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Abstract

The aim of this work is to investigate threshold phenomena in the nuclear structure
caused by the coupling to the continuum of decay channels using the continuurn shell
model. The model is outlined and some relevant resulis are stated. It describes an open
quantum mechanical system, the effective hamiltonian of which has complex eigenvalues,
giving the widths and energies of the states.

The first series of calculations are performed to investigate the properties of the eigen-
value picture close to the elastic neutron threshold as a function of a parameter determin-
ing the coupling strength to the continuum. The main resulls are the following: States
with energies below the threshold (called negative states) can trap resonant states. An
analytical reason for this fact is stated. The negative states can directly influence the
cross section,

In the second series of calculations the expansion coefficients of the open states in
relation to the states of the shell model are investigated. The resulis help in the interpre-
tation of the real and imaginary parts of the energy dependent eigenvalues of the effective
hamiltonian. Broad width of a state corresponds not only to short lifetime, but is also
connected with similarity between the wavefunction of the state and a decay channel.
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Chapter 1
INTRODUCTION

Selforganization is observed in different many particle systems. This topic concerns mainly
the question how order spontaneously can occur in a non-ordered system. The clearest
examples of selforganization exist in biology. Evolution theory and regulation mechanisms
in living beings and echosystems are splendid examples, of that order spontaneously can
occur in nature without human interference. In chemistry a few examples are chemical
watches and certain reactions where spatio-temporal patterns can occur. Typical for all
selforganizating processes is the fast growth of certain fluctuations at the expense of other
ones. Stabilisation occurs when the fluctuation can dominate a large region and ’enslave’
the other possible fluctuations (trapping). The system can remain stable until a suffi-
ciently large fluctuation destroys the stability.

In physics the concept of selforganization is connected with a certain extra challenge,
because at first sight it seems incompatible with the laws of thermodynamics[l}. One has
to comsider the system and its environment as a whole in order to overcome this problem.
Selforganization in quantum systems is investigated up to now in a few cases only. Mostly
the behaviour of the system is described by means of rate equations [2][3]. A full quan-
tum mechanical deseription was performed first by Rotter and co-workers for the nuclei
[4][5]. By using the continuum shell model the nucleus is described as an open quantum
mechanical system. In [6] and [7] it has been shown that the redistribution in the nuclear
system that occurs at a critical value of the level density shows accordance with the rules
formulated by Haken {3] for selforganization. Two different timescales are formed at high
level density corresponding to short- and long-lived resonant states. This is the so-called
trapping effect in resonance reactions, corresponding to the slaving principle, which was
formulated for the laser [3]. In both cases the number of relevant degrees of freedom is
reduced by the redistribution taking place in the system under critical conditions. In [8]
the formation of structures in space and time is shown to appear in the nuclear system
due to the trapping effect. This is in qualitative analogy with the formation of structures
formulated by Prigogine [1].

The neutron resonances analysed by Bohigas et al {9] are shown to fulfill the sta-
tistical laws for quantum chaos. It has been shown that the trapped states {which are
long-lived) also obey these statistical laws [10]. Thus the neutron resonances are suggested
to correspond to the trapped states [5]. The neutron resonances are observed in the very
neighbourhood of the elastic neutron threshold. Their widths and energy distances are



in the order of keV or even eV, which should be compared with the energy scale MeV
typical for nuclei. However, up to now the trapping effect in nuclei is investigated only at
energies far from thresholds[4-8, 10-13]. To see if the suggestion made above could be real-
istic, it therfore is necessary to investigate the trapping effect near to the elastic threshold.

The aim of this work is to investigate the trapping effect on the basis of the continuum
shell model at energies close to the elastic threshold. In chapter 2, the model, allowing for
the description of the open quantum mechanical system, is outlined and in chapter 3 some
characteristic results are summarized. The numerical results for an ensemble close to the
elastic threshold are shown in chapter 4 and discussed in chapter 5. As only neutron
scattering is considered, the consideration of negative states gives rise to an intricate
theoretical question. The neutrons can only have positive kinetic energy, and thus the
negative states do not appear as resonances in the cross section. They certainly have no
width and can not decay. Nevertheless it is shown that they can influence the states at
positive energies. It would therefore be desirable if one could describe the negative states
in a way independent of decay times. For that purpose the expansion coefficients of the
states coupled to the continuum of decay chanmnels with respect to the closed system states
are investigated in chapter 6. A summary of the obtained results is given in chapter 7.



Chapter 2
DESCRIPTION OF THE MODEL

The aim of the continum shell model is to describe the nucleus as an open quantum
mechanical system, i.e nuclear structure and nuclear reactions are treated in an unified
manner. The nucleus is described by a direct numerical solution of the Schrédinger
equation of the many particle system. Nucleons are assumed to move independently in a
Woods-Saxon potential and the residual interaction between the nucleons are taken into
accout by a two body delta interaction with spin and isospin exchange. The model is
described in [3]. ‘

2.1 Closed system consideration

2.1.1 Single particle solutions

The first step is to describe the closed systemn as a systemn of many particles moving
independently in a central potential,

H® =y i) 5 hO(%5) =t(i) + V°(3) . (2.1)

FE=S R

Here V? is the Woods-Saxon potential, which is a standard phenomenological parametriza-
tion of the nuclear force inside the nucleus. The main features of this potential are that
it has a finite depth and that it is weakly state dependent.

The poteniial is spherical symmetric, so we can separate the variables. The single-
particle hamiltonian is

BRI & 41 o
hey = o [WZZ-;E + ( > )] + Vi (r) (2.2)

First we define
Yim(Q) = ) CYim() X (2.3)



where C are the Clebsch-Gordan coefficients, Y}, the spherical harmonics and X the spin
matrix.

The single particle wavefunctions are

. i
Perly = 3I§ﬁjm(ﬂ)*Xér;UeTIj(r) - (2-1:)

Here X, is the isospin matrix and U the radial function which can be obtained by solving
2.2. We get bound and unbound radial solutions, ¢, and w.. The n and e denote
the principal quantum number of a discrete state and the energy of an unbound state
respectively.

2.1.2 Many particle states

The basic many particle states (called Slater determinants) are constructed choosing a
proper configuration space out of the single particle wavefunctions. In doing so we consider
a certain number of holes below the fermi surface and a certain number of particles above
it

¥

| o) = A{pair-Paia} - (2.5)

Here A is the antisymmetrised product operator due to the Pauli principle and the
indistinguishability of the particles. «; denotes the quantum numbers for a particulary
state used in the Slater determinant.

The Slater determinants are by construction solutions of H°:

HO [y = B | ¢f); By =) en (2.6)

Note that the energies of the many particle states can lie above particle decay thresh-
olds although they are formed out of single particle bound states. Therefore they are
called Quasi Bound States Embedded in the Continuum, QBSEC.

2.1.3 The two body residual interaction

We now consider the full hamiltonian of the continuum shell model,

H=H 4V, 2.7)

where,

"1’;? = r:rVe(a + 6P )0(ry — 72} . (2.8)

Here, P is the spin exchange operator and « is a parameter. In our calculations
V9 = 5008eV o = 0.73 and b = 0.27. In the closed system calculations we always use
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o= o = 1.

With help of the Slater determinants we write a matrix representation of this hamil-
tonian:

Hi = (8 | H|of) . (2.9)

Using this we numerically solve the shell model eigenvalue problem

o™ | gy = B | 47 (2.10)

This gives us the shell model basis to be used later,

T

16y =S ay o) . (2.11)

F=1

The a;; and the Ef™ are real.

2.2 Coupling to the continuum

2.2.1 Projectors on subspaces

In section 2.1.3, our full Hilbert space was constructed out of bound states only, but in
the following we also take into account the continuum. First we construct wavefunctions
corresponding to certain decay channels:

| X&) = Aldar(A = 1)per;(1)] (2.12)

These functions describe the residual nucleus (A-1 nucleons) in a particulary state and
one particle in the continuum. We restrict our calculations to a certain number of states
in the residual nucleus and emission of only one particle (a neutron in my calculations).

We have projecton operators for the two different parts of our enlarged Hilbert space:

Q= Z | ¢ (AN{S™(A) | (2.13)

P=% ] 0E | x5) s | (2.14)

(3 projects onto the discrete states of the excited comnpound nucleus and P onto the sub-
space of channels, consisting of the residual nucleus and one particle in a scattering state.

We have the following relations {apart from maybe a nonphysical phase),

7



Pigm(A) =1 0); @14(4) =] ¢7™(A4)) (2.16)

PlIxe)=x%) Q1 x3) =10 . (2.17)

2.2.2 Full solution

Next we consider the Schrodinger equation for the full continnum shell model problem,

(H~E)|®)=0. (2.18)

We split the hamiltonian using P+ @ = 1.

H=(P+QHP+Q)=QHQ+PHP+PHQ+QHP (2.19)

What makes the continuum shell model different from other models is that we treat
all four parts of the hamiltonian with the same accuracy.

We also split the wavefunction,
|B)=Q|0)+P|T). (2.20)
For simplicity we define @ | ¥) = Wy, QHQ = Hgg and so on.

Inserting the 2.19 and 2.20 in 2.18 and multiplying to the left with P and  respectively
gives the following relations

(E - Hpp)P | ¥) = HpgQ | W) (2.21)

(B — Hgg)Q | ) = HepP | ¥) . (2.22)

This is a coupled differential equation system for ¥p and ¥o which we now solve.
Homogenous solution of 2.21 ;

(E—Hep) | £57) = 0. (2.23)
Particular solution of 2.21 :
1
173 LB - =gy @) . 2.94
P1¥) g reQ 1) =G P@ | T) (2.24)

The function Gf;” =P E+—-1HPPP is the Green function in P space, 1.e. the propagator
in P space.




The total solution of 2.21 is

P =] + G Hpo@ | 1) . (

)
)
[ ]

S

Equation 2.22 implies

1

Q|‘P)=E—;H_QQ

HopP | ¥) (2.26)
Inserting 2.25 in 2.26 and solving for ¥¢ yields

1

Qv = &) - (2:27)
E — Hoq ~ HopGy Hpg
Now we define:
|w{P) = G Hpg | o) (2.28)
and
HYJ = Hoq + HopGY Hpq . (2.29)

Hg eff o 1s the effective hamiltonian.

Using 2.20 for | ¥), and inserting two projection operators one can show

l C
FCH] | o™ ™ | Hop | €57} .(2.30)

| 9) =| £ +Z[chfm>+iwf”>] el

§,731

Changing to the representation of eigenvectors and eigenvalues of H, "f /| ®p) and &,

and | Ezg)) defined in analogy with 2.28 one can show

|¥) = °{*’)+§:{I Bt | 58] (B Ve 68 (2:31)

&

Above was used that Hop = QV™P.

Summarising, 2.31 gives us a complete expression for the wavefunction of the contin-
uum shell model problem. To use this formula we need to solve (apart from the bound
state problem) the following three equations,

(£ — Hpp) | 5™y =0 (2.32)



(Er— HGZ(E)) | ®r) =0 (2.33)

(B — Hpp) | @) = Hpq | 8r) . (2.34)

The last equation is equivalent to | LIJ}(;') ) = G«‘f;;{'}H ro | Dr)-

The égr are complex because ngg is non-hermitean and thus we define:
. ~ 2
Er(E) = Er(E) - EFR(E) . (2.35)

Note also that the eigenfunctions of Hég can be represented as a linear combination
of the eigenfunctions of Hyg,

N
| &) =Y b | 5) (2.36)
j=1
where the coefficients b;; are complex. It holds |¢;|> = 1 while |¢~5i|2 > 1. In the
numerical calculations the bound state problem is solved only once with e = o™ =1 in
2.8. In the investigations we vary o, which is the parameter for the residual interaction

V for the continuum hamiltonian. Varying o thus is equivalent to varying the strength
of Hpg and Hgp, i.e. the strength of the mixing between the two subspaces.

2.2.3 Cross section

The experimentally measurable value we can calculate in this model is the cross section.

First derive the S-mnatrix.

In [18] the S-matrix is defined as follows:

Seer( B} = exp(2i8.)6. — 2im (x5 V|0 (2.37)

Also define

Fro = == {6 |V EBT) (2.38)

8-

The partial width of a resonance is I'* =| g, |* [18].
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QOne can show

S = SU + 58 (2.39)
where
S = exp(2i6.)8e — 2im (x5 |V O)EAD) (2.40)
and
S{Ei) — 12 YRe' YRe (2~41)

— [E— Er+iTg]

The first term Sg‘,) describes all processes that can take place without coupling to the

Q-space. This is called the direct reaction part, The second part S’g,) desribes the possibil-
ity of creation and decay of a compound nucleus in the states R, i.e. the resonant part [18].

The S-matrix gives the cross section

2_2
tot h'w
ImE

151 . (2.42)
E und m are energy and mass of the incoming particle.

The S-matrix is unitary and thus | See |< 1.

In the case of isolated resonances is a simple way to study the cross section to find
the poles of the S-matrix. From 2.39 and 2.41 we can see that the complex poles of the
S-matrix are at the energy values of the fixpoint solutions,

Ep(E = Eg)=Ep. (2.43)

Egpand Ty = f‘R(ER) describes energy and width of a resonance.

It should be noted that as &g is energy dependent Ep and 'y do not give all the
information about the shape of isolated resonances. In the case of high level density apart
from this also different kinds of interference effects will take place.

2.2.4 Some final comments

The wavefunctions of the resonant part of W consist of two parts, | ®;) and | :sf""))
The | &v§+)) functions are important. They have an overlap to the channel wave func-

tions and thus describe the fact that when we couple the QBSEC to the continnum, the
corresponding states can decay.
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Note also that the non-hermitean part of the effective hamiltonian is QHP % Gp *
PHQ@ = QVP +Gp+ PVQ. As the strength of V is governed by the parameter o,
increasing «® means increasing the non hermitean part by about {a**)2 . The non-
hermitean part is responsible for the eigenvalues beeing complex. Therefore when we
increase a® we expect the imaginary part of the eigenvalues of the effective hamiltonian
Hgg to Increase. '

2.3 S-matrix-model

For a part of the discussion a simple S-Matrix model has been used [18]. N bound states
and K open decay channels couple to the bound states | ;). The hamiltonian 1s

N . K
=S BN+ Y [ BN BNBE) +

#,7==1 =1

K N
2.2 f dE[I@f)%“(E)(xc(E)! +h.c.]. (2.44)

e=1 i=1

By derivation of the S-matrix an effective hamiltonian, that describes the poles of the
S-matrix, can be defined. Far from thresholds the coupling vectors can be considered as
energy independent and for time invariant processes they can be chosen real. The effective
hamiltonian for this model is then

H = f° i - VYV, (2.45)

V can be choosen in an arbifrary way, and thereby the coupling strength of different
states to a certain decay channel can be controlled. Also H?, that describes the result of
the internal mixing and which is diagonal, can be choosen in an arbitrary way.



Chapter 3

SUMMARY OF SOME
RELEVANT RESULTS

The aim of this chapter is to give a brief summary of some earlier results which are
important for the interpretation of the results obtained when including threshold effects
[5-7, 11-16].

3.1 The trapping effect in an ensemble far from
threshold

An ensemble of 70 states with quantum numbers J” = 17 and energy between 22 and
44MeV has been investigated for two open channels in [6]. The energy of the system, Ei,s,
is chosen to be constant (34.7TMev). The parameter o® for the strength of the residual
interaction that couples the bound states to the continuum was varied in [6] between 0
and 10. The experimental value of & is between 1 and 2. As the nuclear force increases
we expect the width of the resonances to increase. Thus increasing o® means increasing
5, where 1" is the average width and D the average distance of the resonances. The aim
of the investigations was to study the same states under different conditions and thus o
was always 1. The eigenvalue picture was studied, i.e. the real and imaginary parts of
the eigenvalues of the effective hamiltonian 2.29 were plotted shown in the same plot for
all o,

The main features of the eigenvalue picture of the ensemble considered are as follows.
As o®® increases from zero so do the widths of all the resonances. At a critical value
of a*®, that lies between 2 and 3, the widths of two resonances start to increase rapidly
whereby the widths of all the other ones decrease. This effect is called trapping. At still
larger o a hierarchically order is formed, i. e. some of the trapped states can be slightly
broader at the expense of some other states. The number of broad states is exactly equal
to the number of open decay channels.

The two broadest states expire a large shift in their energy position. When these states

are shifted far away from the region where the remaining states are lying, two new states
can become broad (second generation)} and so on [6].
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In [6] it is also shown that the value | &, |* becomes large whenever two states get
into ‘conflict’ with each other. Conflict means that two states, for a given o®, are very
close to each other in the complex eigenvalue plane. For a slightly larger a®®, the two
states have ‘decided’ which is to ‘win’. One of them gets trapped and the other one can
grow broader. The | @, {? decrease to values close to one (in the closed system with the
hermitean operator Hgg, this value is normalized to one).

What is described above are the general features of the trapping effect. 1t is also called
slaving principle and is an example of selforganization in the nuclear system.

3.2 The tail and the cusp

To consider & = FE:i(E) + :;,—f‘z(E) as a function of energy gives rise to some new features
when considering isolated resonances. It is gemerally not true that we can explain the
resonant part of the cross section by writing Breit-Wigner shapes at the positions of the
poles of the S-matrix (corresponding to the fixpoint solutions 2.43 of the effective hamil-

tonian).

In {5}, pp 648, the shape of a single resonance close o the opening of an inelastic decay
channel is investigated. As usual the width I'r(E) of the resonance rises strongly at the
threshold energy.

Consider a resonance with fixpoint solution energy slightly below the threshold. There
it has a small width. If one calculates the complex energy eigenvalue for an energy slightly
above the resonance, the imaginary part, corresponding to the width, will be larger. The
cross section thus ‘sees’ a broader peak from above the threshold and in the cross sec-
tion these two pictures have to be ‘fitted’, giving rise to an unsymmetric resonance shape
showing a long tail to higher energies.

If a resonance happens to lie exactly at the threshold energy the cross section ‘sees’
two pictures at the same point: a narrow peak for energy going down and a broad peak
for energy going up. These two pictures are ‘fitted’ giving rise to a ‘cusp’ in the cross
section.

The energy dependence of the complex eigenvalues thus implies strange features in the
cross section for single resonances. This is a justification for looking at these eigenvalues
not only at the fixpoint solutions.

14



3.3 Interference phenomena for overlapping reso-
nances

The cross section can be calculated from the S-matrix with 2.42. Due to the unitarity of
the S-matrix (implying | S |< 1) the cross section can not be arbitrarily large. Therefore
one can not simply add the contributions from the single overlapping resonances to re-
produce the cross section, but different kinds of interference phenomena occur.

If one has large broade states surrounded by smaller narrow ones, the smaller ones are
often visible as dips instead of peaks in the cross section. This is caused by the fact that

the broade state has already reached almost the maximum value for 0%

Finally it should be noted that in the case of more than one open decay channel and
high level density, the trapped states are not visible as narrow resonances in the cross
section but as fluctuations {5].

3.4 Level repulsion

The trapping effect can be considered as an avoided resonance overlapping in analogy to
avoided level crossing of discrete states [14]. As long as % approaches unity all the reso-
nances becomes broader (T" and D defined as in section 3.1). For %— > 1 a redistrubuiion
takes place giving almost all of the sum of the widths to a small number of states (two
in the case of two open decay channels) so that the widths of the trapped states start
to decrease. Even though the broad states overlap many of the smaller ones, the smaller
states will almost not overlapp their narrow neighbours.

We can also see level repulsion in the eigenvalue picture. When two states are getting
close in this picture (for a certain o) they come into conflict and for slightly larger
o one of the two states will be trapped and the other can grow broader. The point is
that the two resonances will avoid each other. This can be intuitively understood if we
consider the complex eigenvalues as the poles of the S-matrix [14]. The pole corresponds
to a whole mountain in the S-matrix landscape. Obviously it is unfavourable for the
system to manage a ‘penetration’ of these mountains.

3.5 Order and chaos

Trying to characterize the wavefunctions of a system as ordered or chaotic is difficult.
Using the degree of mixing versus a certain (intuitive) basic set has the disadvantage of
being basis dependent. One can often find another basis relative to which the mixing is
smaller. In {5], pp 671, the proposal is made that both level repulsion and high degree of
mixing characterize chaos.



The mixing of the complex wavefunctions versus the Slater determinants or versus the
states of the corresponding closed system (shell model states) is investigated in [7]. For
small % the wavefunctions of the open system can be approximated with the wavefunc-
tions of the closed system. The system is ordered and the information entropy is low.
As o°® approaches the critical value a redistrubution takes place. All the wavefunctions
of the states in the open system are mixed in the representation of the wavefunctions
of the closed system. The system is chaotic and the information entropy approaches a
maximum. Level repulsion occurs. The spectroscopic information of the closed system is
lost.

This transition to chaos however is accompanied by the formation of a new order, If
one wants to describe the closed system one has to take into account all the states (70
in the paper [7]). If one wants to give a relevant description of the open system at high
level density and short timescales however, it is sufficient to describe the broad states
(2 in [7]), because we will not see the long lived states. Thus the relevant information
entropy decreases. This is the reason why we call trapping a selforganizing effect. The to-
tal information entropy however increases and thus no ‘thermodynamical laws’ are broken.

The open system is also ordered in yet another way. In the closed system represen-
tation, the broad modes are strongly mixed. In the channel wavefunction representation
however, they are almost completely pure due to their strong coupling to one of the chan-
nels respectively. This is a consequence of the fact that a broad state has a short lifetime,
which implies a large overlap to a decay channel.
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Chapter 4

AN ENSEMBLE CLOSE TO THE
ELASTIC THRESHOLD

In our investigations [6]{7][3], the solving of the closed shell model problem is made in
a special program writing data to files. These datafiles define our operator Hgg with
eigenfunctions, eigenvalues and also the matrix elements of the operator Hgp. We can
alter the eigenvalues in an arbritrary way keeping all the other data unchanged before
solving the continuum shell model problem. This gives rise {0 a new completely legal
matrix representation of an operator, still called Hgg, but we can not write an analytical
expression for it, and to what extent this operator has anything to do with nuclear physics
is a question for the discussion.

In previous calculations [6] the behavior of a 2p-2h QBSEC ensemble with 190 mem-
bers and J™ = 1™ at the calculated energies between 20 and 45 MeV for the Q-value
12.691 MeV was investigated. This is well above both the elastic threshold {at 0 MeV)
as well as the first inelastic threshold at 6.149 Mev. These two channels were the only
channels considered in the calculations. Both channels are really open because the system
energy is well above both thresholds. Scattering of protons on **N was considered.

To investigate threshold effects we used the same ensemble and decreased the real
energy eigenvalues of Hyo by eg. 25 MeV. The new closed system energies, complex
eigenvalues of the effective hamiltonian and so on are marked with a prime. A simple way
to justify this shift is to note that it is simply equivalent to increasing the Q-value. In
our calculations also the Q-value, which is defined as the energy difference between the
ground state of the compund nucleus and the elastic threshold, is increased by e.g. 8 MeV.

In many of the calculations the eigenvalues of the effective hamiltonian 2.29 were cal-
culated at a certain fixed energy F = Ep of the system. It is important to remember
that we do not solve the fixpoint equation. Therefore statements can only be made about
the real and imaginary part of these eigenvalues.

The off-diagonal elements of Hpp describe the fact that the channels also couple to
each other. Therefore a state that is decoupled from a certain decay channel can still
feel the opening of that channel. To investigate this feature the channel-channel coupling
can be turned off in the program, i.e. the off diagonal elements of Hpp can be forced

17



to be zero. Unless otherwise stated the calculations are performed with channel-channel
coupling on.

4.1 Numerical results for the ensemble

This chapter describes the results of a series of calculations made with the same ensemble
as used in [6]. It has 190 members of 2p-2h nuclear structure and J™ = 17, For a Q-value
of 20.196 MeV it has QBSEC energies of between 10 and 45 MeV. The experimental
Q-value is 12.691 MeV. Elastic neutron scattering was always considered (E=0 MeV) and
in a few cases also inelastic scattering with the threshold at Ej, = 6.149 MeV.

10’
10° \
=10
% 1072 ‘ E !l!
= b
mﬁm"?’ : !
1044 - l
10“6 vt .l ! l| -:"5':‘5 1

10 15 20 25 30 35 40 45

Figure 4.1: The eigenvalue picture for 190 resonances and 2 neutron channels by varying
o from 0.05 to 8.63 in steps of 0.05. Fyp = 29 MeV, @ = 20.691 MeV, £* = 6.149 MeV
and £, = Fem.

4.2 Original ensemble

For later comparison the eigenvalues of the ensemble at its original place far from thresh-
olds was calculated for o*f varied from 0.05 to 8.65 in steps of 0.05. Eyp = 29 MeV,
@ = 20.691 MeV, E}, = 6.149 MeV, and E!, = E,, (Fig. 4.1). For small 0% there is
a spectroscopical slope which is removed for large o*® (eg 5) by the trapping effect. The
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first two broad states arise from the lower part of the spectrum.

4.3 Cross section without tail

In fig. 4.2 a cross section for o = 1.5, Q-value=20.691MeV, E, = E., —~ 25MeV and
one neutron channel is shown. The values are chosen so that the negative states close to
the elastic threshold are trapped.

In the cross section we can see a narrow resonani state close to the threshold and a
small tail with interference effect from a narrow negative state close to threshold.

4.4 Cross section showing a ‘tail’ from a discrete
state

A cross section with o™ = 2.5, Q=8.391 MeV, one neutron channel and E = E,, —
25MeV is shown in fig. 4.3b. In the corresponding eigenvalue picture (fig. 4.3a) we
can see that the broadest state lies just below the elastic threshold. We can not solve
the fixpoint equation 2.43 for this resonance because the border conditions for neutron
scattering inherent do not allow for a solution at negative system energies. Furthermore,
three trapped states slightly above zero were deleted {o make the situation clearer.

The resulting cross section has much larger values close to Eyp = 0 than the direct
part although there is no broad resonance close to this energy. This difference shows the
influence of the negative state that would be a resonance if the Q-value would be slightly
higher,

4.5 Varying FEj,; for fixed o

In this series of calculations (figs. 4.4 and 4.5) the energy Ey. of the system was varied
while o®* was fixed to a®* == 1 and 4 respectively. £ = Eg ~ 25 MeV, and Ej, is varied
from 0.01 MeV to 8.2 MeV in steps of 0.05 MeV. E* = 6.149 MeV. Channel-channel
coupling is both turned on and off. The common features for all plots shown are that the
opening of the inelastic threshold enables an extra state to become broad. The first broad
state is still the broadest one after the opening of the second threshold. For Eyy — 0 all
e — 0.

For ¢® = 1 a change in the derivative can be seen at the inelastic threshold for the
first broad state for both channel-channel coupling on and off {fig 4.4a and b). This
implies that the broadest staie is not almost completely coupled to only one channel.
In the eigenvalue picture (fig. 4.5a) almost no trapping can be seen. There is a slope
in the width of this picture;ﬂfor all energies the Tx of the states at larger resonance
energies are smaller than the T'r of states at lower energies. The real part of the eigenval-
ues of Hg’g , Eg, are almost independent of the system energy, Ei.5, for most of the states.
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Figure 4.2: Cross section for o = 1.5, Q-value=20.691 MeV, E, = E,,, — 25 MeV ,
one neutron channel.
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Figure 4.4: The imaginary parts of the eigenvalues of Hé‘g as a function of Ep; for o**=1
and 4, Q=20.691 MeV, £ == 6.149 MeV and Fj = Ep — 25 MeV.



A very pure example is shown for & = 4. For channel-channel coupling off, the first
broad state does not notice the opening of the second channel (fig. 4.4c), which implies
that the state is almost purely coupled to the first channel. The slope in the width is
still there. Trapping and energy shift of the low-lying states occur (4.5b). There is also
a third broad state, which is significantly broader than the trapped states but narrower

| than the first broad state and also narrower than the second broad state after the inelas-
tic threshold has opened. This third state does not feel the inelastic threshold. E,.(E) is
almost constant for all but the broadest states.

Finally and quite obviously the maximum for the width of the broadest states increases

strongly with increasing o®®. It is approx. 0.3 and 13 respectively for the two congidered
cases.

a) o”=1,E_ =0..82MeV b) o%=4, E=0..8.2MeV

1
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10°® 4= 107 T TR T
15 10 -5 0 5 10 15 20 25-20-15-10 -5 0 5 10-15 20
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Figure 4.5: Eigenvalue picture for 190 resonances by varying Ej.p from 0 to 8.2 MeV for
=1 and 4. Q=20.691 MeV, E}, =6.149 MeV and E} = Er-25 MeV. Channel-channel

coupling is on.

4.6 The ensemble around zero

In these calculations, the following values are used: Epp = 4 MeV, By = Eg — 25
MeV, (¢ = 20.691 MeV and only one open channel. o is varied from 0.05 to 8.65 in
steps of 0.05 (fig 4.6).
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The general features of the eigenvalue picture (fig 4.6a) are as follows: For very small
a®® there is a global structure in the shape of the ensemble. The I’y of the resonances
lying at higher E}, are smaller by several orders of magnitude than those of the resonances
at smaller energies. The range of the energles is from -15 to 15 MeV. As o* increases
the 'g of all the resonances increase, but the slope remains visible. Trapping only occurs
for small resonance energies (i.e large Tr), which corresponds to negative states for the
Q-value chosen. The broad states (one in every generation) also come from this lower part
of the spectrum, and their &%, escape to very low energies. As aF approaches 8.65, the
slope is still there, but some trapping starts to occur also for states with higher energy
eigenvalues.

In the plot of I'» versus ¢ (fig 4.6b) two generations with one member each can be
seen.

4.7 Varying o* for Ep,;=15 MeV

In this calculation, two channels are open and Ej, is increased to 15 MeV but all other
values are unchanged in comparison with section 4.6 (Fig. 4.7.)

At Epgp == 15 MeV, one can clearly see that some extra states get broad, corresponding
to the opening of the second channel. The slope in the eigenvalue picture is still there,
but it is less pronounced than in fig. 4.6. The new broad modes appear in the middle of
the energy range of the ensemble. Therefore we can see trapping also in the higher energy
region. We see $wo members in most of the generations. It should be noted however, that
the rule according to which the number of broad modes should be equal to the number
of open decay channels is strict only for the first generation.

4.8 The ensemble with an energy gap

For all resonances of section 4.6 with Ep < 0, the Ep was decreased by 3 MeV while for
all other states the energy was increased by 5 MeV (Fig 4.8). This splits the ensemble
into a negative and a resonant part.

For small a® this enables the lower lying resonances in the resonant part of the
ensemble to become broad and to trap the rest of the resonant states. As o® grows, so
does the Ty of all the states. For sufficiently large o it can clearly be seen that the
broadest of the resonant states gets trapped. This trapping occurs obiously due to the
discrete states.
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4.9 Energy reversal of the ensemble

To see if the slope in the widths of fig. 4.6 is purely an effect of the internal structure or
also an effect caused by the variation in resonance energy we simply swapped the energies
of the unperturbated states around the center of the ensemble (Fig. 4.9).

This gives rise to two different regions for ®. ¥For small o the slope is reversed.
This implies that the slope for small & is caused by the internal structure of the states.

As o® approaches 5 however, the g of states at small resonance energies grow faster
than the gamma values for states at higher resonance energies. This results in the fact
that for a® = 5 there are trapped states in the whole ensemble and the I'x of all the
trapped states are of the same order of magnitude. The first broad state comes from the
higher energy region, but the rest comes from the lower energy regions.
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Figure 4.9: The eigenvalue picture for o varied from 0.05 to 8.65 in steps of 0.05 for
Ep = 4 MeV and Ej swapped around the center. B = Eg ~25 MeV, @ = 20.691 MeV
and one neutron channel.



4.10 Cross section of two states around F;; = 0 MeV

To make things as simple as possible, we have investigated the cross section of a system
with only two resonances. One of the resonances is just below the elastic threshold and
one slightly above (fig. 4.10). Curve (¢) shows the cross section caleulated with only
the negative state. One can see the tail when comparing with the direct part (curve
d). Curve (a) is the cross section calculated with only the resonant state, which shows
an interference minimum for low energies. Curve (b) shows the interference effect for
the cross section calculated with both the states. The influence from the negative state
removes almost completely the effect of the resonance in the very neighbourhood of the
elastic threshold. What still can be seen is an interference minimum followed by a peak
and the tail of the resonance. Obviously, the two states repulse each other.

2500 77— ——71—
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Figure 4.10: Interference in the cross section between one negative state {at -0.07 MeV)
and a resonant state (at 0.7 MeV). Curve (a) shows the resonant state without any
interference and curve (b) shows the interference between the two states. Curve (¢) shows
the tail of the negative state and curve {d) the direct part.
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4.11 Interference of two states

In section 4.10 we took a closer look at the interference in the cross section between dif-
ferent states. To investigate this further the S-matrix model (sec. 2.3) was used. The
value |I — S|, corresponding to the cross section, was studied as a function of the energy
[16]. This value can not be larger than 4 due to the unitarity of the S-matrix. Two states
with energy +0.1 and -0.1 were used. Both states are however unbound, because there
are no thresholds in the model used. Additionaly, the corresponding Breit-Wigner shapes
were calculated from the corresponding real and imaginary part of the eigenvalues of the
effective hamiltonian.

For a small «® (0.08), well below the critical point, the energies of the states are not
shifted and the widths are rather small. The states are well isolated. Nevertheless, the
interference between the states gives rise to a visible difference between the Breit-Wigner
shapes of the states and the calculated cross section.

At the critical point, «®® = 1, the two states lie at the same energy (0 MeV) and
have the same widths. In the calculated cross section, however, an interference minimum
exists at E=0. Naively one could interprete the calculated cross section as arising from
two isolated states starting to interfere.

For a large o®* (4), both states still have the same energy, but one state is broad and
the other one narrow. The narrow state is visible as a dip in the structure of the large
one.
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Chapter 5
DISCUSSION OF THE RESULTS

5.1 Absence of threshold in the eigenvalue picture

In 4.5 it is shown that the shape of the eigenvalue picture is dependent on the energy of
the system. The question for this section is what influence the shift of the closed system
energies ‘by hand’ in our calculations could have.

We looked at the eigenvalues of the effective hamiltonian, Hgg = Hgq+ HopGhHpg,
and in the used representation Hgg is diagonal with the shifted closed system energies £7
minus the Q-value as elements. The & are the solutions of the matrix eigenvalue equa-
tion 2.33. It is always true that for a matrix M with eigenvalues E, i.e. (M — E)X =0,
M — M 4 cf implies B — E +4c.

To put this in other words for our case: When solving 2.33 with eigenvalues of Hgg
shifted to around the elastic threshold, we could always first add 1000 MeV to the shifted
energies and then subtract 1000 MeV from Eg, thus being very far from the threshold
when solving. Therefore the shift of the shell model energies and the actual position
of the threshold can have no other influence whatsoever to the shape of the eigenvalue
picture but the positon of zero of the energy axis. There can not be any thresholds in
the eigenvalue picture calculated at a fixed energy of the system. States therefore can
have negative resonance energy and a finite imaginary part of the effective eigenvalue (of
course calculated at positive energy of the system). The problem is only how to interprete
these values. We call states with negative resonance energy ‘negative states’ and states
with positive resonance energy ‘resonances’.

it should be noted that this discussion does not apply to the cross section, because it
depends explicitly on the energy Fj. of the system and it can be calculated already from
2.30 without diagonalizing of Hé’g . Furthermore, when solving the fix point equation
2.43 of course the actual position of zero of the energy axis is important.

From this discussion it follows that we do not have any reason to suspect any new

phenomena in the eigenvalue picture close to the threshold. The trapping ought to be
observable, and that is what the numerical results show, indeed.
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Furthermore, by changing the border conditions the negative states could be studied
directly. The reaction {d,p) corresponds to a neutron reaction with negative energy. Also,
photon reactions could be considered. For negative energies of the system , the second
term of Hé}g 2.29), QV™ P« Gp* PV™(), can not have an imaginary part, but the real
part still can mix the states and thereby giving a correction to the resonance energies £
and wavefunctions ®g.

5.2 Effects at low energy of the system

We consider the shape of the eigenvalue picture for Ep; = 4MeV described in 4.6 and
ignore the threshold.

The striking feature is the slope: smaller widths for states at larger resonance energies.
This slope is much more pronounced at Ej; = 4 MeV than at 29 MeV. In section 4.9,
the slope is understood as an effect of both the internal and the external mixing, both of
which prefer states with lower resonance energies. The reason why the lower energies are
prefered is that the nuclear force is attractive.

For the selected shift and Q-value the slope does imply that the ‘broadest’ states are
negative states. For reasons that will be explained in chapter 6, we do call these states
‘collective’ states.

5.3 Cross sections

In 4.3 we would naively see a new effect: an ensemble at high level density without a
broad state. This would contradict the earlier results concerning the slaving principle.
However, from the eigenvalue picture 4.6a, we give a different interpretation: the ‘broad’
state was formed in the negative part of the spectrum.

From the figure 4.3 we learned that the negative states also directly can influence the
cross section. A collective state that would have had a certain width and a certain energy
if the energy shift was slightly smaller still can show its tail in the resonant part of the
spectrum.

It should be noted that this kind of effect can be seen in the neutron scattering but
is difficult to see in a cross section for proton scattering, because the Coulomb repulsion
implies that the cross section has to go to zero as the lab energy goes to zero.

Finally, the two sections 4.10 and 4.11 give a strong warning when trying to identify

states in a measured spectrum. The interference between the states can give rise to sirange
results.
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5.4 Neutron Resonances

The result that the negative states can trap the resonant states is of special interest for
the neutron resonances lying in the very neighbourhood of the elastic threshold. In the
cross section for neutron scattering at heavy nuclei, a set of narrow resonances close to
the elastic threshold can be seen. They have widths in the order of keV, or even eV, and
spacings of the same order of magnitude. The states are well separated.

From our investigations a possible explanation for this phenomenon can be stated: It
is possible that these resonances are trapped by a collective state. It is known that the
wavefunctions of the neutron resonances are strongly mixed, which, in cormbination with
the fact that they are close to the threshold, leads to their small widths. Strong mixing
is a signature of trapping. Furthermore, single-particle resonances exist and are often
discussed in order to explain the observed correlations between the neutron resonances
[17]. They may correspond to our broad states.

As a conclusion of this chapter I show some measured total neutron cross sections close

to the elastic threshold for uran from [19], fig. 5.1. We can see the typical energy scale
eV or keV and the interference effects between states at high level density as discussed in

section 4.10 and 4.11.
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Figure 5.1: Measured neutron cross sections for uran from [19].
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Chapter 6

NUCLEAR STRUCTURE OF
STATES AT HIGH LEVEL
DENSITY

As stated in 2.2.3 the solutions of the fixpoint equation 2.43 are considered to describe
the width and energy positions of exited states in the compound nucleus. To consider
an ensemble of states around the elastic threshold gives rise to some difficulties. When
studying neutron scattering reactions, states below the elastic threshold can not be stud-
ied directly, because the kinetic energy of the neutrons is always positive. The negative
states do not exist in these investigations, and they certainly do not have the possibility of
decaying into a neutron channel. The fixpoint equation 2.43 can not be solved. The states
could be investigated by using other reactions, but this chapter concerns the question how
to interpret the complex eigenvalues of the effective hamiltonian 2.29 in the case neutron
scattering.

The simplest interpretation is possible on the basis of the results given in chapter 4.
As the negative states can trap the resonant states and also directly influence the cross
section, we could loosely say that the combination of width and negative energy position
of a negative state gives us a measure of how much that state could influence the positive
energy area. Making such a statement however is very qualitatively. How broad a dis-
tant state has to be to be able fo trap staies is not quantitatively understood. Further,
because of the interference effects between the states the influence of a certain state to
the cross section is a complicated question. The aim of this chapter therefore is to try
to understand what a large imaginary part of an eigenvalue of the effective hamiltonian
means in a way that does not include the question of lifetimes or widths.

In 5.1 it was stated that when considering the complex eigenvalues at a certain energy
Elap of the system, the threshold can have no effect at all. Therefore, when an under-
standing of the complex eigenvalues can be found far from threshold, it must also hold
close to threshold.
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6.1 Distribution of the coefficient expansion

This section deals with the question to what extent any relation between the I'r and the
complex expansion coefficients bgrs of 2.36 can be established (fig. 6.1).

The situation for small o** almost exactly corresponds to the closed system. Thus,
for a state R’ with energy Fp and the state R with the corresponding energy, bap will
be almost real and almost equal to one, and all the other coefficients will be almost zero.

As a°® , and thereby T'g, grows, we can see a distribution in the plot of the absolute
value of the coeflicients versus the shell mnodel energies. The width is centered around
the state R and expires almost no shift that would correspond to the shift of Epn. The
distribution has a width according to I's.

For larger a°®, when I'r of the trapped states start to decrease, the inverse is not true
however. The width of the distribution in the coefficient plot does not decrease with I'g.

Symmetric Asymmetric
. 1 * 1 ! I ' 1 ! 1
y [2>+I3> i } i
10° }.00 122_ o

Lobteined
3 1 'I'.ll‘

[
9
%

L L !Ill!‘l'

4>

.|
o 10 10

e
—

-
*

Eeediditotd it i
—_
£
]

- LET V
-n..,".‘.
uo-oﬂ"‘l’.
)
A
=
Poa s eard V
3 Y 3 1 “‘It
S
H F I ] : 1 QIIE

*
*

1024 ) . . 1072

11>

) ¥

1 4 ]
40 05 00 05 1,0 -1,0 _01,5 0:() 0,5
ER ER

=
o
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6.2 Rotation of the broad state

In the simple S-matrix model (described in 2.3) o*® has been varied for four cases [16].
V = a® * V% In all cases four states were used, one channel was open and o® varied
from 0.02 to 2 in steps of 0.02. H® was chosen symmetric(-1,-1.33,1.33,1) or asymmetric
(-1,-0.8, 1.33, 1). The vector ¥V, describing the coupling to the decay channel was chosen
(0.5, 0.5, 0.5, 0.5), i.e. symmetric, or antisymmetric, (0.5, -0.5, 0.5 ,-0.5).

The eigenvalues are shown for symmetric and asymmetric initial position of the ener-
gies of the states in fig. 6.2. The eigenvalues do not distinguish between symmetric and
asymmetric channel channel. In 6.3 the average of the coefficients % | 35 baas | versus
a® is shown for the four states in the four cases.

The interesting fact is that for the two cases with symmetric coupling vector, the sum
% | 2w brr | for the broadest state has the largest value. In the asymmetric cases it
has smaller values. Of special interest is the asymmetric-asymmetric case. The broadest
state has the largest value for the average of the coefficients only at smmall o**. As o
approaches the critical point (a® = 1) we can clearly see that the average starts to de-
crease and for a®” = 2 the broad state has the second smallest average.

The interpretation of this section is as follows: For small a® the state vectors point
into the direction of the closed system (one coefficient equals 1 and the rest 0, i.e. the
sum is 0.25). As o°® increases, the states start to rotate.. The state that will achieve
a short lifetime, must rotate into the direction of the decay channel. The corresponding
average for the coupling vector describing the decay channel is 0.5 for the symmetric case
and 0 for the asymmetric case.

6.3 Discussion

For small o, the state vectors point in the hilbert space in the direction of the states of
the corresponding closed system. When ' grow, the states rotate into the direction of
the decay channel. When the I's of the trapped states start to decrease must the vectors
of the trapped states rotate in an arbitrary direction away from the structure of the de-
cay channel, but not necessarily in the direction of the corresponding closed system vector.

All these results are qualitatively understandable: The width corresponds to the in-
verse lifetime, and the lifetime is governed by the degree of overlap between state and
decay channel.

The point is that these statements should be true for both the resonant states and the
negative states. Thus, the widths I'g at Epp > 0 for the negative states are an expression
for their nuclear structure in the same manner as they characterize the nuclear structure
in the case of the resonant states. This is the reason why we call the negative states with
large I'n collective states.
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Chapter 7
SUMMARY

In this work, the influence of a particle decay threshold on the redistribution taking place
in the nuclear system under the critical condition of high leve! density was investigated.

It is numerically and analytically shown that the trapping effect investigated in the
system far from threshold by Rotter and co-workers also must work over the threshold
for neutron scattering. Negative nuclear states, that would be resonances if the Q-value
was smaller, can trap the resonances. It is also numerically shown, that the broad state
is preferably formed in the low-energy part of an ensemble close to the elastic threshold.
Therefore an ensemble with energies around the threshold and the ‘broad’ state lying in
the negative part of the spectrum may exist (such a state is called collective). In this
case, the states with positive energies, which could be investigated with neutron scattering
experiments, are all trapped. This could give a theoretical explanation for the results of
nentron scattering at energies close to the elastic threshold in heavy nuclei.

Furthermore, the neutron scattering cross section for the case when the collective state
has an energy only slightly below the elastic threshold was calculated. The tail of the
collective state can be seen directly as a difference between the direct part and the total
cross section.

The calculations up to now are made for one particle scattering on >0 and N only,
and high level density is simulated by giving the parameter a* a non-realistic high value.
For heavy nuclei, the natural level density is much higher. Thus for being able to perform
a realistic comparison between experimental data and theoretical calculations for neutron
scattering, calculations must be performed for heavy nuclei.

Generally, it makes no sense to speak about the width of a state with negative energy.
In order to find another interpretation of the imaginary part of the complex eigenvalues
of the effective hamiltonian (calculated at positive energy of the system), the expaansion
coefficients of the states coupled to the continuum versus the closed system states are
investigated. It is shown that the structure of the broad state is similar to the structure
of the decay channel. This is also true for the negative states.
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The collective structure of the broad state is a result of the redistribution taking place
at a critical value of the coupling to the continuum. The structure shows the important
role which the environment of decay channels plays in this process.
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