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Surface-modulated magnonic crystals are the natural link between continuous films with sinusoidal
spin-wave eigenmodes and one-dimensional magnonic crystals composed of individual nanowires.
Nevertheless, the transformation process of the spin-wave modes in this transition remains yet
unclear. Here, spin-wave modes in their entire transition from a flat film to a ‘full’ (one-dimensional)
magnonic crystal are studied by ferromagnetic resonance (FMR) and micromagnetic simulations.
For this purpose, the surface of a pre-patterned thin permalloy film was sequentially ion milled
resulting in hybrid structures, referred to as surface-modulated magnonic crystals, with increasing
modulation depth. After each step, FMR measurements were carried out in backward-volume and
Damon-Eshbach geometry. The evolution of each spin-wave resonance is studied together with
the corresponding mode profile obtained by micromagnetic simulations. Simple rules describing
the transition of the modes from the film to the modes of the full magnonic crystal are provided
unraveling the complexity of spin-wave states in these hybrid systems.

I. INTRODUCTION

Periodically patterned magnetic materials with pe-
riodicities ranging from micrometers down to several
tens of nanometers are referred to as magnonic crys-
tals (MCs).1–9 In the last decade, this group of meta-
materials, such as bi-component systems,10–16 free stand-
ing structures,17–22 and continuous films with periodic
structures on top, also known as surface-modulated
magnonic crystals (SMMCs),23–30 experienced a grow-
ing scientific interest. As spin waves (SWs) offer unique
properties such as charge-less propagation and high
group velocities, there are multiple applications con-
ceivable since industry is in need for higher efficiencies
as well as high performances in information technology
including the transport and processing of data.8,31–40

The possibility to manipulate the band gaps10,41–47 and
to tailor the SW properties paves the way for many
applications based on magnonic devices,48,49 such as
magnonic filters,50 switches34,51,52, grating couplers12

and transistors.53 Moreover, fast developments in spin-
tronics and spin-caloritronics54 hold out the perspective
of novel promising hybrid-topics8 in the future, where
the unique properties of MCs are combined with func-
tional entities, such as recently shown for spin-torque
oscillators.55

In an ongoing miniaturization process, future de-
vices will require small SW wavelengths in an exchange-
dominated regime.56 For this reason, a small base peri-
odicity of a few hundred nanometers or less is desired

with characteristic SW mode wavelengths of several tens
to hundreds of nanometers. There are several advanced
methods to investigate the transition from a thin film to
a MC with a pronounced modulation, such as e.g. ther-
mal landscape modulation57 or periodic Oersted-fields of
current-carrying meander structures.58–61 However, these
approaches are so far non-applicable to periodicities of
500 nm and below.

This work complements these studies in focusing on
transitional systems which offer even richer SW spec-
tra with adjustable amplitudes. The transition of these
modes from the film limit to full MC limit is studied by
incrementally introducing periodic trenches into the film
surface. The resulting structures [sketched in Fig. 1(a)]
can be seen as a periodic array of wires on top of a thin
film and are referred to as surface-modulated magnonic
crystals.

In table I, the literature is summarized in which
SMMCs are employed under a systematic variation of
the modulation height. This summary reveals the di-
verging structural properties and the variety of scien-
tific objectives for which these structures were used.
As most of the previous investigations cover only a
fraction of the full transition (column 4 in table I),
this work is intended to close the gap between MCs
in the surface-perturbation regime24,26 and strongly
modulated systems.25,27 It is important to furthermore
note that most previous work aimed at different objec-
tives, such as the SW transmission of surface-patterned
waveguides,62–64 the optimization of the reconfigurability
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FIG. 1. (Color online) (a) Sketch of the sequential fabrication
of several SMMCs by ion-milling of a single sample. (b) TEM
image of a sample milled to ∆d = 10 nm surface modulation.

of the magnonic properties25,27, and the study of SWs in
SMMCs in the perturbation regime.24,26 Nonetheless, the
work that is closer related to this topic concerns either the
numerical analysis of SW resonances together with the re-
spective mode profiles65 or the theoretical and numerical
calculations of the locally varying internal demagnetizing
fields which act on the SWs opening band gaps and show-
ing flat bands around the backward-volume geometry.66

This experimental study is meant to complement these
theoretical works and shall provide a comprehensible in-
terpretation of the evolution of SW modes during differ-
ent levels of surface modulation.

Up to now mainly the two limits—the thin film
limit23,24,26,28 and the ‘full’ MC41,43,44,67–72—were inten-
sively studied. This work is focused on the dynamic prop-
erties of transitional systems—SMMCs. For this pur-
pose, a stripe-patterned thin permalloy (Ni80Fe20) film
was sequentially ion-milled and characterized after each
milling step using broadband ferromagnetic resonance
(FMR). This allows to study SMMCs with different mod-
ulation heights using the same sample. The SW reso-
nances and SW mode profiles are compared to the results
of micromagnetic simulations in order to study the transi-
tion of SW modes from film modes to the modes in a one-
dimensional MC. The huge variety of modes in SMMCs,
the strong coupling between them, and the distortion of
the mode profiles due to the hybridization and inhomoge-
neous internal demagnetizing fields hinder a straightfor-
ward interpretation. To disentangle these effects, the ap-
proach to follow the modes under an incremental increase
of the modulation height becomes particularly favorable.

The manuscript is organized as follows. Details about
the sample fabrication and the measurement technique
are given in Sec. II followed by Secs. III and IV contain-
ing the results for the backward-volume (BV) and the
Damon-Eshbach (DE) geometry, respectively. Section V
summarizes the results.

II. EXPERIMENT

The experiments are based on a polycrystalline d =
36.8 nm thin permalloy (Ni80Fe20) film deposited by elec-
tron beam deposition on surface-oxidized Si(001) sub-
strate. The surface of the film was lithographically stripe
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FIG. 2. (Color online) Measurement and simulation of the
frequency-field dependence of (a),(c) a flat film and (b),(d) a
surface-modulated magnonic crystal with tiny modulations
(∆d = 2 nm). Orange lines represent the spin waves’
frequency-field dependences calculated from Eq. (1).

patterned using ma-N 2401 negative resist with a wire
width (resist covered wires) of w = 140 nm and a period-
icity of a0 = 300 nm. In order to incrementally remove
the magnetic material between the resist-covered stripes,
sequential Ar-ion milling was employed. The procedure
is schematically depicted in Fig. 1(a). Figure 1(b) shows
the corresponding cross-section of a patterned permalloy
film after milling ∆d = 10 nm into the film. Altogether,
the film was milled five times until an array of separate
wires, i.e. a ‘full’ MC, was achieved.

After each ion-milling step, the frequency-field-
dependence f(H0) was measured using a broadband fer-
romagnetic resonance (FMR) setup, as described in ref-
erence [28]. An FMR pre-characterization of the thin
film properties was carried out prior to the sequential
ion milling yielding the saturation magnetization µ0Ms =
0.9236 T, the g-factor g = 2.11 and the exchange stiffness
D = 23.6 Tnm2.28,73 It shall be noted that the investi-
gations concentrate on symmetric modes only, since the
dynamic measurements are carried out using a symmetric
excitation scheme.

The etching depths of each SMMC were determined by
fitting of the f(H0) dependence of SW modes standing
vertically in the film, also referred to as perpendicular
standing spin-wave (PSSW) modes.74,75 For larger mod-
ulation heights ∆d > 10 nm, vibrating sample magne-
tometry measurements were employed to determine the
magnetic volume of an etched reference film before (M1)
and after (M2) the ion milling step. This approach esti-
mates the modulation height ∆d = d× (1 −M2/M1) by
the ratio of the measured magnetic volume M2/M1.

The following discussion of SW modes in SMMCs is
subdivided by the in-plane orientation of the external
field with respect to the modulation axis of the SMMC,
i.e. backward-volume (BV) and Damon-Eshbach (DE)
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TABLE I. Overview of previous investigations of systematic modulation ∆d/d variations on the spin-wave properties of SMMCs.
The following abbreviations are used: SWT—spinwave transducer, TMS—two-magnon scattering, PWM—plane-wave method.

authors / year
1D / 2D thickness modulation

material
period main studied

SMMC d (nm) ∆d/d (%) a0 (µm) method quantity

Chumak et al. 2008 [62] 1D 5 500 0–16.4 YIG 300 SWT SW transmission

Chumak et al. 2009 [63] 1D
5 500 0–16.4

YIG 300 SWT SW transmission
14 000 0–12.9

Chumak et al. 2009 [64] 1D 5 500 0–41.8 YIG 300 SWT SW transmission

Landeros et al. 2012 [24] 1D 30 0–6.7 Permalloy 0.25 TMS Theory FMR response

Liu et al. 2013 [25] 2D 60–120 50–100 Permalloy 0.62 FMR FMR response

Kakazei et al. 2014 [27] 1D 30–60 50–100 Permalloy 0.4 FMR FMR response

Gallardo et al. 2014 [26] 1D / 2D 30 0–10 Permalloy 0.3 TMS Theory FMR response

Aranda et al. 2014 [65] 1D 20 0–100 Permalloy 0.5 Simulation FMR response

Gallardo et al. 2018 [66] 1D 10 0–50 Permalloy 0.3 PWM Theory FMR response

geometry.

III. BACKWARD-VOLUME GEOMETRY

SWs in an SMMC with field orientation parallel to the
modulation axis, i.e. k‖M (BV geometry), are partic-
ularly interesting due to the highly inhomogeneous de-
magnetizing fields Hd, which are largest compared to all
other in-plane field orientations. Before different transi-
tional SMMCs are addressed, both, the planar film limit
as well as the limit of a ‘full’ MC of separate wires are
addressed.

In order to understand the complex mode structure of
the SMMCs, micromagnetic simulations were carried out
using the MuMax3-code.76 The FMR simulations were
carried out employing both, pulsed77 and continuous-
wave78 excitation. Both approaches are described in
more detail in Ref. 73. For all simulations, the mate-
rial parameters presented in Sec. II were used and sev-
eral SMMCs were micromagnetically reconstructed using
a fixed film thickness of d = 36 nm and six modulation
heights of ∆d = 2, 4, 9, 13.5, 18 and 36 nm with the latter
representing the ‘full’ MC. For the realization of an ex-
tended MC, periodic boundary conditions were applied
to the in-plane axes.

A. The Limits: Thin Film and Full Magnonic

Crystal

Thin Film Limit. The limit of a thin film with
perturbation-like modulations has previously been stud-
ied in experiment23,28,79 and theory using two-magnon
scattering perturbation theory.24,26 In such systems, the
demagnetizing field Hd acts as a small periodic pertur-
bation introducing a base periodicity a0 crucial for the
presence of standing (in-plane) SW modes. While the
dispersion remains unaffected, an introduction of peri-

odic perturbations in the real space leads to a discretiza-
tion of standing SW modes in the k-space according to
k = 2πn/a0 with k being the in-plane wave vector and
n = 1, 2, 3, ... the film mode “quantum number”. As men-
tioned above, the SW dispersion follows the well known
relation:80

(

ω

γ

)2

=
[

µ0Heff + Dk2
]

(1)

×

[

µ0Heff + µ0Ms

(

1 − e−kd

kd

)

+ Dk2
]

with the FMR frequency f = ω/(2π) and the effective
field Heff = H0 + Hd composed of the external field H0

and the internal demagnetizing field Hd.
Equation (1) describes a parabolic shape of the disper-

sion for dipole-exchange spin waves in BV geometry with
minimum frequency at k 6= 0. The characteristic shape
implies an energy degeneracy, which together with the
scattering condition k = 2πn/a0 enables the two-magnon
scattering channel24,26 from the uniform mode to k 6= 0
standing SW modes. This is the reason for the occur-
rence of many high-intensity modes at the same time in
contrast to the DE geometry (see Sec. IV).

In Figs. 2(a) and 2(c), the measured and the simu-
lated frequency-field dependences f(H0) are depicted for
a flat film and in Figs. 2(b) and 2(d) for an SMMC with
2 nm modulation height. Fig. 2(d) additionally provides
the f(H0) dependence of the n = 1...4 modes calculated
from Eq. (1) and plotted as orange solid lines. Clearly,
standing SW modes in an SMMC with tiny modulation
follow the f(H0) dependence of propagating modes in a
flat film of the same properties quite well. However, devi-
ations from the film limit can be observed in the vicinity
of crossing points [see crossing between dashed and solid
lines in Fig. 2(b)] in the f(H0) dependence, where differ-
ent standing SW modes couple to each other.

In analogy to coupled oscillators in mechanics, both
modes split up into an acoustical and an optical branch
with in-phase and anti-phase oscillation, respectively.
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FIG. 3. (Color online) (a) Measurement and (b) simulation
of the frequency-field dependence of an array of wires (one-
dimensional MC) with the orange lines indicating the simu-
lated resonance branches of a single wire with the same prop-
erties. The edge mode is clearly suppressed in the measure-
ment due to tapered side-walls and side-wall roughness of the
measured sample. The vertical line marks the resonance po-
sitions at 300 mT shown in Fig. 4.

The evolving frequency gap between acoustical and opti-
cal mode is connected with the emergence of a magnonic
band structure reflecting the transition from pure film
physics to the physics of MCs.

Full MC. The opposite limit is the periodic array
of wires, also known as ‘full’ or one-dimensional MC,5,11

with the f(H0) dependence shown in Fig. 3. Figure 3(a)
is the measurement and 3(b) the simulation with orange
lines indicating the simulated resonance modes of a single
wire. If the stray field contribution of neighboring wires
(approximately 30 mT) is considered to shift the modes
to lower resonance fields, both the full MC [colorplot in
Fig. 3(b)] and the single wire [orange lines in Fig. 3(b)]
reveal very similar results for the given dimensions.

Figure 4 contains the corresponding mode profiles of
the simulated spin-wave resonances at 300 mT. For the
full MC, the mode number is denoted as n′ and the
mode profiles of standing spin-waves are distorted by the
strong locally varying internal demagnetizing fields [e.g.,
the center mode (n′ = 0) and the edge mode (n′ = 2)
displayed in Fig. 4(a) and (b)]. In particular the second
mode (n′ = 2) is strongly distorted by the presence of
two energetic minima (spin-wave wells81,82) at the edges
of the wire created by the strong demagnetizing fields at
this location. It is important to note that the amount of
localized modes in the edge regions is given by the number
of SW resonances below the quasi-uniform mode (n′ = 0),
which is the first mode with the ability to overcome the
maximum of the demagnetizing field in the center and,
thus, to extend over the complete structure. It is only
possible due to the characteristic parabolic dispersion in
the backward-volume geometry that modes of a higher
mode number n′ bear less energy than the quasi-uniform
mode.

Typical examples for extended modes are found at
higher energies, and their mode profiles are illustrated in
Figs. 4(c) and 4(d). These modes are clearly of a higher
order, which is reflected by the number of n′ nodes and
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FIG. 4. (Color online) Simulated (bottom row) and idealized
(top row) mode profiles in an array of wires in backward-
volume geometry [as shown in Fig. 3(b)] at 300 mT. The
modes are labeled according to their mode number n′.

n′ + 1 peaks inside the magnetic wires and they carry
only higher intensities when crossing the center mode to
which they can couple [see the inset in Fig. 3(b)]. Note
that a symmetric excitation only allows for the measure-
ment of symmetric SW eigenmodes and, thus, the peak
number n′ + 1 of SW modes in the ‘full’ MC limit must
be odd (n′ = 0, 2, 4, ...).67,83

B. Transitional SMMCs

To explain the mode character in hybrid structures
with a significant modulation height, two spin-wave
“quantum numbers” need to be introduced. l = 1, 3, 5, ...
defines the number of peaks of a spin-wave mode inside
the thin part of the SMMC and m = 1, 3, 5, ... reflects
the number of peaks within the thick part. In the film
limit, the two quantum numbers are linked by the dis-
crete film mode “quantum number” n with 2n = m + l
whereas in the full MC only the m peaks inside the wire
region remain connecting m with the full magnonic crys-
tal quantum number n′ by n′ = m− 1.

Figure 5 shows the f(H0) plots of several SMMCs with
a modulation height ∆d in the range of 2.0–13.5 nm. In
Figs. 5(a)–(d) and 5(e)–(h), the FMR measurements and
the simulations are illustrated, respectively. In the inset,
the level of the modulation is provided together with the
x-component [axes defined according to Fig. 1(a)] of the
simulated internal demagnetizing field Hd,x as colorplot.
Inside the thick part (also termed ‘wire’) of the MC, the
demagnetizing field acts against (negative sign) the local
magnetization direction as usually. Interestingly, inside
the thin part (‘trench’), it acts with the magnetization
and is, thus, a magnetizing field. The increasing contrast
between the magnetizing- and demagnetizing fields with
the modulation height is easily inferred from the insets
in Figs. 5(e)–(h).

The corresponding mode profiles for the marked res-
onance positions in Fig. 5 are provided in Fig. 6. Be-
fore discussed in detail, the modes are distinguished into
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FIG. 5. (Color online) (a)–(d) FMR measurements of MCs
with different modulation heights as sketched in the insets.
(e)–(h) The dynamic response with the internal demagnetiz-
ing field in the inset both calculated using pulsed micromag-
netic simulations. Colored dots represent the field-frequency
position of the mode profiles illustrated in Fig. 6.

three categories: fundamental modes, localized modes
and extended modes. The latter two categories are dis-
tinguished by whether or not the mode spreads over the
complete structure whereas a fundamental mode defines
the lowest (center) mode within one of the two different
regions, i.e. wire or trench.

Quasi-Uniform Mode. A classical uniform mode
does no longer exist in an SMMC due to the inhomoge-
neous internal demagnetizing fields. However, from the
mode profiles in Figs. 6(a) and 6(f) it is evident that the
uniform mode evolves to the fundamental mode of the
trench region (termed “trench mode”), i.e. a local quasi-
uniform excitation of the trench region of the SMMC.
In other words, it seems that the quasi-uniform (n = 0)
mode represents the first mode which is able to excite
the complete SMMC. Therefore, the mode needs suffi-
cient energy to overcome the magnetizing fields inside
the trench region. One consequence is, that the main
amplitude of this mode is found inside the trench re-
gion. Due to the higher energy necessary to excite the

trench, the resonance condition does not match for the
wire region anymore. It has been observed that the mag-
netizing fields inside the trench region increase with the
level of surface modulation separating the quasi-uniform
mode even stronger from the energetically lower modes
which localize only in the wire region. This evolution is
reflected by the increasing gap between the trench (or-
ange line) and wire mode (bright blue line) in the f(H0)-
dependence illustrated in Figs. 5(e)–(h). The concentra-
tion of the main amplitude of the mode inside the trench
region can be seen in the corresponding mode profiles
shown in Fig. 6(a) and (f) at 75–100 mT. Throughout
the mode’s evolution, it maintains its main amplitude
in the center of the trench region. Thus, in principle
the trench mode can be understood as an fundamental
l = 0 excitation of the trench region. But as the coupling
to higher SW resonances increases with the modulation
height, the uniform (l = 0) characteristics are gradu-
ally reduced and are replaced by a modulus due to the
strong hybridization with higher BV modes crossing the
f(H0)-dependence of the mode. This leads to the ef-
fect that the quasi-uniform branch rather appears as an
l = 1, 3, 5, ... mode changing the peak number l by ±2 at
each interaction point with a higher SW resonance in the
f(H0)-dependence. The crossing point in Figs. 5(g),(h)
at approximately f = 15 GHz and µ0H0 = 200 mT is
such an example. Here the 4th mode crosses the quasi-
uniform branch revealing l = 1 peaks below the gap and
l = 3 peaks above.

It can be concluded that the quasi-uniform mode
evolves towards a fundamental trench mode (l = 0) which
gradually splits up into discreet standing BV modes with
l = 1, 3, 5... peaks confined inside the trench region.
Moreover, the trench mode gradually loses intensity due
to the reduction of the film thickness in the trench re-
gion until the full MC limit is reached and the mode
completely disappears. This transition is also accompa-
nied by an increasingly strong magnetizing field in the
trench region, shifting the trench mode to higher field
and frequency values supporting the formation of a large
gap with respect to 1st SW mode [see orange dashed line
in Figs. 5(e)–(h)].

1st BV Mode. The bright blue dashed lines in the
Figs. 5(e)–(h) indicate the wire mode. Originating from
the 1st BV mode in the film limit, [see n = 1 mode in the
inset of Fig. 2(d)], this mode evolves from an extended
BV mode with the wavelength λ = a0 to a fundamental
(center) mode of the wire with one peak (m = 1) con-
fined in this region. The mode profiles in Figs. 6(b) and
6(g) demonstrate this transition. Note that the addi-
tional peaks visible for ∆d = 36.0 nm are due to a strong
coupling to the n′ = 4 mode [also visible in Figs. 3(a)
and 4(c)].

The reason for the mode’s confinement in the wire re-
gion lies in the energy of the mode. Already in the film
limit, the resonance frequency of the mode lies for all field
values > 50 mT below the uniform mode. With insuffi-
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cient energy for an excitation of the complete structure,
the mode localizes in those regions where the energy is
internally reduced due to the presence of a demagnetizing
field. Thus, the mode is strongly suppressed in regions
with magnetizing fields (i.e. the trench). Even at low
modulation heights of only a few nanometers, the de-
magnetizing fields in the wire region are strong enough
to shift the complete mode to higher field values [bright
blue dashed line in Figs. 5(e)–(h)] with the formation of
a large frequency and field gap with respect to the quasi-
uniform mode [orange dashed line in Figs. 5(e)–(h)]. As
the locally alternating demagnetizing fields increase with
the modulation height, the gap between both fundamen-
tal modes of the wire and the trench becomes very large
reaching nearly 5 GHz at ∆d = 13.5 nm.

Eventually, the 1st BV mode (n = 1) becomes therefore
the wire mode with m = 2n − 1 = 1 peaks inside the
wire. The mode profiles in Figs. 6(b) and 6(g) support
this transition of the mode character consistently up to
the limit of the full MC [Fig. 4(b)]. Here the rule n′ =
m−1 applies and the mode forms the ’new’ quasi-uniform
mode (n′ = 0) of the full MC.

2nd BV Mode. The transition of the 2nd BV mode is
particularly interesting because the mode reveals with its
2n = 4 peaks distributed over a full period a0 a wavenum-
ber which is close to the minimum of the parabolic SW
dispersion in backward-volume geometry [Eq. (1)]. This
means that the mode does not only have less energy than
the quasi-uniform preventing the mode from extending
over the full SMMC. The energy is even below the fun-
damental wire mode (with m = 1), meaning the 2nd BV
mode cannot fully extend over the wire region and is
forced to mainly localize at the edges of the wire where
the energy is lowest due to the high demagnetizing fields.

This is the reason why the mode profile of this spin-
wave mode is highly distorted and its evolution can be di-
vided into two steps: (i) The localization of m = 2n−1 =
3 peaks inside the wire and subsequently, (ii) the grad-
ual suppression of the central peak and the localization
at the two wire edges. The reason for (i) is equivalent
to the explanation for the localization of the wire mode.
In the film limit, the 2nd SW mode lies even below the
1st mode (at fields above 100 mT) with the same conse-
quence that the mode cannot extend over the complete
structure and instead localizes m = 3 peaks in the wire
region. The reason for (ii) is the formation of the dis-
tinct spin-wave wells,82 i.e., minima of Hd(x), coinciding
with the outermost peaks of this mode close to the edges
of the wire and scaling with the degree of surface mod-
ulation. Thus, the mode profiles of the second mode in
Fig. 6(c) and 6(h) are interpreted as a transition from
the n = 2 mode to an m = 2n − 1 = 3 mode with in-
creasing mode localization at the edges ending up as the
edge mode in the full MC [see Fig. 4(a)] with the mode
number n′ = m− 1 = 2.

Higher BV Modes. Backward-volume modes of
higher order (n > 2) are also present throughout the
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FIG. 6. (Color online) (a)–(e) Mode profiles at the marked
resonance positions in Fig. 5 revealing the transitional states
between the film and the full MC limit. (g)–(j) The ∆d-
dependent mode profiles inside the wire region being an im-
portant proof for the transition from the nth film mode to the
mth mode in the full MC limit.

transition from a film to a full MC. And as mentioned
before, these modes only carry significant intensity when
crossing one of the fundamental modes (see Fig. 5) to
which they can couple. Thus, these modes exhibit quite
different mode profiles depending on whether they cou-
ple to the trench or to the wire mode. In the former
case, the modes extend over the complete structure with
the largest amplitude in the trench region. In contrast
to localized modes, extended modes conserve their total
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peak number 2n = m + l under a gradual increase of
the ratio m/l due to the internal field contrast between
trench and wire scaling with the surface modulation. In
other words, the modes adopt their wavelength to the
underlying energy landscape such that the wavelength
is reduced where the internal field is high (trench) and
vice versa where it is small (wire/edges). This is sup-
ported by the mode profiles of the 4th mode [Fig. 6(e)
and 6(j)] where with increasing modulation height the
peaks squeeze up inside the wire region whereas they get
wider in the trench region. In the case of higher modes
coupling to the wire mode, the modes localize such that
they concentrate their amplitude inside the thick part
[see profiles of mode 3 and 4 in Figs. 6(d) and 6(e), re-
spectively]. However, for the transition to the full MC,
only the profile inside the wire region is crucial reveal-
ing the steady evolution of the mode character to the
full MC. This steady process is depicted in Figs. 6(i) and
6(j) revealing the concentration of 2n−1 peaks inside the
wire.

In brief, the coherent pictures is that the nth film mode
transforms into the mth mode with m = 2n−1 during the
transition from the film to a highly modulated SMMC.
Together with an l = 1 ‘silent’ (damped) peak inside the
etched trench region, this relation reflects the modes’ mo-
mentum conservation fitting 2n peaks inside one period
a0 during this process. Arriving in the full MC limit,
where only the wire region remains, the simple relation
n′ = 2(n−1) is found as the link to the SW modes in the
film limit. Only the n = 0 mode maintains a local quasi-
uniform character inside the trench region and vanishes
completely in the full MC.

IV. DAMON-ESHBACH GEOMETRY

The DE orientation (k⊥M) with the field applied par-
allel to the surface edges offers different insights. Since
the static internal demagnetizing fields vanish in this ge-
ometry, the transition of spin-wave modes is much more
influenced by the dynamic fields and geometrical condi-
tions.

A. The Limits: Thin Film and Full Magnonic

Crystal

Thin Film Limit. The measurements at lowest
modulation heights of ∆d = 2.3 nm, and 4.7 nm did
not reveal any significant changes of the FMR spectra
compared to the continuous thin film with the typical
Kittel-like behavior of the uniform mode. Figure 7 dis-
plays the position of the uniform film mode (orange sym-
bols) together with the calculated position of the 1st DE
mode in the film limit (orange dot-dashed line) accord-
ing to Eq. (2). It is noted that the 1st DE mode carries
no intensity in the film limit and a prominent surface-
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FIG. 7. (Color online) f(H0)-dependence of SW modes in
DE geometry at different surface modulations. The measured
quasi-uniform mode (first DE mode) is indicated by full sym-
bols (⊞/⊟ symbols). Black open symbols correspond to the
measurement of the full MC. Grey semi-filled symbols repre-
sent the simulation of the full MC. Theoretical calculations of
the uniform mode in the full MC based on Eq. (3) are shown
as black solid/dashed lines. The orange dot-dashed line indi-
cates the calculated 1st SW mode in the film limit [Eq. (2)].

modulation of approximately d/4 was necessary for the
FMR detection of this mode.

The appearance of higher non-uniform modes at much
higher modulations ∆d compared to the BV geometry
can be explained by the DE SW dispersion26,80 reading

(

ω

γ

)2

=

[

µ0Heff + µ0Ms

(

1 −
1 − e−kd

kd

)

+ Dk2
]

×

[

µ0Heff + µ0Ms

(

1 − e−kd

kd

)

+ Dk2
]

.

(2)

In contrast to the BV geometry, there is no energy de-
generacy of the uniform mode with higher modes. Thus,
no two-magnon scattering channel is present that could
easily transfer intensity to higher k 6= 0 SW modes.

Full MC. In this limit, the mode profiles are much
less distorted compared to the BV geometry due to the
vanishing static demagnetizing fields. Thus, the modes
can be more easily assigned to the corresponding ideal-
ized profile illustrated in the top row of Fig. 4. The main
(quasi-uniform) mode with n′ = 0 can be calculated us-
ing the demagnetizing factor of the wires72,84

(

ω

γ

)2

= [µ0Heff + Nxµ0Ms]

× [µ0Heff −Nxµ0Ms + µ0Ms]

(3)

with Nx being the in-plane demagnetizing factor along
the short wire (x-) axis [as defined in Fig. 1(a)] and
with the shape-anisotropy Nxµ0Ms. Again, higher k 6= 0
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modes are also present with the wave vector quantized
with k = n′π/w, n′ = 2, 4, 6... due to the number of
nodes fitting in the wire width w.72 It is noticed that the
pinning of the mode at the edges of the structure has a
strong influence on this estimation and the actual f(H0)
dependence of the mode.

The measurement of the full magnonic crystal (black
open symbols in Fig. 7) reveals two modes—the quasi-
uniform (n′ = 0) and the 1st DE mode (n′ = 2). The
positions of both modes obtained by micromagnetic sim-
ulations are plotted as semi-filled gray squares in Fig. 7).
Apart from a systematic reduction of the measured SW
resonance frequency compared to the simulation, a qual-
itative agreement is achieved. It is demonstrated by the
f(H0)-dependences calculated with the help of Eq. (3)
that the frequency of the uniform (n′ = 0) mode is re-
duced if the effective demagnetizing factor of the wire
is smaller. When Nx was fitted (solid black in Fig. 7)
to the measurement data, a value of Nx = 0.115 is ob-
tained. Nx can also be calculated85 employing the ideal
geometrical properties of the wires listed in Sec. II yield-
ing Nx = 0.160. As the latter approach (dashed black
line in Fig. 7) yields a reasonable agreement of theory
and simulation, it can be concluded that imperfect (ta-
pered) edges are likely effectively reducing the demagne-
tizing factor of the wires leading to the deviation between
the simulated and measured f(H0)-dependences.

B. Transitional SMMCs

In Fig. 7, the f(H0)-dependence of the measured ∆d-
dependent SW resonances is illustrated for the quasi-
uniform mode (full symbols) and the 1st DE mode (open
symbols with and without filling pattern). The measure-
ment is corroborated with the results from theoretical
calculations [according to Eqs. (2) and (3)] of the 1st

mode in the film limit (orange dot-dashed line) and in the
full MC limit (black dashed and solid lines). The results
from the micromagnetic simulations of the full MC are
plotted as gray semi-filled symbols. The green line marks
the frequency of 17 GHz at which the field-dependent dy-
namic response was simulated and compared to the mea-
surement data (Fig. 8) for different modulation heights
∆d. The dynamic response is plotted in gray scale and
colored full symbols mark the measured SW resonances.
The corresponding simulated mode profiles are presented
in Fig. 9 for the quasi-uniform mode and the first three
higher modes.

Before the transition process for each of these modes
is addressed in detail, it is noted that DE modes in
SMMCs show significant dipolar induced non-reciprocal
properties.86 As a consequence, the n 6= 0 DE modes
reveal a propagating character and their mode profiles
are no longer fully symmetric with a tendency to show a
non-uniform vertical mode profile in addition. In the fol-
lowing discussion this complexity will not be addressed
and the main focus will be on the averaged transversal

0.2 0.4 0.6 0.8 1.0
0

100

200

300

Dd / d

1 mode
st

n
'=

0
m

o
d
e

Measurement
(f = 17 GHz)

uniform mode

1 mode
st

DE

F
ie

ld
 (

m
T

)

uniform

linear fit

1 DE mode [Eq. ( )]
st

2

1

0

moden'=2 DE

2 32 mode
nd

3 mode
rd

n
'=

2
m

o
d
e

FIG. 8. (Color online) Micromagnetic simulation of the SW
resonances at f = 17 GHz (green line in Fig. 7) depending
on the modulation height ∆d in DE orientation. The mea-
surement is represented by full symbols. The blue dashed line
indicates the position of the 1st calculated by Eq. (2) using
an effective film thickness deff .

characteristics of the DE modes.

Quasi-Uniform Mode. In the f(H0)-dependence,
the uniform mode maintains its Kittel-like behavior up
to significant modulations even above ∆d = d/2, as can
be seen from Fig. 5 and Fig. 8, which is a main difference
compared to the BV geometry, where the uniform mode
evolves rapidly towards a trench mode with a strong up-
shift of the resonance frequency due to the presence of
magnetizing fields. The preservation of its original uni-
form character is also reflected in the mode profiles shown
in Figs. 9(a),(e). Apart from the wire edges, the ampli-
tude of the mode is almost evenly spread over a full pe-
riod even up to prominent modulation heights ∆d > d/2.
Interestingly, at very high modulations close to ∆d → d
the mode seems to evolve a stronger amplitude in the
center of the trench [see mode profile at ∆d = 31.5 nm
in Fig. 9(a)] , similar to the observation in the BV orien-
tation. In Fig. 7, it can be seen that the quasi-uniform
mode maintains its approximate f(H0)-position and loses
gradually intensity until it vanishes in the full MC limit.
Thus, similar to the BV direction, the main FMR mode
(n′ = 0) of the full MC does not originate from the quasi-
uniform mode of the SMMC.

1st DE Mode. The measured f(H0)-dependences in
Fig. 7 indicate instead that the 1st DE mode (⊞/⊟ sym-
bols in Fig. 7) gradually evolves to the uniform mode
(n′ = 0) of the full CM (open squares in Fig. 7). Clearly,
at the modulations of ∆d = 8.7 nm and ∆d = 13.2 nm
the 1st mode gains intensity and is slightly shifted to-
wards lower frequencies and higher field values closer to
the position of the quasi-uniform mode of the full MC.
This supposed transition is supported by the micromag-
netic simulation (colorplot) in Fig. 8. Here, a steady ∆d-
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FIG. 9. (Color online) (a)–(d) Simulated spin-wave mode
profiles in Damon-Eshbach geometry in the transition from a
film to a full MC. (e)–(h) The ∆d-dependent colorplots of the
mode profiles integrated over the total film thickness.

dependent development of the 1st SMMC mode towards
the n′ = 0 full MC mode is identified together with the
experimentally obtained data (full squares) at 17 GHz.
For small modulations, this behavior can be calculated
by Eq. (2) employing a reduced effective film thickness
of deff = a−1

0 [wd + (a0 − w)(d − ∆d)]. This relation is
depicted as a dotted blue line in Fig. 8 revealing a rea-
sonable agreement for modulations of ∆d ≤ d/2. For
larger modulations, this estimation becomes systemati-
cally wrong and the simulated mode profiles in Figure
9(b),(f) start to reveal major deviations from the sinu-
soidal film-mode character and are dominated by a cen-
tral peak inside the wire region, which is already charac-
teristic for the wire mode in the full MC.

Similar to the BV geometry, the full evolution of the 1st

DE mode goes via a state of a pronounced peak inside the
wire region (m = 1) and a suppression of the dynamic
response in the trench region (l = 0). In the full MC
limit, only this one peak inside the wire remains and the
mode is identified as the quasi-uniform (n′ = 0) mode.

2nd DE Mode. The intensity plot of the simulated

dynamic response in Fig. 8 reveals that the 2nd DE mode
appears at much higher modulation compared to the 1st

mode. This might as well be the reason why this mode
was not observed in the FMR measurement. Moreover,
the simulations indicate an interesting detail, namely the
merging of the 1st and 2nd DE mode in the full MC limit.
Note that the two modes remain as individual resonances
even up to a modulation of ∆d/d = 0.97. At these high
modulations, the two resonances move gradually towards
each other until they fully merge into the quasi-uniform
mode in the full MC.

To understand the evolution of this mode and its
merging process, the mode profiles in Figs. 9(c),(g) need
to be considered. Besides the distortions due to the
vertical profile, the mode shows its characteristic four
peaks within one period for small modulations [see the
profile for ∆d = 9 nm in Fig. 9(c)]. In the regime of
small modulations, two peaks of the mode are located at
the two wire edge, which is natural for the 2nd DE mode
since its wavelength is exactly twice the periodicity a0.
But as the modulation height increases, it comes to the
critical point where these two peaks either need to be
packed into the trench region or the wire region (as
observed for the 2nd BV mode) in order to avoid the
edges. In contrast to the BV orientation, there are no
static demagnetizing fields present and, therefore, the
mode is highly influenced by the geometrical properties.
That means, that the width of the wire and the trench
are likely to play an important role here. To be more
precise, as the width of the wire is slightly smaller than
the trench, an evolution towards a mode with m = 1 and
l = 3 is energetically more favorable than a mode with
m = 3 and l = 1. This is supported by the mode profile
for ∆d = 31.5 nm in Fig. 9(c) revealing that one peak
inside the wire and three peaks in the trench region are
established.

Higher DE Modes. gain, there are also higher
modes, like the 3rd DE mode, which maintains its char-
acteristic 2n = 6 peaks throughout the transition until
the full MC is reached (see Figs. 9(d),(h)). In this limit,
only the three peaks inside the wire remain, forming the
characteristic shape of the n′ = 2 mode with two peaks
at the edges and one in the center.

This seems to be a general transition pattern in the DE
geometry. For moderate modulations, the modes main-
tain their sinusoidal behavior much longer compared to
the BV geometry. As the modulation becomes promi-
nent, the modes avoid steady peaks at the edges which
are either placed inside the trench or inside the wire, de-
pending on which of both possibilities

m = n− 1, l = n + 1

or m = n + 1, l = n− 1

is closest to the natural wavelength λ = n/a0 of the
mode. In MCs with almost equal size of wire and
trench, this circumstance would be relevant for all even
(n = 2, 4, 6, ...) modes which finally reach the full MC
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with n′ = m − 1 either as n′ = n − 2 mode or n′ = n
mode. Modes of an odd number (n = 1, 3, 5, ...) reveal a
node close to the edges such that the number of peaks is
exactly cut in halves when the full MC is reached. Us-
ing the relation n′ = m − 1, this means that odd modes
evolve to the n′ = n− 1 full MC mode.

V. CONCLUSION

The gradual evolution of SW modes in the transition
from a thin film to a full MC has been investigated by
FMR measurements and micromagnetic simulations in
the BV and DE geometry. The uniform mode main-
tains as a trench mode in BV orientation and as a quasi-
uniform mode in the DE geometry until it finally vanishes
in the full MC limit for both orientations.

For non-uniform modes, simple transition rules are
found. While in the BV orientation, the transition pro-
cess is governed by the presence of strong magnetizing
and demagnetizing fields, which lead to a confinement of
m = 2n − 1 peaks inside the wire region, the transition
process for DE modes is governed by the preservation of
the modes natural wavelength leading to the transition
to an m = n, l = n mode for odd n and either m = n−1,
l = n + 1 or m = n + 1, l = n− 1 for even n, depending
on the geometry of the MC. For all modes, the transition
ends in the full MC limit where only the peak number
m in the wire region pre-determines the final state with

n′ = m−1. Thus, in the BV geometry the nth film mode
evolves to the n′ = 2(n− 1) mode of the full MC. In the
DE geometry, odd film modes with n = 1, 3, 5, ... evolve
to the n′ = n−1 full MC mode whereas even modes with
n = 2, 4, 6, ... can either become the n′ = n− 2 mode or
the n′ = n mode.

VI. ACKNOWLEDGMENT

We thank B. Scheumann for the film deposition, A.
Banholzer and C. Fowley for the technical support in the
patterning process and P. C. Grubitz and A. Jansen for
their help with the fitting of the measurement data. The
support by the Structural Characterization and Nanofab-
rication Facilities Rossendorf at IBC and the HZDR
Department of Information Services and Computing is
gratefully acknowledged. This work was supported by
the Centers of Excellence with Basal/CONICYT financ-
ing (grant no. FB0807), CONICYT PAI/ACADEMIA
79140033, FONDECYT 1161403, FONDE-CYT Inicia-
cion 11170736, CONICYT PCCI (grant no. 140051),
DAAD PPP ALECHILE (grant no. 57136331) and
from the Deutsche Forschungsgemeinschaft (grant no.
LE2443/5-1). Funding from the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sk lodowska-Curie grant agreement No. 701647 is
gratefully acknowledged.

1 J. O. Vasseur, L. Dobrzynski, B. Djafari-Rouhani and
H. Puszkarski, Phys. Rev. B 54, 1043 (1996).

2 S. Nikitov, P. Tailhades and C. Tsai, J. Magn. Magn.
Mater. 236, 320 (2001).

3 S. Neusser and D. Grundler, Adv. Mater. 21, 2927 (2009).
4 V. V. Kruglyak, S. O. Demokritov and D. Grundler, J.

Phys. D: Appl. Phys. 43, 264001 (2010).
5 G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A. O.

Adeyeye and M. Kostylev, J. Phys. D: Appl. Phys. 43,
264003 (2010).

6 B. Lenk, H. Ulrichs, F. Garbs and M. Münzenberg, Phys.
Rep. 507, 107 (2011).

7 M. Krawczyk and D. Grundler, J. Phys. Condens. Matter
26, 123202 (2014).

8 A. V. Chumak, V. I. Vasyuchka, A. A. Serga and B. Hille-
brands, Nat. Phys. 11, 453 (2015).

9 M. Mansurova, J. von der Haar, J. Panke, J. Walowski,
H. Ulrichs and M. Münzenberg, J. Phys.: Condens. Matter
29, 214001 (2017).

10 F. S. Ma, H. S. Lim, V. L. Zhang, S. C. Ng and M. H.
Kuok, Nanoscale Res. Lett. 7, 1 (2012).

11 S. Tacchi, G. Duerr, J. W. K los, M. Madami, S. Neusser,
G. Gubbiotti, G. Carlotti, M. Krawczyk and D. Grundler,
Phys. Rev. Lett. 109, 137202 (2012).

12 H. Yu, G. Duerr, R. Huber, M. Bahr, T. Schwarze,
F. Brandl and D. Grundler, Nat. Commun. 4, 2702 (2013).

13 S. Saha, S. Barman, J. Ding, A. O. Adeyeye and A. Bar-
man, Appl. Phys. Lett. 102, 242409 (2013).

14 M. Mruczkiewicz, M. Krawczyk, G. Gubbiotti, S. Tacchi,
Y. A. Filimonov, D. V. Kalyabin, I. V. Lisenkov and S. A.
Nikitov, New J. Phys. 15, 113023 (2013).
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