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Abstract 

The trapping effect is investigated close to the elastic threshold. The 
nucleus is described as an Open quantum mechanical many-body sys- 
tem embedded in the continuum of decay channels. An ensemble of 
compound nucleus states with both discrete and resonance states is 
investigated in an energy-dependent formalism. It is shown that the 
discrete states can trap the resonance ones and also that the discrete 
states can directly influence the scattering cross section. 

1 Introduction 

In different theoretical investigations of Open many-particle quantum sys- 
tems it was found that, at a critical value of the level density, a redistribution 
of the spectroscopic properties takes place [I] - [22]: The transition from 
low to high level density creates well separated narrow resonances which 
are enveloped by a few broad ones acting like a dynamical contribution to 
the potential scattering. As a consequence, some long-lived states exist at 
high level density together with a few short-lived ones. The corresponding 
reaction time scales are well separated from each other (trapping effect). AL1 
these studies are performed far from particle decay thresholds, where the 
number of short-lived states is equal to the number of Open decay channels. 

In heavy nuclei, however, the excitation region just above the elastic 
(first pafticle decay) threshold is most interesting. Mere, the total cross sec- 
tion for neutron scattering shows the picture of well separated resonances 
although the level density is very high. The widths of these neutron res- 
onances in Iieavy nuclei are of the order of magnitude of keV or even eV. 
They interfer with the smooth potential scattering the contribution of which 
to  the total cross section is large. 



In the standard description of the neutron resonances, threshold effects 
are not taken into account [23,24] although they are lying in the very neigh- 
bourhood of the elastic neutron threshold. The neutron resonances are de- 
scribed either as discrete states by means of strongly mixed bonnd-state 
wavefunctions or on the basis of the statistical theory of nuclear reactions 
where no thresholds at all exist. In any case, threshold effects in the wave- 
functions and positions of the neutron resonances are neglected. 

It is, indeed, suggestive to interprete the neutron resonances as trapped 
states 17, 121. It is, however, difficult (or almost impossible) to prove this 
suggestion by analysing the total cross section. The main reason is, that the 
cross section is an interference picture to which all resonances contribute 
and, furthermore, that the neutron resonances are lying in the very neigh- 
bourhood of the first neutron decay threshold. 

The cross section is the result of interferences between narrow resonances 
and a smooth (almost energy independent) reaction part. The smooth part 
may arise from both the direct reaction part and the short-lived resonance, 
which is formed together with the long-lived resonance states at  high level 
density due to the trapping effect. The short-lived resonance may be in- 
terpreted as a dynamical part to the potential [9]. It is, therefore, almost 
impossible to distinguish it in the cross section from the direct reaction part, 
especially if one takes into account that neither the potential nor the resid- 
ual interaction is calculated in nuclear physics but is fitted to data. 

Furthermore, the widths of trapped states lying just above the elastic 
threshold are small as a result of both the trapping effect and their position 
in energy. It is again very difficult (or even impossible) to prove whether 
the widths of the neutron resonances are so extremely small only because of 
their position in the very neighbourhood of the elastic threshold or whether 
the interference of the resonances (trapping effect) is needed to explain the 
small width of the neutron resonances.. 

In spite of the problems mentioned above we state that the interpreta- 
tion of the neutron resonances as trapped states is not in disagreement with 
their known properties although they are mostely considered as isolated 
resonances. In any case, the background is large. The resonance reaction 
part represents only a s m d  part of the total neutron scattering cross section. 

In this paper we study the influence of the lowest particle decay thresh- 
old on the trapping effect in order to simulate the real situation of neutron 
resonances. That means, we investigate an ensemble consisting of discrete 
as well as of resonance states. 



The numerical calculations are performed in the framework of the con- 
tinuum shell model [7, 171 which is, to our knowledge, the only one allow- 
ing for a description of the trapping effect near particle decay thresholds. . 

In this model, the widths rR and energies ER of the resonance states are 
obtained, by solving the fixpoint equations, from the complex eigenvalues . - 
ER = ER - t rR of the effective Hamilton Operator HZ which describes 
the Open quantum system. The eigenvalues are energy dependent functions 
and their energy dependency is needed when calculating the total scattering 
cross section utot. The energy dependence is, however, smooth up t o  thresh- 
old effects in the imaginary parts h ( Z R )  = $FR. The FR vanish below the 
first particle decay threshold but are different from Zero above it. 

In Sect. 2 of this Paper, the continuum shell model is sketched. The 
eigenvalues of the effective Hamiltonian HG: are calculated under different 
conditions as a function of the coupling strength a between the resonance 
states in the compound nucleus and the continuum of decay channels. The 
influence of a threshold does not destroy the trapping effect (Sect. 3). It 
is possible that all the states lying above the threshold (resonances) are 
trapped while the states with a large spectroscopic factor are discrete. This 
result corresponds to  the fact that the states, the spectroscopic factors of 
which are large, appear mostly in the lower part of the spectrum [17]. In 
Sect. 4, the influence of discrete states lying near to the elastic threshold 
on the scattering cross section is investigated. Conclusions from the results 
obtained are drawn in the last section. 

2 The rnodel 

The Hamiltonian of an Open quantum system can be written in the follswing 
manner [7, 171 

where HQQ = IIZQ + VQQ is the Hamiltonian of thc corresponding closed 
system, 

V is the residual interaction between two (bound or unbound) particles of 
the system, GF) is the Green function for the motion of the particle in 
the continuum of decay channels. The operators Q and P preject ~ntgt the 
subspaces of the discrete and continuous states, respectiveP.ya 



and 

The channels C Open at the energies E = E,. The matrix elements of VQp 
are (Qjy \V 165) and a corresponding expression holds for those of VpQ . 

In the continuum shell model, the energy dependence of eigenfunctions 
~ R ) ( E )  and eigenvalues E ~ ( E )  - ;PR(E) of the effective Hamiltonian ( 1 ), 

does not show any resonance behaviour due to the cut-off technique used for 
the single-particle resonances [25]. The eigenvalues depend rather smoothly 
on the energy E of the system up to threshold effects in the imaginary part 
$PR(E). Therefore, the positions ER and widths r~ of the resonance states 
R can be determined uniquely by solving the kpoint  equations [25]. Due to 
the weak energy dependence of ER(E)  and PR(E) far from thresholds, the 
energies ER and widths rR of all resonance states of an ensemble at  high 
level density can be determined to a good approximation from the E ~ ( E )  
and ]TIR(E) calculated at a certain energy E lying at about the middle of the 
spectrum [17,19]. The advantage of such a calculation is that the wavefunc- 
tions bR(3) of d the resonance states are, at the energy E ,  eigenfunctions 
of the Same Hamilton operator H G ~ ( E ) .  

The effective Hamiltonian is non-hermitean and the following re- 
QQ- 

lations hold for it's eigenfunctions Q j R  [7, 171 

The trapping effect appears if the second part of the Hamiltonian ( 1 ) is 
important relative to the first part. In such a case, the non-diagonal matrix 
elements are large with the result that the diagonal matrix elements are es- 
sentidy different from the eigenvalues of B::. Also the real eigenfunctions 

of RQQ are essentially different from the complex eigenfunctions GR of 
HG:. The spectroscopic factors can therefore no longer be calculated from 
the eigenfunctions of HQQ . At least, .HQQ should be replaced by 



according to ( 1 ) . 

Due to the trapping effect, different time scales exist at high level density 
and 

with 

where Ir' is the number of Open decay channels. The relation ( 10 ) is a con- 
sequence of the fact that in ( 1 ) the rank of HQQ is N while that of the 

second term x ~ ~ G $ ! - ) H ~ ~  is K < N. 

In this Paper, we are interested in the influence of a threshold on the 
trapping effect. Therefore the most interesting results are at an energy E 
of the system where only one decay channel is Open (Ii = 1). In the one- 
channel case, the spectroscopic factors of the states are proportional to the 
TR =  FR(^ = ER). 

The S-matrix reads [7] 

Here the are the uncoupled channel wavefunctions. The matrix ele- 
ment s 

-112 = ( 2 H ) 1 / 2  ($4 J,- C(+) 
~ R C  R I IZE ) (12) 

are energy dependent complex functions describing the coupling ameng the 
resonance states &R and the channels <$. The qRc are proportional to the 
partid widths FR, = ~Rc/(6RIQ'R) of the resonance states with respect 
to the channels C. 

In (11 ), not anly the &Y are energy dependent functions but also the 
FR and ER.  By means of thc S-rnatris, tlie Cross section can be cdculated 



In order to investigate the behaviour of the eigenvalues of H;: as a 
function of the coupling strength between discrete and continuous states, 
the residual interaction V in the coupling matrix elements (@SM~v&) is 
replaced by a . V and the coupling parameter a is varied. Then, a = 0 cor- 
responds to the closed system described by the Hamiltonian HQQ while for 
a = 1 the residual interaction V in HQQ between bound states is equal to 
the interaction V between discrete and continuous states. The values a > 1 
describe some density dependence of nuclear forces in a simplified mariner. 

All calculations in the present paper are performed for an ensemble of 
190 resonance states in 1 6 0  with Jn = 1- and 2p - 2h nuclear structure 
((1s)-'(Ip)-'(2.9, ld)2). The residual interaction is of zero-range type with 
spin exchange term 

The number of Open decay channels is K = 1, which is either the proton 
channel 15N3p- + p or the neutron channel 1 5 0 3 p -  + n. The parameters of 
the Woods-Saxon potential for neutrons as weli as for protons are taken from 
calculations describing proton scattering on "N [17, 251. The Coulomb po- 
tential corresponds to a homogeneous charged sphere of radius 3.08 fm and 
3.01 fm for 0 and N respectively. The parameters of the residual interaction 
V are t he Same as in [I 71. 

3 The eigenvalue picture 

For illustration, the propagation of the complex eigenvalues with growing 
coupling to the continuum cr is shown in Fig. 1.a for an ensemble of 190 
resonances with J" = 1- and only the elastic neutron decay channel is Open. 
The real parts ER of the complex eigenvalues are drawn on the abscisse, the 
imaginary parts +FR on the ordinate. With growing coupling parameter a! 
each eigenvalue is following a certain trajectory. 

In the example shown in Fig. La, all states but the oiie with the largest 
+FR are lying at energies larger than 10MeV for d l  a. The energy Elab of 
the incoming particle is chosen to be 29MeV, which is approximately in the 
middle of the whole spectrum and far away from the elastic threshold. In 
this region the eigenvalues ER = E R  - $ f'n of H% are almost constant 
as a function of the energy The ER(E = 29MeV) therefore give the 
resonance parameters ER and I?R for aU the states to a good approximation. 

In Fig. 1-b, the imaginary parts +FR of the complex eigensalues ER(E) 
are drawn as a function of the strength parameter a. As it can be Seen, 



the lifetime of one resonance is getting well separated from the other ones 
a t  high coupling strength. The separation starts if the mean overlap of the 
states reaches a critical value (a 2) and one broad resonance state is 
formed (trapping effect). This broad resonance is lying at about 14MeV for 
small a (see Fig. 1.a) but at much smaller energies for large cr. 

In the following we want to  study the same ensemble of 190 states but 
situated around the elastic threshold. This is done by reducing the shell 
model energies (eigenvalues of HQQ) of all the states by an energy AESm. 
This is equivdent to  subtracting AEsm -1 from HG. Thus, if calculating at 
the Same fixed system energy E = Elab, it means nothing else than subtract- 
ing the Same AESm from all ZR. This leaves the shape of the eigenvalue 
picture as a function of the coupling strength cr unchanged apart from the 
redefinition of the Zero on the abscisse. This is true even if AESm is chosen 
so large that some of the E R  are negative. 

In order to interprete the complex eigenvalue BR(E) of .H;$ as position 
ER and inverse lifetime rR of a certain state, it is necessary to solve the 
fixpoint equations. That means, one has to  calculate ER(ER) at the energy 
E = ER of the resonance for being able to interprete f R ( x R )  as rR of 
the state considered. If ?R(E) shows a strong energy dependency caused 
e.g. by thresholds, f R ( E  # ER) may be very different from FR. For the 
elastic threshold, this effect is very large, because as Erab - 0 all ~ 'R(E)  - 0. 

In our calculation (Fig. 2) the shift AESm is choosen to  be 25 MeV, 
which makes nearly half of the spectrum situated below the elastic thresh- 
old, i.e. nearly half of the spectrum consists of discrete states. The energy 
of the incident particle is fixed at Erab = 4MeV. As in Fig. 1, the cou- 
pling between bound and scattering states is increased with the help of the 
strength parameter a. 

In spite of the fact that many states are discrete, all the eigenvalues 
ER(E > 0) = BR(E > 0) - ; fR(E > 0) carry an imaginary part FR which 
is different from 0. Moreover, the state with the largest FR arises from the 
set of discrete states. This state causes the trapping and gets large negative 
 ER(^ > 0) in agreement with the results shown in Fig. 1. 

In contrast to  Fig.1, all the resonances are getting trapped in Fig. 2. 
Mo short time scale, in terms of a short-lived resonance, is formed. The 
imaginary part of the states below the elastic threshold which is calculated 
a t  E = Elab, cannot be interpreted as the inverse lifetime rR of thosa states 
and the extraction of the corresponding spectroscopic factors is difficult. 
Also, the ?R(E) s h o ~  strong energy dependence near tlie e la t ic  threshold. 



Therfore it is difficult to draw conclusions from the eigenvalue picture, cal- 
culated at a certain fixed energy Elab > ER, for the resonance states in the 
very neighbourhood of the threshold. 

In order to avoid the problems arising from the strong energy depen- 
dency of I'R(E) at  Eiab z 0 we did as follows: We created a gap in the 
level distribution around the region of the elastic threshold by shifting the 
upper (ER > 0) and the lower (ER < 0) half of the spectrum additiondy in 
the positive and negative direction, respectively. As a result, all states are 
placed at least a few MeV either below or above the elastic threshold. 

The results are plotted in Fig. 3. The real and imaginary parts belong- 
ing to the eigenvalues of the states of this ensemble are given for various 
coupling strengths a as in Figs. l a  and 2. The calculation is performed at 
EIab = 4 M e V .  With this arrangement the i;R(~l,b) of the resonances give 
a good approximation for the inverse lifeltimes of the corresponding states. 

The results are as follows: the eigenvalues of the resonance states (ER > 
0) propagate for small and intermediate cr in a manner similar to the eigen- 
values shown in Fig. 1.a (however, the number of resonances is much smaller 
in Fig. 2 than in Fig. La). A resonance at s m d  energy dominates the decay 
behaviour of the resonances for intermediary a. At larger cr, however, this 
broad state also Starts to get trapped. As a result there are only trapped 
resonances. No one of the resonances is short-lived at large cw. 

This calculation proves that discrete states are able to trap all resonances 
in the neighbourhood of the elastic threshold. The influence of the discrete 
states on the lifetimes of the resonances is not negligible. 

VVe also performed calculations with the elastic proton decay channel 
instead of the elastic neutron decay channel. Qualitatively these pictures 
show the Same phenomena as the pictures for the neutron channel presented 
above. Also in the case of a proton decay channel, a discrete state with large 
FR(.E1ab) Can trap & the resonances. 

4 The Cross section 

Generally, the number of short-lived resonances, created by the trapping 
effect, is equal to the number of Open deacy channels [3] (see eq. ( 10 ). In 
some cases considered in this paper we observed, however, trapping for all 
resonance states. In these cases, no short-lived resonances are formed at 
large a. Instead, the > 0) of one of the discrete states raises up 



to a large value with increasing coupling strength a (the calculations are 
performed at a positive energy Eiab of the system). 

This result raises the question of the physical meaning of the F R ( ~ l a b  > 
0) of the discrete states. 1s it possible to observe any hints of them? 

A value of physical relevante is the total cross section utot. Since the 
shape of utot is an interference picture it is, generally, complicated even in 
the case of only a few resonances [22]. In order to study the behaviour of a 
system with only trapped resonances, we considered therefore first a simple 
example with ody  one discrete state and one resonance. 

Fig. 4 shows the total cross section calculated for a fixed coupling 
strength (a = 2) for the case with one Open neutron channel and one and 
two states, respectively. In Fig. 4.a, the total cross section (fuli line) with 
one resonance and the direct reaction part (dashed line) are shown. Because 
of the neighbourhood of the elastic threshold the resonance shape is non- 
symmetric with a comparably long tail to larger energies. The minimum 
at Elab + 0 arises from interferences between the resonance and the direct 
reaction part. 

In the calculation shown in Fig. 4.b, only one discrete state is consid- 
ered which is placed very close to the energy of the threshold. In spite of 
the fact that there are no resonances, the total cross section (full line) shows 
a stronger increase for Elab i O compared to the direct part (dashed line). 
This increase can be considered as due to the tail from the state below the 
threshold. A similar phenomenon is known from the study of resonances 
around inelastic thresholds [26, 7, 101. In those Papers a cusp in the cross 
section appears, which is caused by the strong increase of the width of a 
resonance around the inelastic threshold. In the case considered by us, the 
widths of the resonances increase from Zero at E l a b  5 0 to their values 
FR N eonst at larger energies Elab. 

In Fig. 4.c the cross section for one discrete state and one reaonance ia 
drawn. Also, the direct part is shown (dashed) and the resuilt of Fig. 4.b 
(dash-dotted). Comparing Fig. 4.c with Figs. 4.a and 4.b one sees the fol- 
lowing: utot at the resonance is smaller than in Fig. 4.a (note the different 
scales of utot in Figs. 4.a and 4.c) while the cross aection for Elob -) 0 s h o ~  
the tail of a broader state than in Fig. 4.b. Additionally the sliape OB the 
resonance resembles a typical interference picture of overlagping resanancea 
in spite of the fact that this calculation is performed with only one reccsnnanace. 

Fig. 4 demonstrates clearly, that discrete states states can influence 
directly the cross section and also that discrete states are abk to trap ress- 



nances. The latter result can be Seen in the fact that the resonance part of 
the cross section and the widlth of the resonance are reduced. 

To consider a more realistic case we arranged one bound state directly 
situated below the elastic threshold together with 186 resonances which can 
decay via the elastic neutron channel. The complex eigenvalues of the rel- 
evant part of the spectrum, calculated for a = 2.5 and Elab = 4MeV, are 
shown in Fig. 5.a. (In the spectrum a gap in the energy range just above 
the threshold is created by removing three shell model states from the direct 
proximity of the threshold). Also in this case, the eigenvalue of the discrete 
state (indicated by an arrow) carries the largest imaginary part. All the 186 
resonances are trapped. 

The total cross section atot calculated for this arrangement (Fig. 5.a) is 
drawn in Fig. 5.b.. (full line) and compared with the direct reaction part 
(dashed curve). To the left in Fig. 5.b, the cross section close to the elas- 
tic threshold is drawn in a 12 times larger ordinate-scale. The abscisse is 
common to both parts of the plot. As a result crtot increases much stronger 
for energies Elab 3 0 than tha direct reaction part. The imaginary part of 
the eigenvalue of the discrete state, calculated at a positive energy, achieves 
a physical meaning in the cusp structure of the cross section at the elastic 
threshold. At positive energies, the discrete state acts as a resonance the 
width of which corresponds to  the value p R ( ~ l a b ) .  Fig. 5.b also shows that 
the line shape of the resonances resembles the picture of interfering reso- 
nances. 

We also calculated atot for the case of one Open proton decay channel, 
and the spectrum partly discrete and partly resonant. We used 190 states 
and (Y = 3.5. The imaginary part of one of the eigenvalues with the real 
part of the eigendue negative (calculated at EIab > 0) is much larger than 
that of aU the other eigenvalues. 

Due to the Coulomb repulsion the cross section goes to Zero as Elab 0 
(Fig. 6 ) .  This destroys the effect discussed above (Fig. 5) for small energies. 
Mevertheless a broad structure different from the direct reaction part can be 
Seen for energies between about lMeV and 5MeV. This difference indicates 
that the discrete state influences the cross section also in the presence of the 
Coulomb forces. 



5 Conclusions 

We investigated in this paper the properties of an ensemble of dense-lying 
states close to the elasic threshold. As a result, a Situation may occur 
in which all the resonances of the ensemble are trapped. The trapping is 
caused, in such a case, by a discrete state with a large imaginary part FR 
of the eigenvalue of the effective Hamiltonian H G ~ ( E )  when cahlated at 
positive energies Elab. 

It is also shown that a discrete state with a large f ' ~ ( ~ l ~ b  > 0) which is 
situated sufficiently close to the threshold can essentially influence the Cross 
section. In the case of a neutron channel we can See a tail from the discrete 
state. This tail can be understood as an extreme case of a cusp. In the case 
of a proton channel the effect is destroyed by the Coulomb barrier for small 
energies. 

Finally we briefly state some possible conclusions from our investigations 
which may be of interest for the neutron resonances. Due to the high level 
density of the neutron resonances we have reasons to expect the trapping 
effect to be one of the causes of their small widths. The point of this pa- 
per is that the proximity to the threshold does not make this proposal less 
plausible. It is even possible that resonances near the elastic threshold are 
trapped by a discrete state. 

Further, the results obtained in the present paper give some justification 
for 'fictive' single-particle states and 'fictive' bound states. Such states are 
sometimes introduced in order to describe the properties of the neutron res- 
onances. 

In a forthcoming paper we will further analyse the possibility of inter- 
preting the neutron resonances as trapped states. Of special interest is the 
mixing of their wavefunctions. 
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Figure 1 

The complex eigenvalues of the effective Hamiltonian for a varied from 0.05 
to  8 in steps of 0.05 (La) and FR versus a (l.b). The calculations are 
performed with only the elastic neutron channel, Elab = 29MeV, Q = 
20.7MeV, 190 states in 016 with 2p-2h excitations and J" = 1-. The 
ordinate scale is logarithmic. 

Figure 2 

The complex eigenvalues of the effective Hamiltonian for the same states as 
in Fig. 1 but with shell model energies decreased by 25MeV, Elab = 4MeV 
and one Open neutron channel. 

Fignre 3 

The complex eigenvalues of the same states as in fig. 2, but with a gap in the 
spectrum around the elastic threshold. The states with negative shell model 
energy are shifted down in energy by 3MeV and the states with positive 
energy are shifted up by 5MeV. 

Figure 4 

Cross section calculated for one Open neutron channel and one resonance 
state (full line in 4.a), no resonance state but one discrete state (full line in 
4.b), one discrete state arid one resonance state (full line in 4.c) and only 
one discrete state (da.hed-dotted line in 4.c). The dashed lines show the 
direct reation part of the cross section. 

Figure 5 

The complex eigenvalues of the effective Hamiltonian for the Same states as 
in Fig. 1, but with shell model energies decreased by 12.7MeV arid three 
shell model states removed from the proximity of the threshold (-1MeV 5 
ER 5 10MeV). Elab = 4MeV, only one neutron channel is Open and a = 2.5 
(5.a). The discrete state is ma&ed with an arrow. The cross section for this 
arrangernent is shown in 5.b. In the left part of the plot, the cross section is 
shown in 12 times larger ordinate-scale than in the right part. The abscisse 
is common to both parts of the plot. The full lines are the total cross section 
and the dashed lines are the direct reaction part. 



Figure 6 

Cross section calculated for 190 states, one Open proton channel and cr = 3.5. 
The spectrum is partly discrete and partly resonant similar to that in Fig. 
2. The full lines are the total Cross section and the dashed lines are the 
direct reaction part . 
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