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Abstract 

We formulate the asymptotic theory of thermocapillary instability in a planar fluid layer 

heated from below in the presence of a snong magnezic field corrcsponding to high 

Hartmann number. Explicit asymptoric expressions are derived for the velocity 

perturbation, temperature perturbation and elecnic current density. Their spatial smcture 

is characterized in terms of Hanmann boundary layers - a concept which permits a 

physical understanding of more complicared situations involving surface defomation, 

buoyancy and themoclecnic effects. The physical nature of largc scale instabilitics in thc 

case of a deformable surface is clanfied. 

* permanent address: 
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1. Introduction 

The temperam-dependence of surface tension constitutes a source for a variety of flow 

phenomena called thermocapillary effects. Thermocapillary instabilities and 

thexmocapillary convection have received considerable attention due to their appearance 

in fundamental fluid-dynamical problems such as Rayleigh-Benard instability as well as 

in applications like crystal growth and metallurgy. An excellent review article of Davis 

(1987) summarizes the physical aspects of themtocapillarity. The technological need for 

instability postponement, turbulente suppression and flow control in material processing 

as well as the seek for low-cost alternatives to space-technologies for q s t a l  growth are 

currently leading to an increased interest in the interaction between thermocapillary 

flows in elechically conducting fluids (semiconductor melts, liquid metals) and magnetic 

fields. While the interplay between isothermal flows and magnetic fields is well 

undexstocd (Moreau 1990), and while a substantial body of literature exists on buoyancy 

driven convection under magnetic field influence (Chandrasekhar 1961) our 

understanding of thermocapillary flow phenomena in the presence of a magnetic field 

leaves much tobe desired. 

The aim of the present note is to develop the asymptotic theory of thermocapillary 

instability for high Hartmann numbers for a simple Prototype problem. The problem 

considered here is a generalization of Pearson's (1958) study of surface tension driven 

instability in a plane layer of fluid heated from below to an elecmcally conducting fluid 

under the influence of a vertical magnetic field. The present problem was fust posed by 

Nield (1966) and later investigated by Maekawa & Tanasawa (1987), Sama (1983, 1985, 

1987) arid by Wilson (1993 a,b). The motivation for reconsidering this problem is 

twofold. Although the values of the critical Marangoni numbcrs were numerically 

caIculatcd depending on the strcngth of the magnetic field. no attempt has been made in 

the d i e r  publications to give a physical explanation of the roie of the magnetic field and 



no analysis has appeared of the spatial structure of the unstable modes which is 

drastically changed by the magnetic field and which constitutes in integral part of any 

stability problem involving multiple length scales. The second purpose is to demonstrate 

the usefulness of an approach to linear stabiiity theory based on symbolic computational 

rather than on fully numerical evaluation of solutions for problems involving large 

Parameters. Although limited to the class of linear constant coefficient problems, in some 

cases, like the present one, it is a very efficient method since analytical calculations by 

hand are too extensive and purely numencal solutions, even if employing highly accurate 

schemes based on Chebychev polynomials, fail to give meaningful results due to the 

complicated nested boundary layer smicture of the solutions. This type of problem 

frequently arises in magnetohydrodynamics but also in rotating flows, multiple layer 

geomemes etc. 

In the following section we briefly recall the formulation of the stability problem given 

by Nield (1966) and derive its complete solution. In section 3 we analyze the limiting 

case of strong magnetic field thereby extracting the basic physical principles partially 

hidden in the exact solution. Specifically, we denve asymptotic sealing laws for critical 

parameters and use matched asymptotic expansions for the analysis of the boundary 

layer smcture of the unstable modes. These results provide the rational fhmework for 

the understanding of more complicated cases involving surface defomation, buoyancy 

forces and themoelecüic effects, as detailed in section 4. Finally we give a numencal 

example for instability postponement by a magnetic field as predicted by the present 

theory. 

It should be mentioned that experimental siudies of themiocapiiiary instabilities in a layer 

heated from below have not been undenaken yet in the presence of a magnetic field. 

However, the expenments of Ginde et al(1989) in a layer heated from below (without 



magnetic field) and those of Tison et al(1993) in liquid tin layer with magnetic field 

(heated from the side) are evidence of the progress made in this field. 

2. The stability problem and its exact solution 

2.1. Goveming equations 

The System under consideration is sketched in figure 1. A laterally unbounded layer of 

electncaily conducting fluid is confined by a solid wall at z=0 and bounded by a free 

surface at U=d. The layer is heated from below and subjected to a homogeneous magnetic 

field B. Surface deformations and buoyancy forces are neglected in the canonical 

problem considered here, although they can have sinificant influence on the stability 

results as is discussed in sections 4.1. and 4.2. The decisive ingredient for thermocapillary 

phenomena is the dependence of surface tension on the temperature, which can be 

approximated by the iinear relationship 

Due to the absence of buoyancy forces this is the only mechanism by which a 

nonhornogeneous temperature field exerts a force on the fluid. The dynamics of the fluid 

is govemed by the equations 



for the velocity V, the temperature fidd T and magnetic field B. The quantities p, V, PO, K 

and oel are the density, kinematic viscosity, magnetic permeability, thermal diffusivity 

and electrical conductivity of the fluid, respectively. Eq. (2.4) for the magnetic field is 

derived from the Maxwell equations (cf. Moreau 1990). For smail temperature 

differentes the purely conductive state of the fluid 

is stable. If the dimensionless Marangoni number 

exceeds a cntical vaiue of approximately 79.6 (Pearson 1958), the System becomes 

unstable with respect to perturbations having the shape of convection rolls with 

dimensionless wavenumber k-1.99. A sketch of the streamlines is given in fig. 221. This 

cntical value increases in the presence of a magnetic field (Nield 1966, Wilson 1993a) 

and is characterized by the dimensionless Hartmann number 

~a~ is sometimes called Chandrasekhar number Q. In oder to distinguish this instability 

from the classicai buoyancy-driven Rayleigh-Bbnard instabiEty, we use the tcrminology 

Benard-Marangoni instability. Before presenting the stability anaiysis. some comments 

on the choice of the boundary conditions are in order. The source of thc instability is the 

boundary condition at the free surface 



expressing the equality of surface tension gradients and surface shear Stress. In the case of 

different magnetic permeabilities of fluid and adjacent medium one has to add a magnetic 

tem to (2.10) resulting from the linearization of the Maxwellian saess tensor. Moreover 

we have 

and the no slip condition 

at the bottom. The bottom is supposed to be an isothermal plate with iniinite thermal 

conductivity and the ihermal boundary condition can be written as 

The thermal boundary conditionat the free upper surface Warrants panicular attention. 

Here the heat flux must be equal to the radiative heat loss govemed by the Stephan- 

Bolmann law. This leads to the boundary condition 

where the universal Stephan-Boltzmann constant S=5.67 ~ O - * W ~ - ~ K - ~  is evaluated in 

terms of Plancks constant, Boltzmann constant and the speed of light. We have chosen 



this condition together with the assumption of vacunm above the fluid because it is the 

only sihiation which is free of any ad hoc assumptions about the heat aansfer across the 

free surface. Indeed, the frequently used relation 

ic,a,T = +T- T.) 

with T. being the temperature of an ambient gas is not a boundary condition but rather a 

definition of a heat transfer coefficient a (see e.g. Landau & Lifshitz 1987). Even for 

the linearized problem, this coefficient does not only depend on material Parameters of 

the ambient gas but also on the spatio-temporal smcture of the velocity and temperanue 

field, i.e. on the wavenumber and frequency. Treating this coefficient as a constant may 

be justified in engineering applications to get oder-of-magnitude estimations but should 

be avoided in a theory based on first principles. For the basic state equation (2.14) 

provides the relation h,ß = SY between the surface temperature and the temperature 

gradient. The continuity of the magnetic field across material boundaries is expressed by 

[B]=O for z=O, z=d (2.16) 

In oder to analyze the linear stability of the basic state (2.7) the goveming equations are 

linearized with respect to the perturbations (V, 8, b). As shown by Nieid 1966, vz, 8 and 

bz are the relevant components for the instability. They can be written in normal mode 

form 



If there is "exchange of stability" with a mode having h 4 ,  we anive at the following 

System 

with the boundary conditions 

Here D is an abbreviation for didz, all coordinates are scaled with the layer thickness d, k 

is the dimensionless wavenumber, and the Biot number Bi is defined as 

The solutions Of (2.18)-(2.21) determine the criticai Marangoni number as a function of k, 

Ha and Bi. The Biot number characterizes the heat losses by the free surface. An 

evaiuation of its vaiue for the conditions of the expenments of Ginde et al(1989) (tin at 

250°C) leads to a value of about 10-2 For liquid metals at room temperature or slightly 

above (Mercuv, Gallium) this vaiue decreases by another order of magnitude. Therefore 

we shall consider exclusively the limiting case Bi=O, in which the thermal boundary 

condition at ttie fne surface reduces to 



In view of the fact that the basic temperature prohle canies a nonzero heat flux it may 

seem physically inconsistent to require the heat flux of the perturbation to vanish. 

However, a zero Biot number can always be attained by taking the iimit d->O keeping the 

gradient ß = ST:/~, constant. Moreover, it can be shown that for the full problem the 

fmt order correction to the Nusselt number for small Bi is 

and can be calculated from the solution 8' of the goveming equation with Bi=O. Here 

<*Y denotes average over an X-y layer. It should be noted that the magnetic field itself 

does not appear in the foregoing stability equations. However, for a complete solution of 

the problem it must be separately determined from the equations 

( D 2 - k 2 ) ~ b = 0  forz<O 

@ 2 - k 2 ) ~  =DW fo rO<z<l  

@ 2 - k 2 ) ~ t = 0  for z > l  

together with the matching and boundary conditions for the fied Hb fHt I below [on top3 

of the layer: 

IimH, = 0 for z -+ -m 

Hb(0) = H(O), DHb (0) = DH(0) 

H (I) H )  DH, (I) = DH(1) 

limH,=O forz-t-i- 



2.2. Solution of the stabitity problem 

With the four roots 

of the charactenstic equation of (2.28) the solution for the velocity can be d e n  as 

The four unknown coeffcients are detennined by the four boundary conditions (2.20). 

Only one of these boundary conditions contains the unknown temperahue perturbation 

G(1). However, due to the linearity of the problem, we can give G(1) an arbitrary nonzero 

vaiue; we chose G(l)=l/(Ma k2) as a particularly convenient gauge. With the coefficients 

wi, the solutions to the equations (2.19) and ( 2.28) are readily denved as 

The six coefficients g+, g-, h+, h-, hb, ht are determined by the six boundaxy 

conditions (2.21), (2.23), (2.28). The explicit expression for the neutral cuwe Ma(k,Ha) 

is obtained by caiculating G(1) and requiring that G(l)=l/(Ma k2) as assumed above. 



This kads to the following explicit expression for the cntical Marangoni number as a 

function of the wavenumber k and of the Hamnann number Ha. 

Ma = 2Hazcosh(k)[(Haz + 4kZ)sinh(Ha) -Ha-sinh(HaZ + 4k9]} / I 
[(HaZ + 4kZ)[sinh(Ha - k) + sinh(Ha + k)] - 4Haksinh(k) 

+ 2 (Haz + 4kz + H a J m ) s i n h ( h , )  + 2(-Haz - 4kZ + Ha-)sinh(h,) 

+ (2Hak + Ha-)sinh(k - W)] 

(2.32) 

Extensive use has been made of the symbolic computation capabilities of Mathemarica 

(Wolfiam 1991) in the denvation of the explicit expressions of the unknown cwfficients, 

and in the expression of the neutral curve as well as in the evaluation of the limiting case 

Ha->-. Most expressions shall not be given here due to their length although they are 

readiiy available. 

For a fixed Ha (fixed magnetic field), Ma gives the Marangoni number at which a 

perturbation with wavenumber k becomes unstable. In the limit Ha->O the curve 

converges to that of the nonmagnetic problem calculated by Pearson (1958) with the 

minimum Mac=79.61 at kc=1.993. The Marangoni number for each k-value is a 

monotonically increasing function of Ha indicating the stabilizing influence of the 

magnetic field. The Points kc(Ha) at which the Marangoni number attains its minimum 

Mac(Ha) determine the threshold of the Marangoni instabitity onset and the wavelength 

of the fmt  unstable mode. Their values are listed in table 1. The values agree with those 

numericnlly calculated by Nield (1966) and Wilson (1993b). High accumcy can be 

obtained by using the exact solution in conjunction with high precision arithmehc in 

order to evaluate exponentials with increments as high as 106. 



From the foregoing results it is possible to reconsmict the velocity, temperature and 

magnetic field associated with the fust unstable mode for arbitrary Hartmann number. In 

fig. 2 we depict the changes of the sueamlines of the unstable mode under the influence 

of the magnetic field. In the nonmagnetic case the lateral size of the unstable rolls is of 

the same order as the layer thickness. For increasing values of the magnetic Geld die 

lateral distance between adjacent cells decreases and their Centers shift towards the 

free surface. In the limit Ha->oo the hydrodynamic behaviow and the size of unstable 

perturbations is govemed by simple laws that are extracted from the exact soIution in the 

next section. 

3. The limit of strong magnetic field 

3.1. Scaling of the criticat parameters 

In many magnetohydrodynamic problems a deeper physical understanding can be gained 

by considenng the limit of strong magnetic field (Ha->oo) even though the magnitude of 

Ha in typical applications rarely exceeds 103. Let us fust use expression (2.32) to derive 

the asymptotic dependence of the critical Marangoni number on Ha. I .  we use symbolic 

computation packages to attempt to calculate the limit of Ma for Ha->oo or if we use the 

Taylor cxpansion around I/Ha = 0 we fail partially because Ma tends to infinity and 

partiaily since the analytic stmcture of the function Ma(k,Ha) in the vicinity of l/Ha=O is 

singular. In order to evaluate the limiting behaviour we make the substitutions 



which already incorporate scaling laws anticipated from the behaviour of the numencal 

values in table 1. Taking the limit Ha-* then provides the following result to leading 

order in 1/Ha 

with 

Equation (3.2) was first derived by Wilson (1993a) using a different method. From (3.2) 

we conclude that Ma and k are the relevant stability Parameters in the limit of strong 

magnetic field instead of Ma and k. The asymptotic neutral curve Ma@, represented in 

fig. 3, is then the magnetic Counterpart to the result of Pearson (1958). 

Ma(@ has a minimum at the solution .&=0.792601 of the transcendentai equation 

exp(2.&2) - 4.&2 - 1= 0 at which it takes a value of M a p l  + 2.21604 P. In the 

vicinity of this minimum M 4 6  has a parabolic shape with a curvature propomonal to 1/L 

It follows from the foregoing results that the critical Marangoni number and wavenumber 

scale as 

The quantity C, usually cailed the correlation length, can be interpreted as a characteristic 

iength scale over which spatial modulations of the basic periodic Pattern can occur in the 



weakly nonlinear regime slightly above the instability threshold (Manneville 1991). 

Above instability threshold the term fi(&kd2 is of the order of one implying that 

superposition of unstable modes from the band with A&l/f  and therefore with 

modulation length f  can occur. 

3.2. Physicai interpretation of the scating iawS 

The basic instability mechanism is independent of the magnetic field. Consider a local 

hot spot that has arisen at the surface due to a small temperanire fluctuation. Heat 

conduction tends to smooth out the spot, whereas thermocapillarity (cf. eq. 2.10) 

produces a radially outward flow above the spot which, by continuity, causes a vertical 

upflow to transport new hot fluid to the surface. Both mechanisms counteract, and for 

sufficiently large temperature gradients, thermocapillary shear production ultimately 

dominates thermal diffusion and viscous dissipation. In the absence of the magnetic Geld 

the surface shear associated with a velocity vx is of the order vx/d. It follows from the 

continuity equation that vz is of the Same order as vx since the wavenumber of the most 

unstable perturbations is of the order of one for the nonmagnetic problem. The vertical 

velocity perturbation causes a surface temperature perturbation 

Inserting this estimate into the Marangoni boundary condition (2.10) which expresses the 

balance between shear and themapiflary forces, gives the result Ma-1 expressing that 

the Marangoni number is the pertinent instability parameter. 

In the presencc of the magnetic field theae estimates have to be modified only in one 

respect. As for other magnetohydrodynamic flows, the effect of a transverse magnetic 



field is to damp the horizontal component everywhere except in nanow boundary layer 

(Hartmann layer) with thickness 

in which viscous forces are of the same order as electromagnetic forces (Lorentz forces) 

resulting from the interaction of the magnetic field with the elecuic cment induced by 

the fluid motion (cf. fig. 2a). Consequently, the foregoing considerations have to be 

repeated with 6 taken as the relevant length scale of the problem instead of d. A velocity 

perturbation vx produces shear 

V* aZv, - Ha- 
d 

From the continuity equation and from the scaling law of the wavenumber we conclude 

that 

and 

Again equating shear stress and thermocapillary stress in cquation (2.10) leads to the 

result 



in agreement with the exact result that Ma govems the instab'iity. 

3.3. The asymptotic spatial stucture of the unstable mode 

In pnnciple, the exact solution for W(z), G(z) and H(z) immediately provides us with all 

physicai quantities including the vorticity 

and the elecaic cumnt density 

parallel to the axis of the rolls. Nevertheless, we shall independently denve the limiting 

behaviour of W(z) by matched asymptotic expansion since this method provides better 

insight into the boundary layer smcture of the flow field. 

The method of matched asymptotic expansion, thoroughly described by Nayfeh (1981), 

has been successfully applied to other magnetohydrodynamic problems (see e.g. Hunt & 

Shercliff 1971, Hunt & Ludford 1958 ). Therefore we shail omit all technicai details and 

presens only the main steps. For the solution of the system (2.18). (2.19), (2.20) and 

(2.23) in the limit Ha-* we split the interval (O,I] in t h e  regions: the bottom layer 0 < 

z L 6, the core 6 < z 1 - 6 and the surface Iayer (2-1) 5 6 with 6=1/Ha. Quantities 

refering to each region an: denoted by subsaipts b, C and s. Setting k = k ~ a l R  and 

M a = ~ a  ~ a 2  we obtain to leading order in the Hartrnann number the equation for the core 

velocity 



with the generai solution 

W,(z) = Cf)ek'z + ct)e.k2z 

Within the bottom layer the velocity rapidly decreases to zem in order to satisfy the no- 

slip condition. To resolve the boundary layer we inaoduce the metched coordinate 

The leading order equation in the bottom layer and the corresponding solution becomes 

(D: - D;)w~(z) = 0 (3.16 ) 

The requirement that W must remain finite in the limit <-ao together with the boundary 

condihons (2.20 a,b) determines three of the unknown Parameters 

in terms of the fourih one. Analogous assumptions appfy for the surface layer with the 

coordinate <=Ha(l-z) and D = -Ha DG. The corresponding expressions are 



From the boundary conditions (2.20 c,d) it follows that 

According to the procedure of matched asymptotic expansion the remaining unknown 

coefficients 

are detennined from the matching condition. This condition requires the outer expansion 

of the boundary layer solution to be equal to the inner expansion of the core solution. 

More precisely, the boundary layer solutions (3.17 ) and (3.20 ) in the limit 5->oo 

must be equated to the core solution 

expanded in the vicinity of z=0 and z=I, respectiveIy. The wafl coordinates in these 

equations refer to different regions. This leads to the 4 matching conditions 



All the W-coefficients can be expressed in texms of the unknown coefficients which are 

therefore uniquely determined. A eomposite solution, i.e. a solution uniformly 

approximating the solution over the whole interval[0,1] can be obtained by addirng to the 

core solution the differente between the core- and rhe boundary layer solutions 

W(z) = AW, +W, + AW, 

which leads to the frnal result 

The function W(z) is plotted in figure 4a for Ha=100 together with that for a lower value 

of Ha. In this figure we See that the verticai component increases monotonically in the 

core and decreases to zero within the Hartmann boundary layer. Equation (3.27) clearly 

reveals the boundary layer structure of the solution. The f is t  terms depending on the 

"slow" coordinate @ describe the core solution, the exponential terms containing Ha 

describe the boundary layers. The correctness of the formula has been checked by 

comparison with the exact result. Fig. 4b shows the behaviour of the veriicai velocity 

component which is obtained by differentiation of W. It is sirongly affected by the 

magnetic field in contrast to vz because the induced electric current 



produces a Lorentz force oppsite to the vx. The vz component is not directly affected 

since it is parallel to the applied magnetic field. The profile of the electic current is 

identicai to DW (cf. equation 2.26). 

Now we turn to the evaluation of the asymptotic temperature profile. It tums out that the 

above procedure cannot be canied out in the Same way as for W(z). The leading order 

core solution for the temperature ~ c ( z ) = - ~ ~ ( z ) / k ~ H a  is uniquely determined by the 

velocity field and contains no undetermined coefficients. The surface layer solution 

contains two free coefficients. There are however three conditions to be satisfied, namely 

continuity of temperature G and heat flux DG between the core solution and the surface 

Iayer solution as well as the Zero heat flux boundary condition DG=O at rhe free surface. 

It is clear that these three conditions cannot be satisfied by only two Parameters and 

therefore higher order terms must be included into the analysis. Fortunately, this can be 

circumvented by calculating fmt the exact solution 

of equation ( 2.19) with W taken from (3.27) and systematically removing higher order 

terms of l/Ha except those necessary to satisfy the boundary condition. We note that the 

solution of the inhomogeneous equation is of the oder Ma G(1) O(1) in the core. In the 

bottom layer the order of magnitude of G is MaG(1) 0(Ha-1) i.e. the boundary condition 

at the bottom is fulfilled to leading order of the Hartmann number and the coefficient d2 

is Zero in this approximation. The coefficient dl ,  however, is necessary to satisfy the free 

Surface boundary condition which is violated by the inhomogeneous term in ( 3.29) to the 

order of H a  E(I) Of 1). 'i'he resuft for d l  is 



With this step done we can mite down the final expression for the temperamre field in 

the lirnit Ha-- as 

The correctness of the approximations ( 3.29) and ( 3.31) is revealed by calculating the 

cnticai curve M&J from the requirement that the rhs. of eq. (3. 31) at z=1 be equal to 

G(l). Surpnsingly, the result 

does not only give the correct asymptotic scaling ( 3.4) but is identical to the exact 

asymptotic neutral curve. Figure 4c shows the temperamre profile calculated from (3.32). 

Although not seen in the figure, the thermal perturbations consist of two nested boundary 

layers - one with thickness 6-1LHa is due to the advection by the velocity perturbation, 

the second boundary layer with 6-l/Haln is due to the thermal boundary condition. The 

asymptotic scaling regime is reached when ~ a ~ l Z > > l  which is l i i l y  to be the rrason for 

the failure of Nield's (1966) numncal method to give correct scaliig resulfs for high Ha. 



4. Secondary effects 

The results of the foregoing section can be used to physically understand more 

complicated situations obtained from our canonical problem by 

(i) allowing for surface deflection, 

(ii) adding buoyancy forces, 

(iii) including thermoelectric effects that could occur at the interface between the 

electncally conducting fluid and the bottom material having in general a nonzero 

elecmcal conductivity. 

In the following we shall briefly provide a physical explanation of previous results 

(Wilson 1993 a,b) on the influence of surface deflection and of buoyancy forces from the 

viewpoint of our asymptotic theory. Moreover we shall assess the importance of 

thermoelectric effects for moderate Hartmann numbers. The latter problem has never 

been considered, although it is imporiant for experimental studies. 

4.1. The roie of surface deforrnation 

It was shown by Scriven & Stemling (1964) that the stability properties are significantly 

changcd in the long wave limit if the constraint of a non-deformable surface is released. 

More presicely, in the limit k-M the critical Marangoni number does not tend to infinity 

as in the case of an undeformed surface. Instead, it tends to zem as 

in absence of gravity (gd),  and it converges to a constant 



if gravity is  present. Here C = pvic / <rod and Bo = pgd2 10, denote respectively the 

Capillary number and the Bond number, and a, is the surface tension. It is worth noting 

that the physical mechanism of these instabilities is quite different from the instabilities at 

intermediate wavenumbers in that the threshold of the long wave instabilities does not 

depend on the molecular transport coefficients V and K. Therefore the use of Marangoni 

number, containing both V and K ,  is somewhat misleading in this case. This is Seen if we 

transfoxm equations (4.1) and (4.2) back to physicai variables, which gives 

for g=O and 

for noniero g. Recall that ß is the criticai temperature gradient. Equations (4.3) and (4.4). 

neither of which contains V or K, lead to the somewhat suqnising conclusion that the 

long wave instabilites would occur no matter how large the viscosity of the fluid is, i.e. 

even in the case W>=-. This paradox is resolved by noting that although V and K: do not 

determine the instability threshold, they do enter into the growth rate, which tends to Zero 

as V->C-. Therefore care must be taken in bredicting long wave instabiiities for 

experimental situations without analyzing thcir growth rate, which may be so slow thar 

the instability is not observable in a iaboratory experiment because the characteristic time 

scale is exceedingly large. 



The instability mechanism itself can be understood without reference to thermal 

diffusion. Before discussing the magnetic case, it is worih explaining the nonmagnetic 

long wave instability mechanism by a simple gedanken experiment, which unfortunately 

was never made in previous publications. Consider a hypothetic System in which the 

temperature is always equal to the unperturbed distribution T=-ßz, even if the velocity is 

nonzero. Such a case obviously corresponds to infinite thermal conductivity. If the planar 

shape of the upper surface is perturbed by a bump 62, the temperature at the top of the 

perturbation differs by 6T=-ßSz from the other poinrs of the free surface. This 

temperature difference creates a thermocapillary flow towards the bump and, as a result, 

its height increases. Obviously, the mere existence of such an instability mechanism is 

not related to viscosity, which only determines the magnitude of the thermocapillary 

velocity and thereby the growth rate of instabiiity. The question why the instabiiity for 

g=O can occur for arbitrarily small temperature gradients, while a finite temperature 

gradient is necessary in the presence of gravity, can be understood by an energetic 

argument. At Zero gravity the instability must only perform mechanical work against 

surface cnergy. Since the energy of a deformed surface teuds to Zero as k - 9 ,  surface 

deformation does not provide an efficient mechanism for instability saturation. In 

contrast, for nonzero gravity a finite amount of energy is necessary to overcome the 

potential energy of the difference between a deformed and a nondeformed surface, and 

the critical temperature gradient is finite. 

Let us  analyze the influence of a magnetic field on the long wave instabilities. The 

magnetic field affects only molecular nansport processes since it gives rise to Joule 

energy dissipation. It does not affect surface energy or potential energy which are 

responsible for the saturation of the long wave insrability as discussed above. Therefore 

We can conclude that the magnetic field does not have any significant influence on the 

insmbility thresholds but it does have infiuence on the growth rates. This is confmed by 



the results of Wilson (1993a,b) who founds that in the limit of strong magnetic field 

relations (4.1) and (4.2) still hold, although with nurnerical factors differing from the 

nonmagnetic case. The action of the magnetic field consists of two counteracting 

elements. On the one hand, a strong magnetic field wili coniine the flow to the Hartmann 

boundary layer &1/Ha in the immediate vicinity of the free surface. Equations (4.3) and 

(4.4) show that a reduced effective layer thickness amounts to a decrease of the cntical 

temperature gradient On the other hand, the Maxwellian stress due to the magnetic field 

enters into the normal stress boundary conditions and inhibits smface defiections. Both 

mechanisms counteract and compensate each other in the limit of high Hartmann 

numbers, thus leading to unchanged scaüng properties of the instabiiity thrcsholds. We 

note, parenthetically, that the incorrect result of Sarma (1983, 1985, 1987) of an 

asymptoticaliy decreasing nitical temperature gradient can be easily understood from the 

foregoing considerations. Sarma (1983, 1985, 1987) did not include the magnetic term 

into the boundary condition. His results refiect the destabilizing influence of the reduced 

effective layer thickness but do not contain the stabilization due to the magnetic term in 

the normal stress boundary conditions. 

Since the presence of a strong magnetic field adds an additional mechanism of energy 

dissipation, it is clear that the growth rates of the long wave instability tends to zcro as 

Ha->oo. Our asymptotic method can be used to invtstigate the asymptotic behaviour of 

the growth rates, which would be irnportant for practical purposes. 

4.2. The rote of buoyancy force 

In the absence of capillary forces buoyancy leads to the classical Rayieigh-Bknard 

instability in which the critical Rayleigh number and the wavenumber scaie as Ra - FIa2 

and k - ~ a l n  for strong magnetic fields (Chandrasekhar 1961). Nield (1964) and Wison 

(1993 b) have studied the interplay befween buoyancy and swface tension in the pnsence 



of a magnetic field calculating the Marangoni !wmber as a function of Ra and Ha. Aa a 

general result, the coupling between both effects is found to be weakened by the magnetic 

field. This is exemplified by the fact that the dope 0f the curve of the critical Marangoni 

number versus the criticai Rayleigh number decreases in the limit of Ha»l in the 

vicinity of Ra=O. This result can be easily interpreted in terms of Hartmann boundary 

layers. In a strong magnetic field the action of the themocapillary forces is entirely 

confined to the Harimann layer below the free surface, whereas the buoyancy forces still 

act in the wholc core. Thus, both mechanisms become increasingly separated as the 

Hartmann boundary layer thlckness tends to zero. For s d l  Rayleigh numbers, such as 

relevant for experimental studies in shalIow Iayers, the method of matched asymptotic 

expansion can be genemlized to the presence of buoyancy by retaining the boundary layer 

equations (3.16) and (3.19) while taking into account the buoyancy term in the equation 

(3.13) for the core velocity. 

A comment is in order on the possibility of reducing the influence of buoyancy. Apart 

from microgravity experiments in space and experiments in shallow layers, there is a 

third way to eliminate the influence of gravity. It is known that in certain Ga-Sn alloys 

the surface increases with temperature (Bojarevics 1993). This implies that the 

thnmocapillary instability manifests itself if the fluid is heated from above. This case is 

stable from the viewpoint of bouyancy, and thermocapillarity is the only destabilizing 

fom. 

5.3. TLermoeIectric effects 

Thcrmoclcctric effects arise at non-isothcrmal boundaries between two electrically 

cmducting matcriafs such as a liquid mctal and solid bottom material in a Marangoni 

exprriment. These thtnnoelectric currents add to the currents induced by the motion of 

fluid in fhe rnagnetlc field and can lead to significanr changes of flows. Ler us estimate 



the ratio between thermoelectnc currents and currents induced by the velocity field for 

small Hartmann numbers refering the reader to the work of Shercliif (1979) for the 

general theory of thermoelectnc magnetohydrodynamics. At the interface between two 

metals an tangential electnc current density 

is generated where AiT is a temperature variation along the interface over the distance d. 

If the bottom is an ideal heat wnductor and therefore isothennal, as assumcd in our 

theory, no thermoelectnc currents can occur. In a bottom with finite but high thermai 

diffusivity ~ b ,  however, a hction 

of the transverse core temperature diffennce can p c n e m  the Interface. Recalling the 

relation ( 3.5) A„T can be expressed as a function of the pcrturbation velocity arid the 

thermoelectnc current can be estimated as 

the ratio of this current to the velocity induced e1wnic cumnt 



ASAT L-.- 
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Thus, thermoelectric currents become important for weak magnetic fields. For AT=lK, 

~ = 1 . 1 7  10-4m2/s (copper), B4 .1  Tesla, and AS=6pV/K (copper-mercury) this ratio is 

roughly 0.5, i.e. thermocapillary forces are as imp~rtant as pureiy eiectromagnetic ones. 

Themoelectric currents are in the same plane as the velocity perturbation and their 

interaction with the vertical magnetic field creates a force with a nonzero y-component 

The stability problem becomes thus three-dimensional in the presence of 

therrnoelectricity. 

4.4. Secondary instabifities 

Above instability threshold the nonlinear terms in the governing equation lead to a 

saturation of the prim-y instability. Linear stability theory cannot predict the selected 

Pattern, but preliminary results of direct numerical simulations of the full three- 

dimensional System of equations show the formation of hexagonal cells. Since the 

thickness of the Hamnann layer decreases faster than the critical wavelength, the aspect 

ratio of the convective cells becomes very large. Locaily the flow tends to be paraLIel 

with the velocity depending pnmarily on z and the induced temperature gradient being 

parallel to the surface. This situation is locally very similar to that of a planar layer heated 

from tht: side as considered by Smith & Davis (1983). Srnith and Davis found that low 

Prandtl number convection is susceptible to perturbations having the form of 

hydrothermal waves. It is likely that this kind of instabilities will arise as a secondaxy 

instaKlity of the established convecrion pattcm Ieading to time-dependence. 



5. Conclusions and further work 

We have established the asymptotic theory of thermocapillary instabiiity in the limit of 

saong magnetic field. The main resuits of the wo* are 

6) 

(ii) 

(iii) 

a rigorous derivation of the asymptotic scaling laws (3.4) for the critical 

parameters describing the postponement of Benard-Marangoni instability by a 

strong magnetic field, 

explicit asymptotic expressions for the profde of the perturbation velocity (3.27), 

temperature (3.29), and electric current density, 

the physical interpretation of the stability properties in terms of well established 

magnetohydrodynamic principles. 

To the best knowledge of the authors, no experiments have been performed yct on the 

suppression of Benard-Marangoni instability by a magnetic field, Howcver, the 

continuing experimental efforts (Ginde 1989, Tison 1993) rnake such rcsults likcly to 

appear in the foreseeable future and we shall give a numerical example how the present 

t h e q  iranslates into experimental parameters. Assuming a Gallium layer with d=l& 

the following critical temperature differente and wavelength are obtained 

B = OTesla (Ha&) ATc = 23 K k = 3.2 mm 

B = 0.1 Tesla (Ha=5) ATC = 40 K k! = 2.6 mm 

It is noteworthy that the instability postponerncnt is rcmarkablc wen for moderately 

smng magnetic fieIds. 

We have investigated the case in which both thc tcrnpcratun gradicnt and the magnetic 

field have the same direction and arc pcrpendicular to thc frcc fluid surface. 



GeneraIizations are necessq in oder to cope with practicai applications such as crystal 

p w t h .  Technological problems involve temperature gradients with nonzero components 

of temperature gradients parallel und perpendicular to the fluid. The parallel component 

of the temperature gradient geuerates a basic flow which may be stable or unstable 

depending on temperature and magnetic field. This problem has been soived by Smith 

and Davis 1983 for the nonmagnetic problem. The investigation of this stability problem 

with magnetic fields is presently underway and will be nported elsewhcrt. 
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Table 1: Clritical Parameters for onset of Benard-Marangoni-instability as a 
function of the Hartmam number 



Captions 

Fig. 1: Sketch of the geomeüy of the fluid layer 

Fig. 2: Sketch of the streamlines of unstable modes. (a) for the non-magnetic problem, 

@) a smng magnetic field conesponding to a high Hartmann number. 

Fig. 3: The asymptotic neutral curve f (kl . 

Fig. 4: Spatiai stnicture of the unstable mode: 

(a) verticai velocity, (b) horizontal velocity and elecuic cunent, (C) temperature 

pcmirbation. All quantities are plotted in arbitrary units. 
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