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Abstract 

We consider the spectral properties of a model quantum system deseribing the cou- 
pling of bound states to a number of decay channels. We describe the separation of a 
few modes from the Set of all resonances during the transition from low to high coupling 
strength between bonnd and continunm states (irapping etfect) leading at high wnpling 
to the formation of two time scales in terms of the life times of the resonance states. 
In particular, we give a detailed analysis of the critical region where the system finds 
its new resonance structure. Eigenvalues, eigenfnnctions and their degree of mixing in 
relation to the corresponding wavefunctions of the closed system as weil as Cross sections 
are stndied analytically and numerically for the cFes of two and four resonances. For a 
multi-resonance case tbe dependence of these quantities on the spectrum of the underly- 
ing closed system is studied. We find that the global reorganization of the spectrum in 
the high coupling regime can be traced back to local redistribntions acting on an energy 
scale comparable to the widths of the interfering resonances. 

PACS: 03.65.Nk, 05.30.-d, 05.40.+j, 24.60.-k 



1 Introduction 

Recently, higbiy excited quantum systems have become of increasing interest in many areas 
of physics. Since at sufficiently high excitation energies many-particle systems have the pos- 
sibiity to  decay, they should be treated as Open ones [I]-[". As an immediate consequence, 
the quantum states have a finite lifetime. 

In a microscopic theory of Open many-particle quantum systems, the excited states of 
the system are coustructed from the bound single-particle states (e.g. [7]). Nevertheless, 
they may have a finite lifetime if their energy is above the threshold for particle decay. The 
Hamiltonian of the many-body system is usualiy given in the form H = H o  + V ,  where Ho 
is a one-particle potential and V describes the residual interaction between the constituents. 
The latter one couples not only the unperturbed many-particle states (Slater determinants) 
one to each other leading to the discrete many-particle states, but also these discrete states 
to the Open and dosed decay channels. So in addition to the internal coupling between 
discrete states, also a coupling between bound aud scattering states (ezternal coupling) as 
weii as a possible channel-channel coupling need to be considered. Due to this external cou- 
pling, the subspace of Open decay chaunels forms an environment for the originaliy discrete 
states (quasibound states enabedded in the coatinzlurn [?I). The system becomes Open. The 
Hamiltonian of such an Open quantum mechanical system is nonhermitian. Its eigenvalues 
are complex and determine both the energy positions and the inverse lifetimes (widths) of 
the states. 

As it was shown in previous investigations (e.g. [21]), the transition from Iow to high 
values of the external coupling strength leads to a separation of a few resonances (trap- 
ping effect), which dominate the decay process. Initialiy, an increase of the external coupling 
strength causes a monotonic growth (in absolute value) of the imaginary parts of all complex 
eigenvalues of the effective Hamiltonian. This growth continues until the resonances start 
to overlap and the interference between neighbouring resonances becomes important. In a 
certain critical region, a level repulsion in the complex plane arises: A few eigenvalues gain 
a larger imaginary part while the other ones get a drift back to the real axis -in spite of the 
fact that the coupling to the Open decay channels is increased -, i.e. they are gettiug trapped. 

Thus, the structure of the system is, at low external coupling, comparable to that of 
the corresponding closed system. The corrections to the positions of the discrete states are 
small; the values of the partial widths can be calculated in the usual way by means of the 
spectroscopic and penetration factors. The structure of the resonance states at high coupling 
is, however, strongly infiuenced by the environment of decay channels: in the complex plane 
a hierarchy of states is formed which is strongly influenced by the structure of the environ- 
ment, in particular by the number and the wavefunctions of the Open decay chameis. 

It is the aim of this paper to investigate in detail the properties of an Open quantum 
system in the critical region, where it finds its new order. In doing this, we incorporate the 
characteristics of an Open system into a simple matrix model (chapter 2). The energies and 
total decay widths of the states of the system considered are calculated from the eigenvalues 
of a nonhermitian, effedive Hamiltonian which can be constructed from the spectrum of the 
system of bound states together with their coupling vectors to the decay channels. 

In a realistic calculation (eg. in the framework of the nudear sh& model), the positions 
and wavefunctions of the discrete states are determined by the average potential and the 
residual interaction (internal e n g ) .  In our calculation, we do not specify the internal 
coupling strength. We rather assume that it is contained implicitly in the spectrum of Ho, 
i.e. we simulate different internal mixings by audying different spectra of the Hamiltonian 



HO. The external mixing of the discrete states is given by an additional, complex-valued 
term in the effective Hamiltonian, which contains the coupling of the discrete states to the 
Open decay channels. The channel-channel coupling is neglected in our calculations. 

In section 3 and 4, we study the basic mechanism of the interaction of resonances by 
considering analyticaily and numerically the cases of two and four resonances. The level 
repulsion in the complex plane as well as other properties of the system are investigated 
at the critical point. In section 5 ,  a more complicated case of 128 resonances and 8 Open 
decay channels is treated nnmericaily, in order to demonstrate how the local trapping of 
resonances iufluences successiveiy the whole s p e c t m .  Eigenvalues and eigenfunctions of 
the effective Hamiltonian are calcdated for the multi-resonance case in dependence on the 
coupling strength to the decay channels. We examine the expansion codicients of the wave- 
functions in relation to the eigenfunctions of the closed system and calculate the degree of 
mixing in relation to that basis. Using different spectra for the closed system, we investigate 
the role of the meaa overlap of resonances for identifying the value of the critical coupling 
strength. Finally, as an example of an observable, the Cross section of the two-resonance case 
is considered in section 6 as a function of the external conpling strength. Some conclusions 
from our results are drawn in the last sections. 

2 The model 

Our analysis is based on the following model (6. Ref. [24]): We consider a quantum system 
consisting of N > 1 bonnd states I@p),i = 1,2, ..., N, and Ii Open two-body decay channels 
[x,(E)),  c = 1,2, ..., If, which are coupled to the I @ ? )  via a residual interaction V .  Supposed 
these states form an orthonormal set, the total Ramiltonian has the form 

Here, the H$ denote the matrix elements of the bonnd-state Hamiltonian. The vectors VC 
with components v ( E )  = ( @ P I & ~ ~ ~ , ( E ) )  are supposed to be pairwise orthogonal, which 
means a neglection of the direct reaction part. Their norm, or the average coupling matrix 
element v,Z = W zgI is a measure of the coupiing strength to the corresponding chan- 
nel C. By means of the coupling parameter a, we will vary the coupling strength between 
bound aud scattering states. Additionaly, we restrict ourselvec to time-reversal invariante. 
That ailows ns to choose all H$ and v ( E )  real. Note that the intemal coupling is given 
implicitly via the distribntion of the eigenvalues of Ho. 

If one neglects the potential scattering phase factor, the scattering matrix $&(E) corre- 
sponding to the Hamiltonian 31 can be written in the form 1241 

where 6 and a denote the in- and outgoing channel, correspondingly, and 

is the effective HHamiItonian in the subspace of bound states. Due to the second term F(E3, 
Ifeff contains euplicitely the coupling to the environment of decay channels. The matrix 



elements of the operator F ( E )  are 

We restrict ourselves to an energy region far away from decay thresholds. Then the vectors 
V' can be considered as energy independent. In this case Fij is purely imaginary and 
energy-independent, as welk 

X- 
Eii = -i?rCV;CVjc , 

c=l  
(5) 

so that H e f f  takes the form 

In our analysis, we consider the complex eigenvalues of the effective Hamiltoniaa as a 
function of the coupiing strength Parameter cu. Furthermore, we analyse the behavior of 
the corresponding eigenfunctions, (GR), and their mixing via the decay channels for each 
resonance in dependence On u. 

First, let us consider the eigenfunctions. Due to the nonhermiticity of the effective 
Hamütonian H e f f  one has to disting~sh between its left and right eigenvectors: 

Since aeff  is symmetric, it can be diagondzed by a complex orthogonal matrix B  fulfilling 

B B ? = B * B = I .  (10) 

The (complex) matrix elements bRR, ~f B connect the eigenvectors I@',) and / @ L )  to the 
eigenvectors I@%) of the bound state hami[todan Ho: 

1%) = C~RR~I@R~) 
R' 

and, correspondingly, 

Eq. (10) implies the bi-orthogonality relation 



On the contrary, theright eigenvectors as well as the left ones are, in general, not orthonomal 
among themselves: 

In the following, we wiii  use the right eigenvectors only, and denote IGR) simply by [GR). 

After considering the eigenvalues of H e f f  the next quantity of our interest is the a- 
dependence of the scalar product NR E ( @ ~ l @ ~ ) .  Ac mentioned above, due to the non- 
hermitiuty of H e f f  it is not normalized to one, and its deviation from unity may serve, 
therefore, as a measure of the 'degree of openess' of the system. From eqs. (11) and (12)  we 

get 

which is real and 2 1 since 

For very small a we have a nearly closed system and, therefore, NR((Y) =: 1. With increasing 
a the values of N R ( ~ )  are expected to grow on in dependence on the mixing of the different 
original states. A detailed discussion of the behaviour of NR((Y) will be given in the next 
two sections. 

Another qnantity reflecting the mixing of a given state R relative to the eigenstates of 
the bound state Harniltonian H o  caused by the second term, F(E) ,  in Feff is the exlernal 
mixing 

Such a definition is motivated by the relation of the external mixing to the information 
entropy I given by I = C R I ~  1171. The coefficients i R R t  in eq. ( 1 7 )  are obtained from 
the bRR< (cf. eqs. ( 1 1 )  and ( 1 2 ) )  by a simple rescaling, so as to obey the requirements for 
probahility aniplitudes: 

3 The back mechanisrn of trapping 

Let us first investigate the simple case of two resonances and one Open decay channel. 

A theoretical study of interference effects in two-resonance Systems can be found in 
[2, 141. An experimentaily accessible sevample of such a system is the isospin doublet of 2+- 
resonances in 8Be 16,141. These resonances have approximately the stfuctnre of 7Li t p and 
'Be + n, and they are lying at  exutation energies aronnd 16.6 and 16.9 MeV. A detailed ex- 
perimental investigation of these resonances in 8Be was performed in [25]. AS a consequence 
of the isospin symmetry of the nuclear force on one hand, and of the symmetry of the two 
configmations with respect to the Coulomb force on the other hand. this doublet is expected 
to be nearly degenerate. This means that the two resonances are in strong interference one 



with each other and are obviously close to the critical point of trapping. 

The simple example of two states and one Open decay channel allows to investigate the 
basic process of the repulsion of two complex eigenvalues most clearly. The coupling vector 
V (normalized to length @) is determined by a single angle y: V = ,,@(cosq, sinp), so 
that eq. (6) can be written as 

cosZ y cos p sin y 
0 -1 cos y sin y sin2 p 

where without loss of generality we have chosen the eigenvalues of Ho to be i l .  In this case 
of two resonances and one Open decay channel, the symmetry of the problem is completely 
determined by the coupling vector. By means of the angle y either one of the resonances 
couples stronger to the decay channel than the other one or both couple with the same 
strength (p  = T). The eigenvalues of this matrix are: 

f i = - i o I  1-2io.cos2p-az. (20) 

The influence of the parameter y in the Hamiltonian ( 19 ) onto the eigenvalue picture is 
iilnstrated by means of Figs. La and 1.b. The motion of the eigenvalues is drawn here as a 
function of the coupling strength a for two different values of y (Note that for p = n/4 the 
totally symmetrical Situation is generated, where both resonances couple with equal strength 
to the decay channel). In both cases an attraction of the levels in the complex plane is ob- 
served for values u < u,it and a repulsion for u > a,it. Here, u„it is dehed as that value of 
u, at  which the two resonances are in a minimal distance one from each other. That means, 
u,it is a local parameter defined as the critical point at which the level attraction of two 
resonances turns into level repulsion. Note that the attraction of the resonances for a < 
corresponds to an attraction of the real parts of the eigenvalues (i.e. of their positions in 
energy) only. Analogously, the level repulsion for a > u,it afTects only the imaginary part; 
in particular, for y = 2 the two states are found to be degenerate in energy. 

For a given bound state spectrum, the minimal distance of the two eigenvalues in the 
complex plane is determined by the symmetry of the coupling vector V. In the case of eq. 
(19) -4th total symmetry of V (y = 2)  the minimal distance is zero, while it is larger than 
Zero for other (compare Figs. La and 1.b). 

It is interesting to trace also the quantity N R ( ~ ) ,  eq. (15), for each resonance. A simple 
analytical expression for N R ( ~ )  can be obtained for the case of a symmetrical vector V. Let 
us denote the eigenfunctions of Reff normaiized according to eq. (13) by 

with N* = I/-. Fromeqs. ( 7 )  and (20)oneeasily finds that & = $(f m - i ) .  
The critical value of the coupling strength u is determined by the requirement C+ = C- (cf. 
eq. (20)  for y = 2)  giving = 1. Because of the total symmetry of the coupling 
matrix, the two states are degenerate in real energy for u 2 1. In the three interesting iimits 
u -+ 0, u -+ 1 und u -t cc the wavefunctions I@*) are: 



From the last equation one sees that at  a = a,;$ = 1,  where the two eigenvalues coincide in 
the complex plane, the scalar product of the wavefunctions goes to infinity: 

For y # n/4 the singdarity of N . ( a )  at a = a,it is replaced by a finite maximum. 

Let us now consider the information entropy. For the case of the two resonances and 
one Open decay channel, eqs. (17), (18)  and ( 21 ) give the resdt (R = f; R' = 1,2; b*i = 
ivi; &t2 = Ni$*) 

for the range 0 < a <: 1,  whereas for a > I the external mWng function is given by 

From eqs. ( 2 4 )  and ( 2 5 )  we see that the two mixing coefficients I* are equal to eadt 
other. It can be proven that this result is true not only in the case of symmetrical coupling 
considered here, but remains valid for any coupling of two resonances to one channel, i.e. for 
arbitrary V.  Indeed, taking into account the relations ( 1 1 )  and ( 1 2 ) ,  the bi-orthogonality 
condition ( 13 ) implies that 

Taking the square of the last equation and inserting the resulting expression into eq. ( 2 6 ) ,  
we find 

= ( ~ t $ ) ) ~  , (28)  

and, consequently, 

From eq. ( 2 9 ) ,  one immediately Sees that in the case of two resonances and one decay 
channel it always holds N + ( a )  = N-(a) and I+(a) = I_(@). 

As a result of the investigation of the two-resonance one-channel case we state the 
following: 

(i) By switching on the coupling to the environment, the states of the underlying closed 
System become unbound. The energy positions and lifetimes of the two resonance states 
follow from the eigenvalues of an effective non-hermitian Hamiltonian. The movement 
of the eigenvalues in the complex plane as a function of the coupling parameter o 
shows an increase of the imaginary parts of the two eigenvaiues, and an attraction of 
their real parts as long as the coupling is below amt. At a = um*, the eigenvalues 
have a minimal distance in the complex plane, which depends on the symmetry of 
the continuum coupling and the internal mixing of the bound states. The value a„, 
is thereiore a locally defined quantity, descrihing a critical point of lwo interferiug 
resonances. At larger d u e s  of cu, a repulsion of the imaginary parts is observed. 



(ii) The process of rearrangement is also reBected in the eigenfunctions. Because of the 
nonhermiticity of l i e f f ,  ( @ * I @ * )  is not normalized to unity. For very s m d  as well as 
for high values of the coupling strength we have ( @ * I @ * )  = 1 like in a closed System, 
which is described by a hermitian Hamiltonian. Bnt for values of a near to the critical 
point, ( @ + I @ * )  differs strongly from 1. The maximum value of ( @ + I @ + )  is reached 
at  the critical point where the eigenvalues have the minimal distance from each other. 
The more the two resonances tonch each other, that means the smailer the minimal 
distance is, the larger is the value for (@+[C?,). In the totaily symmetrical case of two 
resonances it goes to infinity. 

(iii) Further, the mixing of the wavefnnctions, I i (a ) ,  is rising with the external conpling 
strength a up to the point where a = a,;t. Ln the symmetrical two-resonance case 
the external mixing reaches its maximal possible value of In 2 and stays constant for 
a > cu,it. 

4 The four-resonance, one-channel case 

Before investigating the general case of many resonances and more than one decay channei, 
we present resnlts obtained for four resonances coupled to one decay channel. This case 
is stiil a simple one. It is, however, free of the peculiarites of the two-resonance case and 
contains already the whole variety of phenomena characteristic for the many-resonance case. 
We traced the eigenvdue picture of H e f f  as well as the function I  defined by eq. ( 1 7 )  for 
both a symmetrical and an asymmetrical distribution of the bound states and for the two 
coupling vectors V1 = 1 /2 {1 ,1 ,1 ,1 )  and V.  = 1/2{1 , -1 ,1 ,  - I } .  

In Fig. 2 the results are presented for a bound state spectrum symmetricd around 0 
(Ei = - 1 ,  Ez = -113, E3 = 1/3 ,E4 = I) and the completely symmetric coupling vector Vi. 

2.a shows that, although aU bound states conple with the Same amplitude to the decay 
channel, the drift velouty of the four eigenvalues is different. The two resonances lying at  
the border of the spectrnm get trapped first by the two inner states. Since the neighborhood 
of the two two-resonance systems ( 1 1  > &I2 > and 13 > &I4 >) is not symmetric, these 
trappings resemble the Situation of Fig. l.b. The two locd broad modes formed interfere at  
further increasing d n e s  of a in a symmetricd way, leading to the middle part of Fig. 2.a. 

in  Fig. 2.b the miXtng fnnctions IR for the fonr resonances are displayed. One Sees that 
the functions I2,13 increase strenger than the &,I4 .  This is due to the fact that the two 
states in the middle of the spectrum interfere in a constructive way already for small a with 
left and right neighbors. AS a result, they have both a larger mixing (cf. Fig. 2.b) and a 
larger eUectiue coupling to the decay diannel - resulting in a larger width (cf. Fig. 2.a). 
Note, that with increasiug a any eigenstate of ~ ~ f f  differs more and more from the original 
bound state at u = 0 by collecting a d d t u r e s  from all eigenstates of Ho. The relative signs 
of these admixtures determine the spe"fic interferences and lead to the behavionr shown in 
Fig. 2.  The behaviour of IR for larger a, approaching a constant for the states ji :, and 
14 > and having even a decreasing tendency for the resulting antisymmetric combination of 
states 12 > and 13 > is due to  the negative interference between different admixtures. Since 
the wave functions of the two states which are trapped at the first stage of the process do 
not change significantly with a further increase of a ,  their mixing functions remain almost 
constant, whereas the antisymmetrization during the resonance repulsion at  the second hi- 
erarchy level (between resonances 12 > arid 13 >) leads effectiveiy even to a decrease of the 
corresponding mixing function. 

Fig. 3 contains the auaiogous data for the asymmetric bound state spectrum Ei = 
-1, E2 = -0.8, E3 = 113, E4 = 1.  Here the results are similar to those discussed above. The 







,/R = (<PRI<P~). if the resonance overlapping at the criticd point of a is not avoided (total 
symmetry of two interfering resonances), a degeneracy is produced and the corresponding 
)VIz rise to infmity at a = a,;t. 

Fig. 5.d shows the mixing coefficients IR of the eigenfunctions of H e f t  relative to the 
basis of hound states (eigenfunctions of H o )  as a function of a. The critical points are 
clearly visible also in this function: The IR increase strongly up to the point where the level 
repulsion takes place. At these points the wavefunctions suffer crucial changes (Fig. 5.c). 
Beyond the critical region (cu > 5.8. 10-3), the mixing coefficients of both, the broad and 
the trapped wavefunctions saturate at a constant value which is, however, lower than the 
equilibrium value Ieqvz = In 128 = 4.852. 

In Fig. 6.a-d the results obtained for the second (non-uniform) initial distribution are 
displayed. The qualitative characteristics of the Figures 5 and 6 are the Same. In both cases 
the hierarchical rearrangement of the eigenvalues caused by the local mechanism of trapping 
of resonances, which takes place successively with increassing a is observed. It is remarkable, 
that - contrary to the case with uniform distribution shown in Fig. 5 - aii the broad states 
arise from the region of high level density. The chance of a strong interference and therefore 
of an eigenvalue coiiision is much higher in this energy interval than in the other one with 
lower level density. As a consequence, more critical points appear up to a certain cu, and the 
widths of the broad states are larger than those of the states in the low-density region. As a 
result, the 8 broad states of the highest hierarchy are already formed, when the 28 remaining 
resonances of the region of low level density start to take part in the interference process. 
Therefore, they have the only chance to get trapped. 

Summarizing the resnlts obtained up to now, we conclude that the global picture for 
the eigenvalue distribution of the effective IIamiltonian is created by an effect which acts in 
local energy regions. This behaviour is independent of the chosen initid distribution. With 
growing coupling to the environment a seqneuce of cntical points arises in any case, i.e. at- 
tractions and repdsions of eigendues in the complex plane occur. This process terminates 
when the numher of broad modes is equal to the rank of the coupling matrix, which is equal 
to the number of Open decay channels. These broad resonances survive independently one 
from each other and no further level repulsion wili occur. Therefore, it is naturdy to define 
the critical point a" of the system as that value of u, at which K states are separated from 
the rest of the resonance states. 

With this definition, cl:;,; turns out to he different for the two concidered initial distri- 
butions chosen by us. Averaged over the whole spectrum, however, both systems start with 
the Same value of the mean level distance D. 

Fig. 7 displays the ratio of the mean resonance width to the mean level distance, p / D ,  
for the uniform initial distribution (dashed cnrve), for the distribution of a region of high 
and low level density (solid line) and separately for the region of high level density alone 
(dotted curve) as a function of cu. The critical points for the three Situations are indicated. 
Ac can be Seen, a nearly linear relation between p / D  and a exists. Besides of this, the first 
two curves show approximately the Same dope. As a consequence, not only ru" is different 
for the cases considered, but also the corresponding value of (r/D):$. 

The critical values (r/D)" for the first two cases considered above differ by a factor 
of cz. 3. If one considers only the region of high level density (third case), where the main 
process of the rearrangement of the system occurs, the differente is even larger. 



We conclude that the critical point of the system can not be determined from the howl- 
edge of only F/D. The probability of eigenvalue coilisions is surely connected with F/D ,  and 
the chance that the value of u" is reached and the last hierarchy is formed is higher for 
larger values of F/D. But no definite conclusions concernig the critical point can he drawn 
for any fked number of F/D.  The critical point does not scale by means of that quantity. 
As can be Seen in the second example, T / D  depends also on the energy region taken into 
account. E one considers only the region of high level density, the critical value of F/D is 
much larger than in the other case. In that region, most of the eigenvalue coiiisions occur 
and all of the broad modes arise from it. The remaining 28 resonances at the border are 
getting trapped, when the global process of trapping has already terminated and the 8 broad 
states have been formed. These facts ca.l for caution in using F/¿)  for the classification of 
a system with respect to the trapping effect. They emphasize the importance of the local, 
individual processes for the global redistribution of resonances. 

Based on these resnlts, we point out that a hierarchical formation of the eigenvalues 
occurs due to local Buctuations of the level density. The global rearrangement is generated 
by the local mechanism of attraction and repuision of two eigenvalues in the complex plane. 
Features of this process can be Seen also in the corresponding wavefunctions: The values 
NR(cu) and IR(ru), defined in section 2, refiect the evolution of the system in a sig~ficant 
manner. Finally, we saw that regions of high level density are regions favoured for trapping. 
One has to keep in mind, however, that F/D does not determine quantitatively neither the 
local level coilisions nor the global value u". It is impossible to decide, for any fixed value 
of F/D ,  at  which Stage the reorganisation process in the system actually is. 

6 The cross-section 

In order to investigate in which manner the trapping effect can be Seen in an observable 
quantity, we have calculated the cross section of the symmetrical two-level system described 
analytically in section 3. The cross section is calculated from /I - SIZ with the expression for 
the S-Matrix given by eq. ( 2). We considered a symmetrical Situation of two states coupled 
with equal strength to one Open decay channel. 

The three-dimensional Figure 8 shows the total cross section over the interesting en- 
ergy range as a function of cu. In Fig. 9.a-C the total cross section for three values of 
cu ( a  = 0.08, 1, 4) is displayed separately (solid lines). In order to demonstrate the im- 
portance of interference effects, two Breit-Wigner curves are drawn (dashed lines) - with 
parameters corresponding to the energies aad widths given by the complex eigenvalues of 
the effective Hamiltonian. So the dashed lines give the picture of the cross section if one 
assumes isolated states which do not interfere one with each other. 

For small ai the resonances are well isolated, they have smali widths and their overlap is 
nearly zero. The cross section in the small coupling regime is weii approximated by the two 
Breit-Wigner curves. Then, with increasing ru, one observes a strong increase of the average 
cross section up to the maximum value 4, and the resonance structure is getting broader. 
Besides of the increasing widths of the resonances, there is an energy shift in the position of 
each eigenvalue in the direction to the other one. Therefore, a strong overlap is produced. 
At ru = 1, the critical point of level repulsion is reached. At this point both eigenvalues are 
placed at the same point in the complex plane (See also fignre La). Both resonances have 
the Same lifetime and the Same energy position. 

With a further increase of cu one of the resonances gets trapped, while the other eigen- 



d u e  receives a strong drift into the complex plane (cf. Fig. La). The latter eigenvalue 
dominates the decay behaviour-of the System. There is no energy shift in the range a > aWit, 
i.e. at  high coupling strength the energy positions of both resonances stay constant. 

The cross section is changing from the figure of two well separated resonances with nearly 
a Breit-Wigner shape to  a situation where only a dip in a broad structure can be seen. At 
a 2 amt the minimum in the cross section at  E = 0 is caused purely by interference - what 
can be seen best in the cross section picture at a = 1. 

Generdy, it is difficdt to draw conclusions on the positions and widths as weU as on 
the strength of the two resonances if one knows only the cross section. At a = 1, the cross 
section seems to  be caused by the existence of two resonances lying at the energies which 
the states a t  a = 0 had. That means, the level attraction for smaii a cannot be seen in 
the cross section. Further, the area of the two resonances is smaller than the area of the 
two (isolated) Breit-Wigner resonances. Thus, the analysis of the total cross section would 
lead not only to  incorrect conciusions coucerning the positions of the resonances but also to 
widths and transition strenghts being too s m d .  In this case, the misszng strength is a result 
of the interferences (see also [26] for a redstic situation). 

As a consequence, one can foUow the reorganisation process only from the explicit knowl- 
edge of the eigenvalues or eigenfunctions, i.e. it is necessary to measure directly the different 
time scalees. In nuclear physics, the existence of different time scales is very well knom for a 
long time and described by phenomenological models such as the doorway concept. A direct 
measurement OE the different time scales became possible recently in molecules [27]. The 
results obtained there Support the conclusions drawn in the present work. 

We would like to  emphasize the smooth behaviour of U at the critical value, a, = 1. 
Indeed, as discussed in section 3, for a = 1 the C-matrix has a double pole, and quantities 
like the scalar product N diverge. Nevertheless, one can prove that observable quantities 
deduced from the S-matrix at  the real energy axis are rveli defined. In particular, the uni- 
tarity of the S-matrix is not affected by this double pole. 

In order to  check this statement, we note that in the case of two states and one Open 
channei the formda ( 2  ) for the S-matrix reads 

V+ 
S ( E , a ) =  1 - 2 x i . x - - -  * E-E*'  

where the are the transition matrix elements (@*l,/Z@IX) between the bound states I@+) 
and the channel wavefunction ]X). Introducing the partial width y* = &l(@&Z~lx )12  and 
using the relation y+ = (@*l@+)f* between partial and total widths [28], the S-matrix reads 

As derived in section 2, (@*I@+) r iv, diverges at a = a,i,. Nevertheless, inserting eqs. 
( 20 ) and ( 21 ) into Ehe obtained evpression for $(E. a), we see that 

which is unitary for real E and for any a. Note that the Same result can be obtained without 
introducing the notion of partial width by taking into account that = Ci=, V(')@$' with 



Conduding this section, we see that the trapping effect is hidden in the total cross section 
in a compiicated manner. Even in the simple two-resonance case, it is difficult to resolve the 
two time scales created at high level density. Much more complicated is the interference pic- 
ture in the many-resonance case. In the many-resonance one-channel case, only sharp dips 
embedded in a background of very broad resonances arise. There is, however, some evidence 
the short and long-lived resonances show a different angular dependence in the differential 
cross sections which we will discuss in a subsequent Paper. Nevertheless, reliable conclusions 
on the trapping of resonances can be drawn only from direct lifetime measurements. 

7 Conclusions 

In Open Systems two types of forces appear. The structure of the underlying closed system 
is given by internal forces while a so-caiied external force conples the system to the environ- 
ment and regulates the energy- or particle flow to it. Due to this coupling new features are 
generated in the system: properties from the environment are imprinted onto the internal 
structure. So the internd force stabilizes the properties of the underlying closed system, 
whereas the external one induces new properties under the influence of the environment. J3 
one eramines the evolution of the system with growing external force, one observes a critical 
region, where the system reorgmizes itself. Structural properties from the environment are 
now visible, and in a comparable small interval of the external coupling the system finds a 
new structure. 

The variation of the external coupiing strength aiiows an examination of the properties of 
the Open system in relation to those of the corresponding closed one. The transition from the 
situation of equal distribution of the iifetimes to the hierarchical formation of the eigenvalues 
in the complex plane is traced by ns ras a function of the external coupiing strength. Ac we 
have shown, this transition arises successively. It is determined by the local properties of 
the level density for the discrete states as well as by the specific form of the coupiing vectors 
between bound states and continua. Critical points in the coupling strength arise, when the 
resonances interact with resonances from their neighbourhood, i.e. with resonances neigh- 
bouring in energy, and having lifetimes of the same order of magnitude. Successively, with 
increasing external coupling one criticd point after the other is reached. The local effect of 
trapping of neighbouring resonances produces a global picture of a hierarchical formation of 
the eigenvalues of aii resonances in the complex plane. The resonances of different hierar- 
chies are not interfering with each other due to the specific rotation of the corresponding 
eigenstates in the Hilbert space. The K broadest states are pointing into the direction of 
the K coupliug vectors, the other ones are orientated orthogonal to them. 

As a resdt of this local mechanism, the critical value of the coupiing strength at which 
the last separation of a broad mode occurs, depends not only on the overall p / D  but on 
the local properties of the level density as well. This caiis for caution in using p / D  as a 
measure for the degree of reorganization of the spectrum. Concerning the total cross section, 
we found that the interference effects between resonances may lead to an underestimation 
of resonance widths and transition strengths, especiaiiy in the region of critical coupling 
strength. 

Thus, the complete reorganisation of the system is produced by numerous level repulsions 
of two resonances in the complex plane. It is caused by a mechanism which is efficacious 
on s m d  euergy scales and occurs snccessively over the fd i  energy range of the spectrum. 



The complete figure of hierarchically arranged eigenvalues is produced by iocal trapping of 
resonances. The basic process is the repulsion of two complex eigendues which we studied 
analytically and numerically by means of a simple example of two states and one opeu decay 
channel. 

The few broad modes gain large values of the imaginary part of the complex eigenvalues, 
or in other words, they get smaU lifetimes. The number of broad modes is equal to  the rank 
of the external coupling matrix, which is equal to  the number of Open decay channels. For 
the rest of the resonances one observes, in spite of the large coupling strength between bound 
and scattering states, a drift of the eigendues backwards to the real axis. The lifetimes of 
these trapped states are larger by several orders of magnitude than those of the broad modes. 
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Fig. 9 
The same as Fig. 8 for three values of the coupling strength: a = 0.08, a = 1 and a = 4 
(solid curves). The Breit-Wigner-curves calculated from the complex eigenvalues of the two 
resonances for the Same u (dashed curves). 
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Figure captions 

Fig. 1 
Propagation of the eigenvalues of ~ ~ f f  in the complex plane with changing a for two reso- 
nances and one Open decay channel (H = 2, li' = 1). Fig. (a) corresponds to a symmetricai 
coupling vector (y  = x/4), Fig. (b) to an asymmetricai one (y f 7r/4). 

Fig. 2 
(a): The Same as Fig. 1, but for 1%' = 4. The eigenvalues of H o  are chosen symmetrically 
around E = 0. (b): The corresponding mixing functions IR as a function of a. 

Fig. 3 
The Same as Fig. 2, but for an asymmetric spectrum of Ho. 

Fig. 4 
Sum of the mixing coeffrcients bRRt as a function of a for N = 4, Ii = 1: (a) and (C) for 
the completely symmetric coupling vector Vi, (b) and (d) for the asymmetric vector Vz. (a) 
and (b) correspond to a symmetric spectrum of Ho (eigenvalues at E = -1, -1/3,1/3, I), 
(C) and (d) to an asymmetrical one (eigenvalues at E = -1, -0.8,1/3,1. 

Fig. 5 
Propagation of the eigenvalues of H e f f  in the complex plane with increasing a for the uni- 
form distribution of bound states, N = 128, I< = 8 (a); the resonance widths I'R (b), scdar 
prodncts (mRl@R) (C), and mixing functions IR (d) as a function of a. 

Fig. 6 
The Same as Fig. 5, but for the second distribution of bound states described in the text. 

Fig. 7 
Mean degree of overlap T / D  as a function of a for bound state distributions 1 (dashed line), 
2 (fuii line) and separately for the region of high level density of distribution 2 (dotted line). 
The corresponding vaiues of (T/D),~,  and of a" are indicated. 

Fig. 8 
Totai Cross section for N = 2, IZ = 1 as a function of a. 
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