the contour lines correspond to | Si{E) |=
1.0,...,1.2, A | Sy (E) |= 0.01 for fig. a, and to | S13(£) [=1.0,...,5.0, A | Si:(E) |= 0.1
for fig. b. For fig. ¢ the contour lines run from | S3;{E) |= 1.00, ...,1.10 with a step of
A | Si(E) |= 0.01 and from | 5;3(E) |= 1.1,...,2.0 with a step of A | Si{E) |= 0.1.
Note the different Im{E)-scales!

Figure 4
The inelastic reaction cross sections o13(E) =| 512(E) 1 and 013(#) =| S13(E) |? , and

the corresponding Argand diagrams for N = 16 resonances, A = 3 open decay channels
and a = 2.000.



2 | Ul

A

)

L8]

(

|



o=0,002

)

0.5

2%
tninv..u L™

= ]
= S ———

!yl.ll.s!..ll.lll
e

e 441
2
Sl

.a. P mw...
e ]

pmmemm s stesrsr o -
Lo 7

3
-t -

. S

— =

2 &

[rowg a1

~Q5

]

o ©
salgt, fuav)

-1

x5

Fig.2



e
e, :
LR )

25

0 10
, [Mev]

Re(E)

-10

25



1.0
2
o
pos }
>
£ os
5
5 -
g -
0o HJ !U
-28 3.0 A
 E,[MeV]
1.0
0 ]
=
5
5
s
6 ]
a0 ' 2 i 'J
2.5 0.0 2.5
E,Mev]

Im Sy (E)

15

00

Re Sp(E]

-8

0.0 14

Re 513 (E}

Fig.4



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 

