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A Note on Thermocapillary Instability
in the Presence of a Magnetic Field

André Thess * and Kerstin Nitschke

Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden,
Germany

Abstract
We formulate the asymptotic theory of thermocapillary instability in a planar fluid layer
heated from below in the presence of a strong magnetic field corresponding to high
Hartmann number. Explicit asymptotic expressions are derived for the velocity
perturbation, temperature perturbation and electric current density. Their spatial structure
is characterized in terms of Hartmann bonndary layers - a concept which permits a
physical understanding of more complicated situations involving surface deformation,
buoyancy and thermoelectric effects. The physical nature of large scale instabilitics in the

case of a deformable surface is clarified,

* permanent address:

Instiwt fitr Sromungsmechanik, Technische Universitit Dresden, 01062 Dresden, Germany



1. Introduction
The temperature-dependence of surface tension constitutes a source for a variety of flow
phenomena called thermocapillary effects. Thermocapillary instabilities and
thermocapillary convection have received considerable attention due to their appearance
in fundamental fluid-dynamical problems such as Rayleigh-Benard instability as well as
in applications like crystal growth and metallurgy. An excellent review article of Davis
(1987) summarizes the physical aspects of thermocapillarity. The technological need for
instability postponement, turbulence suppression and flow control in material processing
as well as the seek for low-cost alternatives to space-technologies for crystal growth are
currently leading to an increased interest in the interaction between thermocapillary
flows in electrically conducting fluids (semiconductor melts, liquid metals) and magnetic
fields. While the interplay between isothermal flows and magnetic fields is well
understood (Moreau 1990), and while a substantial body of literature exists on buoyancy
driven convection under magnetic field influence (Chandrasekhar 1961) our
understanding of thermocapillary flow phenomena in the presence of a magnetic field

leaves much to be desired.

The aim of the present note is to develop the asymptotic theory of thermocapillary
instability for high Hartmann numbers for a simple prototype problem. The problem
considered here is a generalization of Pearson's (1958) study of surface tension driven
instability in a plane layer of fluid heated from below to an electrically conducting fluid
under the influence of a vertical magnetic field. The present problem was first posed by
Nield {1966) and later investigated by Mackawa & Tanasawa {1987), Sarma (1983, 1985,
1987) and by Wilson (1993 a,b). The motivation for reconsidering this problem is
twofold. Although the values of the critical Marangoni numbers were numerically
calculated depending on the strength of the magnetic field, no attempt has been made in

the earlier publications to give a physical explanation of the role of the magnetic field and
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no analysis has appeared of the spatial structure of the unstable modes which is
drastically changed by the magnetic field and which constitutes in integral part of any
stability problem involving multiple length scales. The second purpose is to demonstrate
the usefulness of an approach to linear stability theory based on symbolic computational
rather than on fully numerical evaluation of solutions for problems involving large
parameters. Although limited to the class of linear constant coefficient problems, in some
cases, like the present one, it is a very efficient method since analytical calcnlations by
hand are too extensive and purely numerical solutions, even if employing highly accurate
schemes based on Chebychev polynomials, fail to give meaningful results due to the
complicated nested boundary layer structure of the solutions. This type of problem
frequently arises in magnetohydrodynamics but also in rotating flows, multiple layer

geometries etc.

In the following section we briefly recall the formulation of the stability problem given
by Nield (1966) and derive its complete solution. In section 3 we analyze the limiting
case of strong magnetic field thereby extracting the basic physical principles partially
hidden in the exact solution. Specifically, we derive asymptotic scaling laws for critical
parameters and use matched asymptotic expansious for the analysis of the boundary
layer structure of the unstable modes. These results provide the rational framework for
the understanding of more complicated cases involving surface deformation, buoyancy
forces and thermoelectric effects, as detailed in section 4. Finally we give a numerical
example for instability postponement by a magnetic ficld as predicted by the present

theory.

It should be mentioned that experimental studies of thermocapillary instabilities in a layer
heated from below have not been undertaken yet in the presence of a magnetic field.

However, the experiments of Ginde et al (1989} in a layer heated from below (without



magnetic field) and those of Tison et al (1993) in liquid tin layer with magnetic field
(heated from the side) are evidence of the progress made in this field.

2. The stability problem and its exact solution

2.1. Governing equations

The system under consideration is sketched in figure 1. A laterally unbounded layer of
electrically conducting fluid is confined by a solid wall at z=0 and bounded by a free
surface at z=d. The layer is heated from below and subjected to a2 homogeneous magnetic
field B. Surface deformations and buoyancy forces are neglected in the canonical
problem considered here, although they can have sinificant influence on the stability
results as is discussed in sections 4.1. and 4.2. The decisive ingredient for thermocapillary
phenomena is the dependence of surface tension on the temperature, which can be

approximated by the linear relationship

6 =0p - ¥(T-To) (2.1

Due to the absence of buoyancy forces this is the only mechanism by which a
nonhomogeneous temperature field exerts a force on the fluid. The dynamics of the flnid

is governed by the equations

v+ (vWiv= —éVp%" VAV + ! - (VxB)xB 2.2

3,T +(vV)T = kAT 2. 3)

B+ (vW)B=BV)v+ AB 2.4
oCa )

Vy=0 (2.5)

VB=0 2. 6)



for the velocity v, the temperature field T and magnetic field B. The quantities p, v, jig, ¥
and Og] are the density, kinematic viscosity, magnetic permeability, thermal diffusivity
and electrical conductivity of the fluid, respectively. Eq. (2.4) for the magnetic field is
derived from the Maxwell equations (cf. Moreau 1990). For small temperature

differences the purely conductive state of the fluid
v=0, T=Tj - Pz, B = Bez 2.7)
is stable. If the dimensionless Marangoni number

Ma = B4 2. 8)

2
pxv

exceeds a critical value of approximately 79.6 (Pearson 1958), the system becomes
unstable with respect to perturbations having the shape of convection rolls with
dimensionless wavenumber k~1.99. A sketch of the streamlines is given in fig, 2a. This
critical value increases in the presence of a magnetic field (Nield 1966, Wilson 1993a)

and is characterized by the dimensionless Hartmann number

Ha = Bd ’"gﬁ" @.9)

HaZ? is sometimes called Chandrasekhar number Q. In order to distinguish this instability
from the classical buoyancy-driven Rayleigh-Bénard instability, we use the terminology
Bénard-Marangoni instability. Before presenting the stability analysis, some comments
on the choice of the boundary conditions are in order. The source of the instability is the

boundary condition at the free surface



pvo,v; =79, T (i=x,y) (2. 10

expressing the equality of surface tension gradients and surface shear stress. In the case of
different magnetic permeabilities of fluid and adjacent medium one has to add a magnetic

term to (2.10) resnlting from the linearization of the Maxwellian stress tensor. Moreover

we have

vy =0 (atz=d) 2.1D

and the no slip condition

v=0 {atz=0) 2.12)

at the bottom. The bottom is supposed to be an isothermal plate with infinite thermal

conductivity and the thermal boundary condition can be written as
T(x,y,0) =T1 (2.13)

The thermal boundary conditionat the free upper surface warrants particular attention.
Here the heat flox must be equal to the radiative heat loss governed by the Stephan-

Boltzmann law. This leads to the boundary condition

249, T=-ST* (2. 14)

where the universal Stephan-Boltzmann constant $=5.67 10-8Wm2K-4 is evaluated in

terms of Plancks constant, Boltzmann constant and the speed of light. We have chosen



this condition together with the assumption of vacuum above the fluid because it is the
only situation which is free of any ad hoc assumptions about the heat transfer across the

free surface. Indeed, the frequently used relation

Ayd, T =—0t(T~T.) (2.15)

with T, being the temperature of an ambient gas is not a boundary condition but rather a
definition of a heat transfer coefficient o (see e.g. Landau & Lifshitz 1987). Even for
the linearized problem, this coefficient does not only depend on material parameters of
the ambient gas but also on the spatio-temporal structure of the velocity and temperature
field, i.e. on the wavenumber and frequency. Treating this coefficient as a constant may
be justified in engineering applications to get order-of-magnitude estimations but should
be avoided in a theory based on first principles. For the basic state equation (2.14)

provides the relation A, B = ST* between the surface temperature and the temperature

gradient. The continuity of the magnetic field across material boundaries is expressed by
[B}=0 for z=0, z=d (2.16)

In order to analyze the linear stability of the basic state (2.7) the governing equations are
linearized with respect to the perturbations (v, 6, b). As shown by Nield 1966, vy, 6 and

by are the relevant components for the instability. They can be written in normal mode

form

v, (%,z,t) = - W(z)
8 (x,z,t)= ™ G(z) 2.17)
b(x,z,t)= "™ H(z) !



If there is "exchange of stability” with a mode having A=0, we arrive at the following

system
[(D2 - k2)2 - HaZDZ} W(z) =0 (2.18)
M2 -k?) G(z) = W) (2.19)
with the boundary conditions
W(0) = DW(0) = W(1) = DZW(1) - kZ Ma G(1) =0 (2.20a-d)
G(0)=DG(1) +BiG) =0 (2.21)

Here D is an abbreviation for d/dz, all coordinates are scaled with the layer thickness d, k

is the dimensionless wavenumber, and the Biot number Bi is defined as

45413
Ay,

Bi= (2.22)

The solutions of (2.18)-(2.21) determine the critical Marangoni number as a function of k,
Ha and Bi. The Biot number characterizes the heat losses by the free surface. An
evaluation of its value for the conditions of the experiments of Ginde et al (1989) (tin at
2500C) leads to a value of about 10-2. For liquid metals at room temperature or slightly
above (Mercury, Galliumy) this value decreases by another order of magnitude. Therefore
we shall consider exclusively the limiting case Bi=0, in which the thermal boundary

condidon at the free surface reduces to

DG(1)=0. (2.23)



In view of the fact that the basic temperature profile carries a nonzero heat flux it may
seem physically inconsistent to require the heat flux of the perturbation to vanish.
However, a zero Biot number can always be attained by taking the limit d->0 keeping the

gradient B= ST /A, constant, Moreover, it can be shown that for the full problem the

first order correction to the Nusselt number for small Bi is

Nu=1+Bi(6°(x,y,z=1),_ +O(Bi") (2.24)

and can be calculated from the solution 8° of the governing equation with Bi=0, Here

<>xy denotes average over an x-y layer. It should be noted that the magnetic field itself
does not appear in the foregoing stability equations. However, for a complete solution of

the problem it must be separately determined from the equations

(D2 - k2) Hp = 0 forz<0 (2.25)
(0O2-k2)H =DW forO<z<1 (2.26)
(D2 -k2) Hy =0 for z>1 (2.27)

together with the matching and boundary conditions for the field Hy, [F; ] below [on top)

of the layer:

limH, =0 for z 3 oo
H, (0)=H(0), DH, (0)=DH(0)
H 1) =H{1), DH/() =DH(®)
hmH, =0 forz — +eo

(2.28)



2.2. Solution of the stability problem

With the four roots
Ap = _ti(Ha +VHa? +4k* )
2 (2. 29)
Ay = ‘;-21- (Ha —+/Ha® + 4}:2)

of the characteristic equation of (2.28) the solution for the velocity can be written as

W(z) = iwie“’ (2.30)

=l

The four unknown coeffcients are determined by the four boundary conditions (2.20).
Only one of these boundary conditions contains the unknown temperature perturbation
G(1). However, due to the linearity of the problem, we can give G(1) an arbitrary nonzero
value; we chose G(1)=1/(Ma k2) as a particularly convenient gauge. With the coefficients

wi, the solutions to the equations (2.19) and ( 2.28) are readily derived as

4

Az
w.e'"
G(z)= g-—r —

+g e g e™

4 l Az
H(z)= Z%-:‘?E; +h,e™ +he™ (2. 31)
i=l i
H (z)=he™™

H‘(Z}‘—:h‘c_h
The six coefficients g+, g-, by, h., hp, hy are determined by the six boundary

conditions (2.21), (2.23), (2.28). The explicit expression for the neutral curve Ma(k,Ha)
is obtained by calculating G(1) and requiring that G(1)=1/(Ma k2) as assumed above.

10



This leads to the following explicit expression for the critical Marangoni number as a

function of the wavenumber k and of the Hartmmann number Ha.

Ma = {2Ha2 cosh(K)[(Ha? + 4K*)sinh(Ha) ~ HavHa® + 4" sinh(FHa® + 41:2)}} /
[(Ha? + 4k*)[sinh(Ha — k) + sinh(Ha + k)] — 4Hak sinh(k)
+2 (Hzﬁ + 4k + HavHa? + 4K )sinh(l3} + 2(—Ha2 — 4K + HavHa® + 4K )sinh(?\.l )

+ (28ak + HaHa® + 4K° Jsinh{kc - VHa? + 41 )

(2.32)
Extensive use has been made of the symbolic computation capabilities of Mathemarica
(Wolfram 1991) in the derivation of the explicit expressions of the unknown coefficients,
and in the expression of the neutral curve as well as in the evaluation of the limiting case
Ha->o0, Most expressions shall not be given here due to their length although they are

readily available.

For a fixed Ha (fixed magnetic field), Ma gives the Marangoni number at which a
perturbation with wavenumber k becomes unstable. In the limit Ha->0 the curve
converges to that of the nonmagnetic problem calculated by Pearson (1958) with the
minimom Mag=79.61 at kc=1.993. The Marangoni number for each k-value is a
monotonically increasing function of Ha indicating the stabilizing influence of the
magnetic field. The points ke(Ha) at which the Marangoni number attains its minimum
Mag(Ha) determine the threshold of the Marangoni instability onset and the wavelength
of the first unstable mode. Their values are listed in table 1. The values agree with those
numerically calculated by Nield (1966) and Wilson (1993b). High accuracy can be
obtained by using the exact solution in conjunction with high precision arithmetic in

order to evaluate exponentials with increments as high as 109,

I



From the foregoing results it is possible to reconstruct the velocity, temperature and
magnetic field associated with the first unstable mode for arbitrary Hartmann number. In
fig. 2 we depict the changes of the streamlines of the unstable mode under the influence
of the magnetic field. In the nonmagnetic case the lateral size of the unstable rolls is of
the same order as the layer thickness. For increasing values of the magnetic field the
lateral distance between adjacent cells decreases and their centers shift towards the
free surface. In the limit Ha->00 the hydrodynamic behaviour and the size of unstable
perturbations is governed by simple Jaws that are extracted from the exact solution in the

next section.

3. The limit of strong magnetic field

3.1. Scaling of the critical parameters

In many magnetohydrodynamic problems a deeper physical understanding can be gained
by considering the limit of strong magnetic field (Ha->00) even though the magnitude of
Ha in typical applications rarely exceeds 103. Let us first use expression (2.32) to derive
the asymptotic dependence of the critical Marangoni number on Ha. If we use symbolic
computation packages tc attempt to calculate the limit of Ma for Ha->00 or if we use the
Taylor expansion around 1/Ha = 0 we fail partially because Ma tends to infinity and
partially since the analytic structure of the function Ma(k,Ha) in the vicinity of 1/Ha=0 is

singular. In order to evaluate the limiting behaviour we make the substimtions

Ma‘:g—?;
?{ (3.1)
<



which already incorporate scaling laws anticipated from the behaviour of the numerical

values in table 1. Taking the limit Ha->eo then provides the following result to leading

order in 1/Ha

Ma =1+ zﬁe: +OHa™) (32)
with

[ =ﬁ—iﬁ (3.3)

Equation (3.2) was first derived by Wilson (1993a) using a different method. From (3.2)
we conclude that Ma and K are the relevant stability parameters in the limit of strong
magnetic field instead of Ma and k. The asymptotic neutral curve Ma(K), represented in

fig. 3, is then the magnetic counterpart to the result of Pearson (1938).

Ma(K) has a minimum at the solution £c=0.792601 of the transcendental equation
exp(2hc2) - 442 - 1= 0 at which ittakesa value of Mac=1 + 2.21604 2. In the
vicinity of this minimum Ma(£) has a parabolic shape with a curvature proportional to 1/£
It follows from the foregoing results that the critical Marangoni number and wavenumber

scale as

2.21604
Ma,_ = 94 H’:H"(1+—--—-—~——~—-+OH")
A, = HMa, Ha =44 e T O G.4)

k, =k Ha'"" =0.792601Ha"*

(4]

The quantity £, usually called the correlation length, can be interpreted as a characteristic

length scale over which spatial modulations of the basic periodic pattern can ocour in the

13



weakly nonlinear regime slightly above the instability threshold (Manneville 1991).
Above instability threshold the term 2(k-kc)? is of the order of one implying that

superposition of unstable modes from the band with A£~1/{ and therefore with

modulation length { can occur.

3.2. Physical interpretation of the scaling laws

The basic instability mechanism is independent of the magnetic field. Consider a local
hot spot that has arisen at the surface due to a small temperature fluctuation. Heat
conduction tends to smooth out the spot, whereas thermocapillarity (cf. eq. 2.10)
produces a radially outward flow above the spot which, by continuity, causes a vertical
upflow to transport new hot fluid to the surface. Both mechanisms counteract, and for
sufficiently large temperature gradients, thermocapillary shear production uitimately
dominates thermal diffusion and viscous dissipation. In the absence of the magnetic field
the surface shear associated with a velocity vy is of the order vx/d. It follows from the
continuity equation that vy is of the same order as vy since the wavenumber of the most
unstable perturbations is of the order of one for the nonmagnetic problem. The vertical
velocity perturbation causes a surface temperature perturbation

AT, .~ ( "zd)AT ~("xd) AT (3.5)
K X

Inserting this estimate into the Marangoni boundary condition (2.10) which expresses the
balance between shear and thermocapillary forces, gives the result Ma~1 expressing that

the Marangoni number is the pertinent instability parameter.

In the presence of the magnetic field these estimates have to be modified only in one

respect. As for other magnetohydrodynamic flows, the effect of a transverse magnetic

i4



field is to damp the horizontal component everywhere except in narrow boundary layer

(Hartmann layer) with thickness

d
5~~§;— (3.6)

in which viscous forces are of the same order as electromagnetic forces (Lorentz forces)
resulting from the interaction of the magnetic field with the electric current induced by

the fluid motion (cf. fig. 2a). Consequently, the foregoing considerations have to be

repeated with 3 taken as the relevant length scale of the problem instead of d. A velocity

perturbation vx produces shear

v, ~ Haydi @7

From the continuity equation and from the scaling law of the wavenumber we conclude

that

R G3.8)
and

AT . ~ ("f) AT ~ (—‘ff) —»I-% (3.9)

Again equating shear stress amd thermocapillary stress in equation (2.10) leads to the

result

Ma
e e .
Ha® {3.10)

I5



in agreement with the exact result that #a governs the instability.

3.3. The asymptotic spatial stucture of the unstable mode
In principle, the exact solution for W(z), G(z) and H(z) immediately provides us with all

physical quantities including the vorticity

o, (x,2) = uéei’“(nz ~k*YW(z) (3.11)

and the electric current density

i, (%.2) =-f--li:ef‘°“(1)2 —kz)H(z)=i~eﬂ“DW(z) (3.12)

paraliel to the axis of the rolls. Nevertheless, we shall independently derive the Limiting
behaviour of W(z) by matched asymptotic expansion since this method provides better

insight into the boundary layer structure of the flow field.

The method of matched asymptotic expansion, thoroughly described by Nayfeh (1981),
has been successfully applied to other magnetohydrodynamic problems (see e.g. Hunt &
Shercliff 1971, Hunt & Ludford 1968 ). Therefore we shall omit all technical details and
present only the main steps. For the solution of the system (2.18), (2.19), (2.20) and
{2.23) in the limit Ha->00 we split the interval [0,1] in three regions: the bottom layer 0 <
z<0,thecore 8 <z < 1-8 and the surface layer (z-1) $ 8 with 3=1/Ha. Quantities
refering to each region are denoted by subscripts b, ¢ and s. Setting k=k Hal/2 and

Mas=az HaZ we obtain to leadin g order in the Hartmann number the equation for the core

velocity

16



(D* - )W, =0 (3.13)
with the general solution
W, ()=t +c{le*™ (3. 14)

Within the bottom layer the velocity rapidly decreases to zero in order to satisfy the no-

slip condition. To resolve the boundary layer we introduce the stretched coordinaie

{=Haz, D=HaD, (3.15)
The leading order equation in the bottom layer and the corresponding solution becomes

(D} -DZ)W,(2)=0 (3.16)
whence

W, ()= c® + ¢ + e + cPe ™ (3.17)

The requirement that W must rerain finite in the limit {->00 together with the boundary

conditions (2.20 a,b) determines three of the unknown parameters

=0, =, P e @19

in terms of the fourth one. Analogous assumptions apply for the surface layer with the

coordinate {=Ha(l-z)and D = -Ha D¢, The corresponding expressions are

i7



(D}~ D)W, (2)=0 (3.19)

W, (0 =c® +cPL+cPet + cPet (3. 20)

From the boundary conditions (2.20 c,d) it follows that

cg‘) =0, cg') e —c;‘} = ~Ha g *Ma G(1) (3.21)

According to the procedure of matched asymptotic expansion the remaining unknown

coefficients

(€) ) (B} (0
G B T G (3.22)

are determined from the matching condition. This condition requires the outer expansion
of the boundary layer solution to be equal to the inner expansion of the core solution.

More precisely, the boundary layer solutions (3.17 ) and (3.20 ) in the limit {->00

— ntB) (b}
W, =cy" +e7

3.23
ch — C{{;) +c§s)c ( )
mast be equated to the core solution
W, = Wi 4 i
e G (3. 24a,b)

— ysics)
W, =whi? + wl

expanded in the vicinity of z=0 and z=1, respectively. The wall coordinates in these

equations refer to different regions. This leads to the 4 matchin g conditions

18



(b) . (b} (s} ... ¢x/lc8)
Cost = Wan'»  Cop = Woyy (3.25)

All the w-coefficients can be expressed in terms of the unknown coefficients which are
therefore uniquely determined. A composite solution, i.e. a solution uniformly
approximating the solution over the whole interval [0,1] can be obtained by adding to the

core solution the difference between the core- and the boundary layer solutions

W(z)= AW, + W, + AW, (3.26)

which leads to the final result

£* cosh(k *z)— Ha £ ' sinh(£ *z) ~ £ ‘e~ ™=
Hasinh(k *) ~ £ * cosh(k *)

W(z)=Ha MaG(I){ + R “"=’}(3.27)

The function W(z) is plotted in figure 4a for Ha=100 together with that for a lower value
of Ha. In this figure we see that the vertical component increases monotonically in the
core and decreases to zero within the Hartmann boundary layer. Equation (3.27) clearly
reveals the boundary layer structure of the solution. The first terms depending on the
"slow™" coordinate £z describe the core solution, the exponential terms containing Ha
describe the boundary layers. The cormrectness of the formula has been checked by
comparison with the exact result. Fig. 4b shows the behaviour of the vertical velocity
component which is obtained by differentiation of W, It is strongly affected by the

magnetic field in contrast to vz because the induced electric current

j=o(E+vxB) : (3.28)

19



produces a Lorentz force opposite 1o the vx. The vz component is not directly affected
since it is parallel to the applied magnetic field. The profile of the electric current is

identical to DW (cf. equation 2.26).

Now we tumn to the evaluation of the asymptotic temperature profile, It turns out that the
above procedure cannot be carried out in the same way as for W(z). The leading order
core solution for the temperature Gc(z):«wc(z)/kzﬁa is uniquely determined by the
velocity field and contains no undetermined coefficients. The surface layer solution
contains two free coefficients, There are however three conditions to be satisfied, namely
continuity of temperature G and heat flux DG between the core solution and the surface
layer solution as well as the zero heat flux boundary condition DG=0 at the free surface.
It is clear that these three conditions cannot be satisfied by only two parameters and
therefore higher order terms must be included into the analysis. Fortunately, this can be

circumvented by calculating first the exact solution

i AT 2 Atz 2. ~He (lz
G(z)nMaG(l){Ha[Ha sinh(k *z)—&* cosh(£'2)] - K€" gre )}

[Hasinh(ﬁ.‘) —£*cosh(k’ )](Ha2 - k) + (B> &)
(3.29)
+d, eV (i-2) +d, cﬂ«f:—iauz}

of equation { 2.19) with W taken from (3.27) and systematically removing higher order
terms of 1/Ha except those necessary to satisfy the boundary condition. We note that the
solution of the inhomogeneous equation is of the order Mz G(1) O(1) in the core. In the
bottom layer the order of magnitude of G is Mz G{1) O(Ha~ Die. the boundary condition
at the bottom is fulfilled 1o leading order of the Hartmann number and the coefficient dy
is zero in this approximation. The coefficient d1, i{owcvcr, is necessary to satisfy the free
surface boundary condition which is violated by the inhomogeneous term in ( 3.29) to the

order of Ma G(1) O(1). The result for dj is



Mz G(1)& ( cosh(k?)
4, = (Smh( B +1) (3.30)

With this step done we can write down the final expression for the temperature field in

the Hmit Ha->00 as

sinh{£ *z) . greT0m 24 c%«.’ﬁ(m)} (3.31)
1)

Gz) =M“G<1){ sinh(€)  Ha  Ha'[o™ —

The correciness of the approximatons ( 3.29) and ( 3.31) is revealed by calculating the
critical curve #a(k) from the requirement that the rhs. of eq. (3. 31) at z=1 be equal to

G(1). Surprisingly, the result

1 26

Ma*l—l-H 7 2&‘

3 o+ O(Ha™) (3. 32)

does not only give the correct asymptotic scaling ( 3.4) but is identical to the exact
asymptotic neutral curve, Figure 4¢ shows the temperature profile calculated from (3.32).
Although not seen in the figure, the thermal perturbations consist of two nested boundary
layers - one with thickness 8~1/Ha is due to the advection by the velocity perturbation,
the second boundary layer with 8~1/Hal/2 is due to the thermal boundary condition. The
asymptotic scaling regime is reached when Hal/2>>1 which is likely to be the reason for

the failure of Nield's (1966) numerical method to give correct scaling results for high Ha,



4. Secondary effects
The results of the foregoing section can be used to physically understand more

complicated situations obtained from our canonical problem by

@) allowing for surface deflection,

(i) adding buoyancy forces,

(i)  incloding thermoelectric effects that could occur at the interface between the
electrically conducting fluid and the bottom material having in general a nonzero

electrical conductivity.

In the following we shall briefly provide a physical explanation of previous results
{Wilson 1993 a,b) on the influence of surface deflection and of buoyancy forces from the
viewpoint of our asymptotic theory. Moreover we shall assess the importance of
thermoelectric effects for moderate Hartmann numbers. The latter problem has never

been considered, although it is important for experimental studies.

4.1, The role of surface deformation

It was shown by Scriven & Sternling (1964) that the stability properties are significantly
changed in the long wave limit if the constraint of a non-deformable surface is released.
More presicely, in the limit k->0 the critical Marangoni number does not tend to infinity

as in the case of an undeformed surface. Instead, it tends to zero as

Mz ~ —
C 4.1

in the absence of gravity (g=0), and it converges to a constant
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if gravity is present. Here C=pvk/o,d and Bo=pgd’ /o, denote respectively the
Capillary number and the Bond number, and o, is the surface tension. It is worth noting
that the physical mechanism of these instabilities is quite different from the instabilities at
intermediate wavenumbers in that the threshold of the long wave instabilities does not
depend on the molecular transport coefficients v and x. Therefore the use of Marangoni
number, containing both v and X, is somewhat misleading in this case. This is seen if we

transform equations (4.1) and (4.2) back to physical variables, which gives

B ~ odk® (4.3)
for g=0 and
vB ~ pgd (4.4)

for nonzero g. Recall that § is the critical temperature gradient. Equations {4.3) and (4.4),
neither of which contains v or K, lead to the somewhat surprising conclusion that the
long wave instabilites would occur no matter how large the viscosity of the fluid is, i.e.
even in the case v->eo. This paradox is resolved by noting that although v and ¥ donot
determine the instability threshold, they do enter into the growth rate, which tends to zero
as v->oo, Therefore care must be taken in predicting long wave instabilities for
experimental situations without analyzing their growth rate, which may be so slow that
the instability is not observable in a laboratory experiment because the characteristic time

scale is exceedingly large.



The instability mechanism itself ‘can be understood without reference to thermal
diffusion. Before discussing the magnetic case, it is worth explaining the nonmagnetic
long wave instability mechanism by a simple gedanken experiment, which unfortunately
was never made in previous publications. Consider a hypothetic system in which the
temperature is always equal to the unperturbed distribution T=-Pz, even if the velocity is
nonzero. Such a case obviously corresponds to infinite thermal conductivity. If the planar
shape of the upper surface is perturbed by a bump 8z, the temperature at the top of the
perturbation differs by 8T =-f8z from the other points of the free surface. This
temperature difference creates a thermocapillary flow towards the bump and, as a result,
its height increases, Obviously, the mere existence of such an instability mechanism is
not related to viscosity, which only determines the magnitude of the thermocapillary
velocity and thereby the growth rate of instability. The question why the instability for
g=0 can occur for arbitrarily small temperature gradients, while a finite temperature
gradient is necessary in the presence of gravity, can be understood by an energetic
argument. At zero gravity the instability must only perform mechanical work against
surface energy. Since the energy of a deformed surface tends to zero as k->0, surface
deformation does not provide an efficient mechanism for instability saturation. In
contrast, for nonzero gravity a finite amount of energy is necessary to overcome the
potential energy of the difference between a deformed and a nondeformed surface, and

the critical temperature gradient is finite,

Let us analyze the influence of a magnetic field on the long wave instabilities. The
magnetic field affects only molecular transport processes since it gives rise to Joule
energy dissipation. It does not affect surface energy or potential energy which are
responsibie for the saturation of the long wave instability as discussed above. Therefore
we can conclude that the magnetic field does not have any significant influence on the

instability thresholds but it does have influence on the growth rates. This is confirmed by

R



the results of Wilson {(1993a,b) who founds that in the limit of strong magnetic field
relations (4.1) and (4.2} still hold, although with numerical factors differing from the
nonmagnetic case. The action of the magnetic field consists of two counteracting
elements. On the one hand, a strong magnetic field will confine the flow to the Hartmann
boundary layer 8~1/Ha in the immediate vicinity of the free surface. Equations (4.3) and
(4.4) show that a reduced effective layer thickness amounts to a decrease of the critical
temperature gradient. On the other hand, the Maxwellian stress due to the magnetic field
enters into the normal stress boundary conditions and inhibits surface deflections. Both
mechanisms counteract and compensate each other in the limit of high Hartmann
numbers, thus leading to unchanged scaling properties of the instability thresholds., We
note, parenthetically, that the incorrect result of Sarma (1983, 1985, 1987) of an
asymptotically decreasing critical temperature gradient can be easily understood from the
foregoing considerations. Sarma (1983, 1985, 1987) did not include the magnetic term
into the boundary condition. His results reflect the destabilizing influence of the reduced
effective layer thickness but do not contain the stabilization due to the magnetic term in

the normal stress boundary conditions,

Since the presence of a strong magnetic field adds an additional mechanism of energy
dissipation, it is clear that the growth rates of the long wave instability tends to zero as
Ha->00. Our asymptotic method can be used to investigate the asymptotic behaviour of

the growth rates, which would be important for practical purposes.

4.2. The role of buoyancy force

In the absence of capillary forces buoyancy leads to the classical Rayleigh-Bénard
instability in which the critical Rayleigh number and the wavenumber scale as Ra ~ Ha?
and k ~Hal/3 for strong magnetic ficlds (Chandrasekhar 1961). Nield (1964) and Wilson
(1993 b) have studied the interplay between buoyancy and surface tension in the presence



of a magnetic field calculating the Marangoni number as a function of Raand Ha. Aa a
general result, the coupling between both effects is found to be weakened by the magnetic
field. This is exemplified by the fact that the slope of the curve of the critical Marangoni
number versus the critical Rayleigh number decreases in the limit of Ha>>1 in the
vicinity of Ra=0. This result can be casily interpreted in terms of Hartmann boundary
layers. In a strong magnetic field the action of the thermocapillary forces is entirely
confined to the Hartmann layer below the free surface, whereas the buoyancy forces still
act in the whole core. Thus, both mechanisms become increasingly separated as the
Hartmann boundary layer thickness tends to zero. For small Rayleigh numbers, such as
relevant for experimental studies in shallow layers, the method of matched asymptotic
expansion can be generalized to the presence of buoyancy by retaining the boundary layer
equations (3.16) and (3.19) while taking into account the buoyancy term in the equation

(3.13) for the core velocity.

A comment is in order on the possibility of reducing the influence of buoyancy. Apart
from microgravity experiments in space and experiments in shallow layers, there is a
third way to eliminate the influence of gravity. It is known that in certain Ga-Sn alloys
the surface increases with temperature (Bojarevics 1993). This implies that the
thermocapiilary instability manifests itself if the fluid is heated from above. This case is
stable from the viewpoint of bouyancy, and thermocapillarity is the only destabilizing

force.

5.3. Thermoelectric effects

Thermoelectric effects arise at non-isothermal boundaries between two electrically
conducting materials such as a liquid metal and solid bottom material in a Marangoni
experiment. These thermoeleciric currents add to the currents induced by the motion of

fluid in the magnetic field and can lead to significant changes of flows. Let ns estimate




the ratio between thermoelectric currents and currents induced by the velocity field for
small Hartmann numbers refering the reader to the work of Shercliff (1979) for the
general theory of thermoelectric magnetohydrodynamics. At the interface between two

metals an tangential electric current density

;. ~ A: AT @5

is generated where AT is a temperature variation along the interface over the distance d.
If the bottom is an ideal heat conductor and therefore isothermal, as assumed in our
theory, no thermoelectric currents can occur. In a bottom with finite but high thermal

diffusivity kp, however, a fraction

AT~2AT (4. 6)

K,

of the transverse core temperature difference can penetrate the interface. Recalling the

relation ( 3.5) AT can be expressed as a function of the perturbation velocity and the

thermoelectric current can be estimated as

ov,
¥y

ASAT “4.7)

Ju

the ratio of this current to the velocity induced electric current

j,~ov,B 4.8

ig
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Thus, thermoelectric currents become important for weak magnetic fields. For AT=1K,
Kb=1.17 10-4m2/s (copper), B=0.1 Tesla, and AS=61V/K (copper-mercury) this ratio is
roughly 0.5, i.e. thermocapillary forces are as important as purely electromagnetic ones.
Thermoelectric currents are in the same plane as the velocity perturbation and their
interaction with the vertical magnetic field creates a force with a nonzero y-component.
The stability problem becomes thus three-dimensional in the presence of

thermoelectricity.

4.4. Secondary instabilities

Above instability threshold the nonlinear terms in the govemning equation lead to a
saturation of the primary instability. Linear stability theory cannot predict the selected
pattern, but preliminary results of direct numerical simulations of the full three-
dimensional system of equations show the formation of hexagonal cells. Since the
thickness of the Hartinann layer decreases faster than the critical wavelength, the aspect
ratio of the convective cells becomes very large. Locally the flow tends to be parallel
with the velocity depending primarily on z and the induced temperature gradient being
parallel to the surface. This situation is locally very similar to that of a planar layer heated
from the side as considered by Smith & Davis (1983). Smith and Davis found that low
Prandtl number convection is susceptible to perturbations having the form of
hydrothermal waves. It is likely that this kind of instabilities will arise as a secondary

instability of the established convection pattern leading to time-dependence.



5. Conclusions and further work
We have established the asymptotic theory of thermocapillary instability in the limit of

strong magnetic field. The main results of the work are

@) a rigorous derivation of the asymptotic scaling laws (3.4) for the critical
parameters describing the postponement of Benard-Marangoni instability by a
strong magnetic field,

(i)  explicit asymptotic expressions for the profile of the perturbation velocity (3.27),
temperature (3.29), and electric current density,

(iii)  the physical interpretation of the stability properties in terms of well established

magnetohydrodynamic principles.

To the best knowledge of the authors, no experiments have been perforrned yet on the
suppression of Benard-Marangoni instability by a magnetic field. However, the
continuing experimental efforts (Ginde 1989, Tison 1993) make such results likely to
appear in the foreseeable future and we shall give a numerical example how the present
theory translates into experimental parameters. Assuming a Gallium layer with d=1mm

the following critical temperature difference and wavelength are obtained

B=0Tesla (Ha=0) ATe=23K Ac=32mm

B =(.1 Tesla (Ha=5) AT =40K Ac=2.6mm

It is noteworthy that the instability postponement is remarkable even for moderately

strong magnetic fields.

We have investigated the case in which both the temperature gradient and the magnetic

field have the same direction and are perpendicular to the free fluid surface.



Generalizations are necessary in order to cope with practical applications such as crystal
growth. Technological problems involve temperature gradients with nonzero components
of temperature gradients parallel and perpendicular to the fluid. The parallel component
of the temperature gradient generates a basic flow which may be stable or unstable
depending on temperature and magnetic field. This problem has been solved by Smith
and Davis 1983 for the nonmagnetic problem. The investigation of this stability problem

with magnetic fields is presently underway and will be reported elsewhere.
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Table 1: Critical parameters for onset of Benard-Marangoni-instability as a
function of the Hartrnann number

Ha Mag ke

0.001 79.6064 1.9929
0.01 79.6070 1.9929
0.1 79.6325 1.9931
1 82.1724 2.0147
10 284222 2.9590
100 12830.2 8.0924
1000 1.07532 106 25.116
10000 1.02266 108 79.276
100000 1.00706 1010 250.64

33



Captions

Fig. 1: Sketch of the geometry of the fluid layer

Fig. 2: Sketch of the streamlines of unstable modes. (2) for the non-magnetic problem,

(b) a strong magnetic field corresponding to a high Hartmann number.
Fig, 3: The asymptotic neutral curve f(£).
Fig. 4: Spatial structure of the unstable mode:

(a) vertical velocity, (b) horizontal velocity and electric current, (¢) temperature

perturbation, All quantities are plotted in arbitrary units.
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