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Abstract

We consider the spectral properties of a model quantum system deseribing the con-
pling of bound states to a number of decay channels. We describe the separation of a
few modes from the set of all resonances during the transition from low to high coupling
strength between bound and continuum states (irapping effect) leading at high coupling
to the formation of two time scales in ferms of the life times of the resonance states,
In particular, we give a detailed analysis of the critical region where the system finds
its new resonance structure. Eigenvalues, eigenfunctions and their degree of mixing in
relation to the corresponding wavefunctions of the closed system as well as cross sections
are studied analytically and numerically for the cases of two and four resonances. For a
multi-resonance case the dependence of these quantities on the spectrum of the underly-
ing closed system is studied. We find that the global reorganization of the spectrum in
the high coupling regime can be traced back to local redistributions acting on an energy
scale comparable to the widths of the inferfering resonances.

PACS: 03.65.Nk, 05.30.~d, 05.40.+j, 24.60-k



1 Introduction

Recently, highly excited quantum systems have become of increasing interest in many areas
of physics. Since at sufficiently high excitation energies many—particle systems have the pos-
sibility to decay, they should be treated as open ones [1]-{23]. As an immediate consequence,
the quantum states have a finite lifetime.

In a microscopic theory of open many-particle quantum systems, the excited states of
the system are constructed from the bound single-particle states (e.g. [7]). Nevertheless,
they may have a finite lifetime if their energy is above the threshold for particle decay. The
Hamiltonian of the many-body system is usnally given in the form H = H% 4 V, where H?
is a one-particle potential and V describes the residual interaction between the constituents,
The latter one couples not only the unperturbed many-particle states (Slater determinants)
one to each other leading to the discrete many-particle states, but also these discrete states
to the open and closed decay channels. So in addition to the internal coupling between
discrete states, also a coupling between bound and scattering states (evternal coupling) as
well as a possible channel-channel coupling need to be considered. Due to this external cou-
pling, the subspace of open decay channels forms an environment for the originally discrete
states (quasibound states embedded in the continuum [T}}. The system becomes open. The
Hamiltonian of such an open quantum mechanical system is nonhermitian. Its eigenvalues
are complex and determine both the energy positions and the inverse lifetimes (widths) of
the states.

As it was shown in previous investigations {e.g. [21]), the transition from low to high
values of the external coupling strength leads to a separation of a few resonances (Zrap-
ping effect), which dominate the decay process. Initially, an increase of the external coupling
strength causes a monotonic growth (in absolute value) of the imaginary parts of all complex
eigenvalues of the effective Hamiltonian. This growth continues until the resonances start
to overlap and the interference between meighbouring resonances becomes important. In a
certain critical region, a level repulsion in the comples plane arises: A few eigenvalues gain
a larger imaginary part while the other ones get a drift back to the real axis — in spite of the
fact that the coupling to the open decay channels is increased ~, i.e. they are getting trapped.

Thus, the structure of the system is, at low external coupling, comparable to that of
the corresponding closed system. The corrections to the positions of the discrete states are
small; the values of the partial widths can be calculated in the usual way by means of the
spectroscopic and penetration factors. The structure of the resonance states at high coupling
is, however, strongly influenced by the environment of decay channels: in the complex plane
a hierarchy of states is formed which is strongly influenced by the structure of the environ-
ment, in patticular by the number and the wavefunctions of the open decay channels,

It is the aim of this paper to investigate in detail the properties of an open quantum
system in the critical region, where it finds its new order. In doing this, we incorporate the
characteristics of an open system into a simple matrix model (chapter 2). The energies and
total decay widths of the states of the system considered are calculated from the eigenvalues
of 2 nonhermitian, effective Hamiltonian which can be constructed from the spectrum of the
system of bound states together with their coupling vectors to the decay channels.

In a realistic calculation (e.g. in the framework of the nuclear shell model), the positions
and wavefunctions of the discrete states are determined by the average potential and the
residual interaction (internal mixing). In our calculation, we do not specify the internal
coupling strength. We rather assume that it is contained implicitly in the spectrum of HY,
i.e. we simulate different internal mixings by studying different spectra of the Hamiltonian



H9. The external mixing of the discrete states is given by an additional, complex-valued
term in the effective Hamiltonian, which contains the coupling of the discrete states to the
open decay channels. The channel-channel coupling is neglected in our calculations.

Tn section 3 and 4, we study the basic mechanisix of the interaction of resonances by
considering analytically and numerically the cases of two and four resonances. The level
repulsion in the complex plane as well as other properties of the system are investigated
at the critical point. In section 5, a more complicated case of 128 resonances and 8 open
decay channels is treated numerically, in order to demonstrate how the local trapping of
resonances influences successively the whole spectrum. Figenvalues and eigenfunctions of
the effective Hamiltonian are calculated for the multi-resonance case in dependence on the
coupling strength to the decay channels. We examine the expansion coefficients of the wave-
functions in relation to the eigenfunctions of the closed system and calculate the degree of
mixing in relation to that basis. Using different specira for the closed system, we investigate
the role of the mean overlap of resonances for identifying the value of the critical coupling
strength. Finally, as an example of an observable, the cross section of the two~resonance case
is considered in section 6 as a function of the external coupling strength. Some conclusions
from our results are drawn in the last sections.

2 The model

Our analysis is based on the following model (cf. Ref. [24]): We consider a quantum system
consisting of N > 1 bound states [89),i=1,2,..., N, and K open two-body decay channels
[xe(E)), ¢ = 1,2,..., K, which are coupled to the [®?) via a residual interaction V. Supposed
these states form an orthonormal set, the total Hamiltonian has the form

N K
H= Y 180 ENEY + Y [ Bl BN BB +
ca=l

i,5=1
K N
3.3 [E[SVEE (B) + hec]- M
c=1 =1
Here, the H g- denote the matrix elements of the bound-state Hamiltonian. The vectors V*

with components VF(E) = {®9},/aV|x.(E)} are supposed to be pairwise orthogonal, which
means a neglection of the direct reaction part. Their norm, or the average coupling matrix
element 92 = & Z;le [V, is a measure of the coupling strength to the corresponding chan-
nel ¢. By means of the coupling parameter e, we will vary the coupling strength between
bound and scattering states. Additionaly, we restrict ourselves to time-reversal invariance.
That allows us to choose all H}; and V(E) real. Note that the infernal coupling is given
implicitly via the distribution of the eigenvalues of H.

If one neglects the potential scattering phase factor, the scattering matrix Su;(E) corre-
sponding to the Hamiltonian H can be written in the form {24]

-1
Subl(B) = dap — 21 Y VAE) |(E ~ BH1(E)) | vi(B) (2)
i3
where b and o denote the in- and outgoing channel, correspondingly, and
HYI(E)Y = H® + P(E) 3)

is the effective Hamiltonian in the subspace of bound states. Due to the second term F(E7},
HelS contains explicitely the coupling to the environment of decay channels. The matrix
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elements of the operator F{£) are

VESE VC(E)
Fy(B) = > [ KT ()

We restrict ourselves to an energy region far away from decay thresholds. Then the vectors
V© can be considered as energy independent. In this case Fj; is purely imaginary and
energy—independent, as well:

K 1
=iz 3 VEVE, (5)
c==l
50 that H¢/f takes the form
HY = g° —im YV, (6)

In our analysis, we consider the complex eigenvalues of the effective Hamiltonian as a
function of the coupling strength parameter ¢ Furthermore, we analyse the behavior of
the corresponding eigenfunctions, |®p), and their mixing via the decay channels for each
resonance in dependence on o

First, let us consider the eigenfunctions. Due te the nonhermiticity of the effective
Hamiltonian H*// one has to distinguish between its left and right eigenvectors:

He|8%) = En|OR) (1)
(HITyHah) = ERleR) (8)
with

Since F°/f is symmetric, it can be diagonalized by a complex orthogonal matrix B fulfilling
BBT = BT =1, (10)

The (complex) matrix elements bnp) of B connect the eigenvectors (&%) and |®%) to the
eigenvectors |8%) of the bound state hamiltonian H®:

27) = S bawl0%)
RJ'

[8R) = Y bhpl®R) 11
R

ft

and, correspondingly,
(Rl = 3 brp (PR
R.r

(Bh = S bpr(dhl. (12)
RI

I

Eq. (10) implies the bi-orthogonality relation

(%] 8%) = dnr - (13)




On the contrary, the right eigenvectors as well as the left ones are, in general, not orthonormal
among themselves:

(2R|%h)} # bnm - (14)

In the following, we will use the right eigenvectors only, and denote |®%) simply by [@g).

After considering the eigenvalues of H%// the next quantity of our interest is the a-
dependence of the scalar product AV = (®g|®r). As mentioned above, due to the non-
hermiticity of H®// it is not normalized to one, and its deviation from unity may serve,
therefore, as a measure of the "degree of openess’ of the system. From egs. (11) and (12) we
getl

NR = (@Ri@}z) ke Zbﬁg:bﬂfgr = Z lb}gg:]a (15)
B R

which is real and > 1 since

Solbarl® = Y ((Rbrr)® + (Sbar)?)

R R
S (Rbrr)? - (Sbpr)) = R Y (r) = (BBDrr=1.  (16)
RI RI

v

For very small a we have a nearly closed system and, therefore, Np{a) & 1. With increasing
a the values of Ng{a) are expected to grow on in dependence on the mixing of the different
original states. A detailed discussion of the behaviour of Np(a) will be given in the next
two sections. '

Another quantity reflecting the mixing of a given state R relative to the eigenstates of
the bound state Hamiltonian H? caused by the second term, F(E), in H!f is the external
iring

IR = Z ;BRR'P in |E)RR’12 . (17)
Rt

Such a definition is motivated by the relation of the external mixing to the information
entropy I given by I = Y g Ip [17]. The coefficients bap in eq. {17) are obtained from
the brp (cf. egs. {(11) and (12)) by a simple rescaling, so as to obey the requirements for
probability amplitudes:

s o lbrmd?

3 The basic mechanism of trapping

Let us first investigate the simple case of two resonances and one open decay channel.

A theoretical study of interference effects in two-resonance systems can be found in
[2, 14]. An experimentally accessible example of such a system is the isospin doublet of 2+-
resonances in 8 Be [6, 14]. These resonances have approximately the stracture of “Li+ p and
"Be + n, and they are lying at excitation energles around 16.6 and 16.9 MeV. A detailed ex-
perimental investigation of these resonances in 8 Be was performed in [25]. As a consequence
of the isospin symmetry of the nuclear force on one hand, and of the symmetry of the two
configurations with respect to the Coulomb force on the other hand, this doublet is expected
to be nearly degenerate. This means that the two resonances are in strong interference one



with each other and are obviously close to the critical point of trapping.

The simple example of two states and one open decay chanmnel allows to investigate the
basic process of the repulsion of two complex eigenvalues most clearly. The coupling vector
V' (normalized to length \/-3;5‘) is determined by a single angle ¢: V = \/%E(cos @, sin ), so
that eq. {6) can be written as

' ) .
eff . [ 1 0 _ 9 €os“y  cossing
" ( 0 -1 ) e ( cospsing  siny ) ’ (‘19}

where without loss of generality we have chosen the eigenvalues of H° to be 1. In this case
of two resonances and one open decay channel, the symmetry of the problem is completely
determined by the coupling vector. By means of the angle ¢ either one of the resonances
couples stronger to the decay channel than the other one or both couple with the same
strength (v = %). The eigenvalues of this matzix are:

Eﬁm—wia:i:\/l——ilia-cos?.gowaz. (20)

The influence of the parameter ¢ in the Hamiltonian (19 ) onto the eigenvalue picture is
illustrated by means of Figs. 1.a and 1.b. The motion of the eigenvalues is drawn here as a
function of the coupling strength o for two different values of ¢ (Note that for o = 7 /4 the
totally symmetrical situation is generated, where both resonances couple with equal strength
to the decay channel). In both cases an attraction of the levels in the complex plane is ob-
served for values o < g and a repulsion for & > @i, Here, i is defined as that value of
o, at which the two resonances are in a minimal distance one from each other. That means,
Qqrit 18 a local parameter defined as the critical point at which the level attraction of two
resonances turns into level repulsion. Note that the attraction of the resonances for a < agri
corresponds to an attraction of the real parts of the eigenvalues {i.e. of their positions in
energy) only. Analogously, the level repulsion for & > agri affects only the imaginary part;
in particular, for ¢ = % the two states are found to be degenerate in energy.

For a given bound state spectrum, the minimal distance of the two eigenvalues in the
complex plane is determined by the symmetry of the coupling vector V. In the case of eg.
(19) with total symmetry of V (= T} the minimal distance is zero, while it is larger than
zero for other ¢ (compare Figs. 1.a and 1.b).

It is interesting to trace also the quantity Mp(a), eq. {15), for each resonance. A simple
analytical expression for Mr(e) can be obtained for the case of a symmetrical vector ¥. Let
us denote the eigenfunctions of H*// normalized according to eq. (13) by

[@4) = - ( i ) (21)

with Ny = 1/1/1 4 ¢%. Fromegs. (7)and ( 20) one easily finds that ¢3 = L.(£/a? — 1~i).
The critical value of the coupling strength « is determined by the requirement £, = £_ (cf.
eq. (20) for ¢ = ) giving @i = 1. Because of the total symmetry of the coupling
matrix, the two states are degenerate in real energy for & > 1. In the three interesting limits
a -+ 0, — 1 und @ — oo the wavefunctions [$.) are:

a=1{: ¢t={; = q’.g.:(é), @w:{?)

a0 ¢p —++l => By - -‘;1,2-(1) $_. - -‘%-5(_11) (22)

a—1l: ¢p=s—i = &, =3%.- (")



From the last equation one sees that at a = o = 1, where the two eigenvalues coincide in
the complex plane, the scalar product of the wavefunctions goes to infinity:

Ni(a) L ~—— 0O . (23)

]

For @ # n/4 the singulatity of Ma(a) at o = a4 is replaced by a finite maximum.

Let us now consider the information entropy. For the case of the two resonances and
one open decay channel, egs. (17), (18) and (21) give the result (B = +4; R = 1,2; byy =
Ng; bag = Nady)

ot
ILi(a) = In2 - ——sm===lna

1= /1—

ot
‘%’{m—l '111(1-‘\/1**(!2, (24)

for the range 0 < a@ < 1, whereas for o > 1 the external mixing function is given by
Li{e)=In2. (25)

From egs. (24) and (25) we see that the two mixing coefficients I are equal to each
other. It can be proven that this result is true not only in the case of symmetrical coupling
considered here, but temains valid for any coupling of two resonances to one channel, i.e. for
arbitrary . Indeed, taking into account the relations (11} and (12 ), the bi-orthogonality
condition { 13 } implies that

@) + (@8 =1 (26)
and
8o + 261 = 0. (21)

Taking the square of the last equation and inserting the resulting expression into eq. {26 ),
we find

@9y = (202, (28)
and, consequently, )
P = aPP. (29)

From eq. (29), one immediately sees that in the case of two resonances and one decay
chanrel it always holds My (a) = A.(a) and I {e) = I_(a).

As a result of the investigation of the two—resonance one-channel case we state the
following:

(7} By switching on the coupling to the environment, the states of the underlying closed
system become unbound. The energy positions and lifetimes of the two resonance states
follow from the eigenvalues of an effective non-hermitian Hamiltonian. The movement
of the eigenvalues in the complex plane as a function of the coupling parameter o
shows an increase of the imaginary parts of the two eigenvalues, and an attraction of
their real parts as long as the coupling is below aeri. At @ = oy, the eigenvalues
have a minimal distance in the complex plane, which depends on the symmetry of
the continuum coupling and the internal mixing of the bound states. The value aq.i:
is therefore a locally defined quantity, describing a critical point of two interfering
resonances. At larger values of o, a repulsion of the imaginary parts is observed.



(if) The process of rearrangement is also refliected in the eigenfunctions. Because of the
nonhermiticity of Heff, (®.|®.) is not normalized to unity. For very small as well as
for high values of the coupling strength we have ($+{®.) ~ 1 like in a closed system,
which is described by a hermitian Hamilionian., But for values of « near to the critical
point, {$4[®..) differs strongly from 1. The maximum value of ($.|®+) is reached
at the critical point where the eigenvalues have the minimal distance from each other.
The more the two resonances touch each other, that means the smaller the minimal
distance is, the larger is the value for (®4]®.4). In the totally symmetrical case of two
resonances it goes to infinity.

(i#) Further, the mixing of the wavefunctions, J+(a}, is rising with the external coupling
strength « up o the point where a = qerir. I the symmetrical two—resonance case
the external mixing reaches its maximal possible value of In2 and stays constant for
& > Qerite

4 The four—-resonance, one—channel case

Before investigating the general case of many resonances and more than one decay channel,
we present results obtained for four resonances coupled to one decay channel. This case
is still a simple one. If is, however, free of the peculiarites of the two-resonance case and
contains already the whole variety of phenomena characteristic for the many-resonance case.
We traced the eigenvalue picture of H®/f as well as the function I defined by eq. (17) for
both a symmetrical and an asymmetrical distribution of the bound states and for the two
coupling vectors V; = 1/2{1,1,1,1} and V; = 1/2{1,~1,1,~1}.

In Fig. 2 the results are presented for a bound state spectrum symmetrical around 0
(Bi=-1,E3 = ~1/3,F3 = 1/3,Ey = 1) and the completely symmetric coupling vector V3.
Pig. 2.2 shows that, although all bound siates couple with the same amplitude to the decay
channel, the drift velocity of the four eigenvalues is different. The two resonances lying at
the border of the spectrum get trapped first by the two inner states. Since the neighborhood
of the two two-resonance systems (|1 > &[2 > and [3 > &4 >) is not symmetric, these
trappings resemble the situation of Fig. 1.b. The two local broad modes formed interfere at
further increasing values of @ in a symmetrical way, leading to the middle part of Fig. 2.a.

In Fig. 2.b the mixing functions I for the four resonances are displayed. One sees that
the functions Iy, I3 increase stronger than the [1,Js. This is due to the fact that the two
states in the middle of the spectrum interfere in a constructive way already for small o with
left and tight neighbors. As a tesult, they have both a larger mixing (cf. Fig. 2.b) and a
larger effective coupling to the decay channel — resulting in a larger width (cf. Fig. 2.a).
Note, that with increasing « any eigenstate of H°// differs more and more from the original
bound state at o = 0 by collecting admixtures from all eigenstates of HC. The relative signs
of these admixtures determine the specific interferences and lead to the behaviour shown in
Fig. 2. The behaviour of Ip for larger o, approaching a constant for the states |1 > and
{4 > and having even a decreasing tendency for the resulting antisymmetric combination of
states |2 > and |3 > is due to the negative interference between different admixtures. Since
the wave functions of the two states which are trapped at the first stage of the process do
not change significantly with a further increase of ¢, their mixing functions remain almost
constant, whereas the antisymmetrization during the resonance repulsion at the second hi-
erarchy level (between resonances 12 > and |3 >) leads effectively even to a decrease of the
corresponding mixing function.

Fig. 3 countains the analogous data for the asymmetric bound state spectrum £y =
—1,Ey = —~0.8, 3 = 1/3, Es = 1. Here the results are similar to those discussed above. The




main differences, cansed by the distortion of symmetry, consist in the absence of a point of to-
tal degeneracy of two eigenvalues in the complex plane, and in the resulting mixing functions.

In all cases shown in Figs. 2 and 3, the maximal value Ip = In4 is reached only for
the short-lived state. This is in conirast to the two—resonance, I-channel case discussed in
section 3 where we found Ip = In2 (for @ > 1) for both the short-lived and the long-lived
resonance. Lhis is connected o the faci that the external mixing is produced at the critical
points. As a consequence, the number of critical points passed by a resonance during its
evolution determines its mixing, and broad modes gain, with increasing o, a larger value of
Ir as compared 1o the majority of trapped states.

Another quantity reflecting the rotation of the states under the influence of the external
coupling, 1/N| ¥ r:brarl, is traced in Fig. 4. At small coupling strength all eigenvectors are
pormalized and orthogonal one to each other, and the corresponding functions start at 0.25.
Reflecting the increasing interference, with rising « the eigenvectors are rotating in Hilbert
space towards each other. This corresponds to the attraction of eigenvalues observed for
those a. At the critical point the eigenvalues reach their minimal distances, and the mixing
coefficients bpp change most rapidly. Finally, at high coupling the eigenvectors are getting
more and more orthogonal again. The broad mode which is formed in the sirong coupling
region, points {in Hilbert space) asymptotically exactly into the direction of the coupling
vector and the corresponding value of 1/N |3 g brp] is sensitive, therefore, to the relative
signs in the two coupling vectors introduced above. The interference between different res-
onances decreases again although the broad mode covers all of the trapped states, and we
arrive at a situation of overlapping but almost not interfering resonances.

Summarizing, we state that an investigation of the basic process of trapping allows us
to understand the reorganization occuring in many-particle guantum systems at high level
density. The basic process can be investigated numerically and analytically without further
approximations.

5 The many-resonance, many—channel case

We turn now to more complex sitnations. As an example we present the resulis obtained
for 8 open decay channels (rank[F;;] = 8) and 128 bound states given by the eigenvalues
of the matrix H°. Two different initial distributions of the bound states are considered: In
the first case a uniform distance between the states is chosen, so that the states are lying
symmetrically around some value chosen arbitrarily at Eg = 0 {(¢f. Fig. 5.2). In the second
case 100 bound states are placed in the same manner, symmetrically around the Es, but
with a much smaller distance. The remaining 28 bound states are placed with a larger next~
neighbour distance, but also uniformly around the energy region of the dense lying states
with a slightly shifted center (Fig. 6.2). Thus, the 128 states are distributed over a certain
energy interval in a different manner in the both cases.

We performed the investigations as a function of the external coupling to the open decay
channels. As we will show below, the behaviour of the system can be described as a suc-
cessive pairwise action of eigenvalne collisions in the complex plane, as described in section
2. Generated by this basic process, a hierarchical arrangement of complex eigenvalues with
respect to their imnaginary parts is generated.

Fig. 5.2 shows the motion of the eigenvalues Fp+ %FR of the effective Hamiltonian Heff
in the complex plane as a function of « for the case of the nniform initial distribution of the



bound states. Like in the two-resonance case, all of the eigenvalues move into the complex
plane with increasing o ~ up to a critical value of e at which trapping arises. Note that this
value is an individual one for every pair of resonances. It depends on the positions of the
resonances in the spectrum and on their coupling amplitudes to the decay channels.

At still larger values of o some of the resonances are getting long-lived as a consequence
of trapping, while the widths of the remaining ones increase more rapidly than before. The
broad rescnances envelop the underlying narrow resonances which do no longer disturd the
propagation of the broad resonances. With a further increase of «, the broad states get into
conflict with other broad resonances in their new neighbounrhood of eigenvalues. Again, each
pair of interfering resonances reaches a certain critical point of o, where trapping occurs.
So, with increasing o, successively more and more resonances are getting trapped. This goes
further up to that point, where only X broad states remain (K = 8§ is equal to the number
of open decay channels = rank[Fj;]). They are no longer coming into conflict one with each
other by a further increase of o (note that channel-channel coupling is not contained in our
calculations).

The individual crifical points for the different eigenvalue collisions are clearly visible in
Fig. 5.b where the imaginary part of the complex eigenvalues of H// is displayed as a
function of the coupling parameter «. Caused by the special symmetrical distribution of the
discrete eigenvalues of H®, two resonances follow always one curve in figure 5.b.

Coming back to the discussion in section 3, Figs. 5.a and 5.b display both, the sym-
metrical and nonsymimetrical collisions of two eigenvalues. Ounly in that case, when the two
colliding resonances have exactly the same widths (which means that they are lying symmet-
rically relative one to each other and have equal coupling to the decay channels) the minimal
distance equals 0. In this case with full symmetry, the energy attraction for o < @iy and
width repulsion for & > o, can be seen most clearly. The two resonances stay degenerate
in energy above the critical coupling strength @.;:. The overlapping of both resonances is
not avoided.

The symmetry of the resonance distribution is determined by the two parts of the ef-
fective Hamiltonian, H° and F. In our model, H" is chosen with vanishing non-diagonal
matrix elements, while the diagonal matrix elements are set by hands. The nonhermitian
part F contains the coupling to the environment of decay channels. Both parts determine
the symmetry of the problem and therefore the minimal distances in the eigenvalue colli-
sions, as shown in Fig. 1. As a result, successive energy attraction and width repulsion is
produced, at some critical values of a, which is based on a local mechanism, acting on an
energy scale of the order of magnitude of the widths of two interfering resonances. The result
is a global figure of hierarchically (with respect to their widths) arranged eigenvalues of the
whele spectrum. ’

Not only the complex eigenvalues of the effective Hamiltonian show signatures of this
reorganisation process, but also the eigenfunctions. As shown in Fig. 5.¢, the scalar product
Np = (®p|®R) is sensitive to the redistribution of the resonant states. The values of Nu
for the 8 broadest states are drawn in thick points. One sees that for very small o (l.e. in
the regime of well separated resonances), the values of all Ap are close to one. Whenever
@ % Qgrig, level repulsion of two resonances occurs and a maximum value of the correspond-
ing AVp is reached. For & > @, they are going back to values close to one. The sharpness
of the peak and the maximum of its value are a measure of how close the eigenvalues of
the two repelling resonances, which got into conflict, are coming to each other. Thus, the
symmetry of the problem is reflected also in the wavefunctions. That means, the smaller the
minimal distance of two eigenvalues in the complex plane, the larger are the values of the
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Ng = {®g|®n). If the resonance overlapping at the critical point of o is not avoided (total
symmetry of two interfering resonances), a degeneracy is produced and the corresponding
Nz tise to infinity at o = agq;.

Fig. 5.d shows the mixing coefficients Ip of the eigenfunctions of H*f relative to the
basis of bound states (eigenfunctions of H°) as a function of a. The critical points are
clearly visible also in this function: The I increase strongly up to the point where the level
repulsion takes place. At these points the wavefunctions suffer crucial changes (Fig. 5.c).
Beyond the critical region (@ > 5.8 - 10~%), the mixing coefficients of both, the broad and
the trapped wavefunctions saturate at a constant value which is, however, lower than the
equilibrium value fog. = In 128 = 4.852.

In Fig. 6.a-d the results obtained for the second (non-uniform) initial distribution are
displayed. The qualitative characteristics of the Figures 5 and 6 are the same. In both cases
the hierarchical rearrangement of the eigenvalues caused by the local mechanism of trapping
of resonances, which takes place successively with increassing « is observed. It is remarkable,
that — contrary to the case with uniform distribution shown in Fig. 5 — all the broad states
arise from the region of high level density. The chance of a sirong interference and therefore
of an eigenvalue collision is much higher in this energy interval than in the other one with
lower level density. As a consequence, more critical points appear up to a certain «, and the
widths of the broad states are larger than those of the states in the low-density region. As a
result, the 8 broad states of the highest hierarchy are already formed, when the 28 remaining
resonances of the region of Jow level density start to take part in the interference process.
Therefore, they have the only chance to get trapped.

Summarizing the results obtained up to now, we conclude that the global picture for
the eigenvalue distribution of the effective Hamiltonian is created by an effect which acts in
local energy regions. This behaviour is independent of the chosen initial distribution. With
growing coupling to the environment a sequence of ¢ritical points arises in any case, i.e. af-
tractions and repulsions of eigenvalues in the complex plane occur. This process terminates
when the number of broad modes is equal to the rank of the coupling matrix, which is equal
to the number of open decay channels. These broad resonances survive independently one
from each other and no further level repulsion will occur. Therefore, it is naturally to define
the critical point o[, of the system as that value of o, at which K states are separated from
the rest of the resonance states.

With this definition, oY, turns out to be different for the two considered initial distri-
butions chosenr by us. Averaged over the whole spectrum, however, both systems start with

the same value of the mean level distance D.

Fig. 7 displays the ratio of the mean resonance width to the mean level distance, T/D,
for the uniform initial distribution (dashed curve), for the distribution of a region of high
and low level density (solid line) and separately for the region of high level density alone
(dotted curve) as a function of @. The critical points for the three situations are indicated.
As can be seen, a nearly linear relation between I'/D and « exists. Besides of this, the first
two curves show approximately the same slope. As a consequence, not oaly o7y, is different

SYS

for the cases considered, but also the corresponding value of (T/D)2%,.

The critical values (I'/D)2Y; for the first two cases considered above differ by a factor
of & 3. If one considers only the region of high level density (third case), where the main

process of the rearrangement of the system occurs, the difference is even larger.
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We conclude that the critical point of the system can not be determined from the knowl-
edge of only T/D. The probabﬂlty of eigenvalue collisions is surely connected with T/D, and
the chance that the value of oY, is reached and the last hierarchy is formed is Iugher for
larger values of I‘/ D. But no definite conelusions concernig the critical pomt can be drawn
for any fixed number of I'/D. The critical point does not scale by means of that quantity.
As can be seen in the second example, I'/D depends also on the energy region taken into
account. If one considers only the region of high level density, the critical value of T/D is
much larger than in the other case. In that region, most of the eigenvalue collisions oceur
and all of the broad modes arise from it. The remaining 28 resonances at the border are
getting trapped, when the global process of trapping has already terminated and the 8 broad
states have been formed. These facts call for caution in using I'/D for the classification of
a system with respect to the trapping effect. They emphasize the importance of the local,
individual processes for the global redistribution of resonances.

Based on these results, we point out that a hierarchical formation of the eigenvalues
occurs due to local fluctnations of the level density. The global rearrangement is generated
by the local mechanism of attraction and repulsion of two eigenvalues in the complex plane.
Features of this process can be seen also in the corresponding wavefunctions: The values
Np(a) and Ip(a), defined in section 2, reflect the evolution of the system in a significant
manner. Finally, we saw that regions of h}g}i level density are regions favoured for trapping.
One has to keep in mind, however, that I’ / D does not determine quantitatively neither the
local level collisions nor the global value o¥};. It is impossible to decide, for any fixed value
of I/ D, at which stage the reorganisation process in the system actually is.

6 The cross-section

In order to investigate in which manner the trapping effect can be seen in an observable
guantity, we have calculated the cross section of the symmetrical two-level system described
analytically in section 3. The cross section is calculated from |1 — S|? with the expression for
the S-Matrix given by eq. {2). We considered a symmetrical situation of two states coupled
with equal strength to one open decay channel.

The three—dimensional Figure 8 shows the total cross section over the interesting en-
ergy range as a Tunction of o. In Fig. 9.a-c the total cross section for three values of
a (o = 0.08, 1, 4) is displayed separately (solid lines). In order to demonstrate the im-
portance of mterference effects, two Breit-Wigner curves are drawn (dashed lines) — with
parameters corresponding to the energies and widths given by the complex eigenvalues of
the effective Hamiltonian., So the dashed lines give the picture of the cross section if one
assumes isolated states which do not interfere one with each other.

For small ¢ the resonances are well isolated, they have small widths and their overlap is
nearly zero. The cross section in the small coupling regime is well approximated by the two
Breit—Wigner curves. Then, with increasing @, one observes a strong increase of the average
cross section up to the maximum value 4, and the resonance structure is getting broader.
Besides of the increasing widths of the resonances, there is an energy shift in the position of
each eigenvalue in the direction to the other one. Therefore, a strong overlap is produced.
At o = 1, the critical point of level repulsion is reached. At this point both eigenvalues are
placed at the same point in the complex plane (see also figure 1.a). Both resonances have
the same lifetime and the same energy position.

With a further increase of @ one of the resonances gets trapped, while the other eigen-
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value receives a strong drift info the complex plame {cf. Fig. 1.a). The latter eigenvalue
dominates the decay behaviour of the system. There is no energy shift in the range a > a4,
i.e. at high coupling strength the energy positions of both resonances stay constant.

The cross section is changing from the figure of two well separated resonances with nearly
a Breit-Wigner shape to a situation where only a dip in a broad structure can be seen. At
@ > O the minimum in the cross section at E = 0 is caused purely by interference - what
can be seen best in the cross section picture at & == 1.

Generally, it is difficult to draw conclusions on the positions and widths as well as on
the strength of the two resonances if one knows only the cross section. At o = 1, the cross
section seems to be caused by the existence of two resonances lying at the energies which
the states at a@ = 0 had. That means, the level attraction for small & cannot be seen in
the cross section. Further, the area of the two resonances is smaller than the area of the
two (isolated) Breit-Wigner resonances. Thus, the analysis of the total cross section would
lead not only to incorrect conclusions concerning the positions of the resonances but also to
widths and transition strenghts being too small. In this case, the missing strength is a result
of the interferences (see also [26] for a realistic situation).

As a conseguence, one can follow the reorganisation process only from the explicit knowl-
edge of the eigenvalues or eigenfunctions, i.e. it is necessary to measure directly the different
time scales. In nuclear physics, the existence of different time scales is very well known for a
long time and described by phenomenological models such as the doorway concept. A direct
measurement of the different time scales became possible recently in molecules [27]. The
results obtained there support the conclusions drawn in the present work.

We would like to emphasize the smooth behaviour of ¢ af the critical value, o, = 1.
Tndeed, as discussed in section 3, for o = 1 the S-matrix has a double pole, and guantities
like the scalar product N diverge. Nevertheless, one can prove that observable quantities
deduced from the S-matrix at the real energy axis are well defined. In particular, the uni-
tarity of the S-matrix is not affected by this double pole.

In order to check this statement, we note that in the case of two states and one open
channel the formula (2 ) for the S-matrix reads
Te)

7
S(E,e)=1-2mi-y —E 30
(E,a) §E~€i (30)

where the V. are the transition matrix elements (®}y/aV|x) between the bound states {$..)
and the channel wavefunction Jx). Introducing the partial width v+ = 2=|{$+[v/aVix)|? and
using the relation 74 = (®4|®4)T's between partial and total widths [28], the S-matrix reads

S(E,e)=1- E @;E‘I’*Ef* . (31)

As derived in section 2, {®4]91) = Ny diverges at & = agy. Nevertheless, inserting eqs.
{20) and (21) into the obtained expression for S{E,a), we see that

1- E?42iFa
S(F.2) = T Fr—siEa o

which is unitary for real F and for any a. Note that the same result can be obtained without
introducing the notion of partial width by taking into account that ¥z = YLV (a},I,U} with
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v = V) = /a/r.

Concluding this section, we see that the trapping effect is hidden in the total cross section
in a complicated manner. Even in the simple two-resonance case, it is difficult to resolve the
two time scales created at high level density. Much more complicated is the interference pic-
ture in the many-Tesonance case. In the many-resonance one-channel case, only sharp dips
embedded in a background of very broad resonances arise. There is, however, some evidence
the short and long-lived resonances show a different angular dependence in the differential
cross sections which we will discuss in a subsequent paper. Nevertheless, refiable conclusions
on the trapping of resonances can be drawn only from direct lifetime measurements.

7 Conclusions

In open systems two types of forces appear. The structure of the underlying closed system
is given by internal forces while a so-called external force couples the system to the environ-
ment and regulates the energy- or particle flow to it. Due to this coupling new features are
generated in the system: properties from the environment are imprinted onto the internal
structure. So the internal force stabilizes the properties of the underlying closed system,
whereas the external one induces new properties under the infiluence of the environment. If
one examines the evolution of the system with growing external force, one observes a critical
region, where the system reorganizes itself. Structural properties from the environment are
now visible, and in a comparable small interval of the external coupling the system finds a
new structure.

The variation of the external coupling strength allows an examination of the properties of
the open system in relation to those of the corresponding closed one. The transition from the
situation of equal distribution of the lifetimes to the hierarchical formation of the eigenvalues
in the complex plane is traced by us as a function of the external coupling strength. As we
have shown, this transition arises successively. It is determined by the local properties of
the level density for the discrete states as well as by the specific form of the coupling vectors
between bound states and continua. Critical points in the coupling strength arise, when the
resonances interact with resonances from their neighbourhood, i.e. with resonances neigh-
bouring in energy, and having lifetimes of the same order of magnitude. Suceessively, with
increasing external coupling one critical point after the other is reached. The local effect of
trapping of neighbouring resonances produces a global picture of a hierarchical formation of
the eigenvalues of all resonances in the complex plane. The resonances of different hierar-
chies are not interfering with each other due to the specific rotation of the corresponding
eigenstates in the Hilbert space. The K broadest states are pointing into the direction of
the K coupling vectors, the other ones are orientated orthogonal to them.

As a result of this local mechanism, the critical value of the coupling strength at which
the last separation of a broad mode occurs, depends not only on the overall I'/D but on
the local properties of the level density as well. This calls for caution in using F/D as a
measure for the degree of reorganization of the spectrum. Concerning the total cross section,
we found that the interference effects between resonances may lead to an underestimation
of resonance widths and transition strengths, especially in the region of critical coupling
strength.

Thus, the complete reorganisation of the system is produced by numerous level repulsions

of two resonances in the complex plane. It is caused by a mechanism which is efficacious
on small energy scales and ocenrs successively over the full energy range of the spectrum.
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The complete fignre of hierarchically arranged eigenvalues is produced by local trapping of
resonances. The basic process is the repulsion of two complex eigenvalues which we studied
analytically and numerically by means of a simple example of two states and one open decay
channel.

The few broad modes gain large values of the imaginary part of the complex eigenvalues,
or in other words, they get small lifetimes. The number of broad modes is equal to the rank
of the external coupling matrix, which is equal to the number of open decay channels. For
the rest of the resonances one observes, in spite of the large coupling strength between bound
and scattering states, a drift of the eigenvalues backwards to the real axis, The lifetimes of
these trapped states are larger by several orders of magnitude than those of the broad modes.
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Fig. 9 .

The same as Fig. 8 for three values of the coupling strength: a = 0.08, a = 1 and & = 4
(solid curves). The Breit~Wigner-curves calculated from the complex eigenvalues of the two
resonances for the same « (dashed curves).

18



Q -
m o
- 10"1 3

g

l.a .

10"‘2 : i ! i ' i ' i ! 1 ' ] ' i !
-1.00 -0.75 -050 -025 000 025 050 075 1.00

10°

wraisd

wdatant!

1071

Tp/2
el
ot tatel

102

od ttaaned

1.b

10-3 ' i ' i ' l b i 1 1 f ¥ ' I 4
-1.00 -0.75 -050 -025 000 025 050 075 1.00

Eg




2>+3>

2> eeert el 3>
4>

12>-13>

102

Lok bt aial

2.a

¥

1073 T T T
-1.00 -0.75 -0.50 -0.25 0.00

i ' i
025 050 075 1.00

1.50

1n(4)

- 12543 |
1.25 ra .

In(3)

1.60~

253> |

> & 4>
o 0.75 1@ e ]

o '
0.50- i

0254 &5 .

. ..?..°'...-’ 2.b ]
0.00 L I e e B LA s s S
000 025 050 075 100 1.25 150 175 2.00

0/



13>

iodtterl

4>

e —
IOO“g [2>__"__,_.-/
~ 104 1> ( [\
fomi : : ]

| 3.a 1
103 ,

A A L B R A S R g ¥
-1.00 -0.75 -0.50 -0.25 000 025 0.50 0.175 1.00

1.50 LN I R Rt S SR R S e S R T M

In(4\
. ’/—‘7 13>
1.25 oo .

In(3)] A

1.00 i
a | / ..": 14> |

et (.75 = ;o> J—— _ e

In(2) z /

0504 & &5 _

O . 25 - : .‘.::::...-' ]

0.00 +<———
000 025 050 075 1.00 125 150 175 2.00

ol



Fig. 4

¥ T T T 4 T Y T T ¥ T T 4 1 T 0.5 ¥ T T T ! 1 ¥ 1 ' i ! J ! 1 '

05+ 4.a | 2413> |4.b i25-13>

akyesatuBReTY
oy LEL A
ann e

o
N J R LT T T Y YT R PR T e P L T PR P I
2t Eloihii
T Lo
L e ot
- "

c..n-u O.A . !.

13

quser?

o

o)

.WVMK ....::_...:.........: ... {2503 .
>, >

&

UN [Z5. by

&
1

.
.
0.1-
. rang,

0.0 T ; _ LA R
. D.o0 o.,wm 050 075 1.00 125 150 175 200 000 025 050

¥ U

_.
075 100 125 150 175 2.00
o a

JErpert Tl .r
of Alo O ..u--.. - . “ hna& -..4.-.::o-:.:-.o...o:.. ' o
) .... 2> ._-.go.. muv
O.\Ml < 1 O'A.[ . 4

YT TS T A T

. .
. .
ant o .
] - vrreseany 4
Leunee pree 1l
‘.- .
.
. . - .

.
. .
3 - R

v
.

0.2

1/N [Zg. bgg ]
o
>
!

1/N [ by

ray
L] ey
. . e, K>
*a e - ¢ \ * -
o . 4> "oy ey, k . :-.“....-.:o......:..:.-..-....
+, ry . Trae
) *y ey e
. ey . vy
. N [ e
. e, pAL TP T+ “treny,
. Ttee LALLTT T, o O H i " (LTI
kT H L ALLITTT -
> +

Hi>

.
.
¥
.
*y
Yoy
...::......o-..n
.
] AaAA L L] L P P,

LERL T I TR LYY L Pee

0.0 T T T H Y I ¥ T 4 T T 7 T 1 T 0.0 T T T 1 T - T T T T 1 v 7 ¥
0.00 025 050 075 1.00 125 L50 175 200 G600 025 050 075 100 125 1.50 175 2.00



ot 3

- ]
10?

bt ddaadad

10°

Lraazl

10

10°

Abaial

10!

2

10?

al
i1 LA s et e I e T
1 5¢ :
20+ -

<<DR!<I)R>

o

A T
0 mi10® 2m10® 3x10Y 4x10? 510 &x10” 7xi0?
o



ol

o

r

<¢)Rt¢R>

10t

)

dovondac kb

107

MENWEETIT

1074

beabobebbidbil

10t

17.54

15.0+

125+

R 2 T ey

-,

1
1

L H

oy T r — 2 ¥ T T T
0 1x10° 2x107 Ix10” 4x10° sx107?




LI 0 1110

sks O 5450

0L O1X9 (OIXS OT%p (OTXE (OIXZ (0TI 0,

. 1¢C

" ~ ..,V
- lo 2
Ci

i 8

- 101

! 1¢1

1 i 1 ! I I t xvﬁ

[ S



o

‘*\

i
i

.

ot

I
"f/fi
i
?j‘:.

,
i

u‘)ﬁ
)

g 314



Fig. 9

-
PR

Alx»!.l.lll.l-

B VUV U FUU M U U




Figure captions

Fig. 1

Propagation of the eigenvalues of K ¢ff in the complex plane with changing o for two reso-
nances and one open decay channel (N = 2, K = 1). Fig. (a) corresponds to a symmetrical
coupling vector (¢ = x/4), Fig. (b) to an asymmetrical one (p # n/4).

Fig. 2
(a): The same as Fig. 1, but for N = 4. The eigenvalues of H? are chosen symmetrically
around £ = 0. (b): The corresponding mixing functions fr as a function of a.

Fig. 3
The same as Fig. 2, but for an asymmetric spectrum of HP.

Fig. 4 :

Sum of the mixing coefficients bgps 2s a function of @ for N = 4, K = 1: (a) and {c) for
the completely symmetric coupling vector 3, (b} and (d) for the asymmetric vector Va. (a)
and {b) correspond to a symmetric spectrum of H® (eigenvalues at £ = —1,-1/3,1/3,1),
(c) and (d) to an asymmetrical one (eigenvalues at £ = ~1,-0.8,1/3, 1.

Fig. &

Propagation of the eigenvalues of H%/f in the complex plane with increasing o for the uni-
form distribution of bound states, N = 128, K = 8 (a); the resonance widths I'p (b), scalar
products (®z{®x) (c), and mixing functions I (d) as a function of o,

Fig. 6
The same as Fig. 5, but for the second distribution of bound states deseribed in the text.

Fig. 7
Mean degree of overlap T/ D) as a function of & for bound state distributions 1 (dashed line),
2 {full line) and separately for the region of high level density of distribution 2 {dotted line).

The corresponding values of (T'/D)erir and of ¥, are indicated.

Fig. 8
Total cross section for N = 2, K = 1 as a function of a.
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