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Abstract  

A modified Nilsson-Clemenger model is combined with Strutinsky's s6eU 

correction metliod. For spherical clusters, the inodel potential is fitted to 
the single-particle spectra ohtained f ro~n selfconsistent Kohn-Shani calcnla- 

tions. The deformation energy surfaces of sodium clusters with &es of up 

to N = 270 atonis are calcnlated for a combination of triaxial, quadrupole 

and hexadecapole deforniations. The ground state shapes and energies are 

determined by simultaneous ~nininiization with respect to the tbree shape 

parameters. A significant fraction of tlie clusters is predicted to be trinxid. 

The deviations from tlie axial siiape do not generate auy systematic orld-even 

staggering of tlie binding energies. 

PACS 36.40; 35.20.N7g; 71.45.Nt 



1. INTRODUCTION 

Shell structure in alkali meta1 clusters has been demonstrated experimentally for 

the first time by Knight et  al. [I]. In sodium cluster beam experiinents, they found 

enhanced abundantes at the so-called "magic nurnbers" iV = S,20,40,5S, 92, ... of 

valence electrons, which were predicted theoretically by Ekardt [2] and Beck 131 in 

the same year. Clemenger was the first to interpret the fine structure in the mass 

spectra of Ref. [I] between the magic numbers by spheroidal deformations [4], using a 

modified Nilsson Hamiltonian [5] in close analogy to the methods of nuclear physics. 
Like nuclei, clusters with closed shells have a spherical shape in most cases. When 

a shell is only partially filled, the system tends to stabilize itself by spontaueously 

breaking its symmetry, leadiug to a splitting of the highly degenerate spherical 

energy levels. According to the Jahn-Teller effect 161, the resulting subshell stiucture 

theu leads to enhanced cluster stabilities between the spherical shell closings. 
During the last years, cluster deformations have been extensively studied using 

various techniques (for a recent review, see Ref. ['i]). For clusters with N 5 40, 

the results of Clemenger's phenomenological model have been confirmed by self- 

consistent ICohn-Shain (KS) calculations in the jellium model [S, 311, which for axial 

symmetry recently have also beeri extended to the inclusion of hexadecapole arid 

octupole deformations [9]. 
Tbe effects of the discrete ionic structure have been treated explicitly in Refs. [IO, 

11, 121, but due to tlie numerical efforts inherent these meLhods, up to now they are 

only applicable to the smallest systems with A3 2 2 0 .  
Using Strutinsky's shell correction method [13], spheroidal [14] and more general 

axial shapes [l5, 161 of sodium clusters have been determined for cluster sizes up 

to N = 800 atoms. A systematic study of duster deformations with simultaneous 

minimization of five-dimensio~ial multipolarity is given in Ref. [17], where a deformed 

Woods-Saxon potential is used. For a particle in a cavity, spheroidal deformations 

of very [arge systems witlt M 5 3000 have been investigated in Ref. [H]. 
111 general, the results of the different approaclies mentioned above are quite 

similar. She results obtained from more sophisticated self-consistent calculations 

[9] a g m  cpalitativeiy weil with the Woods-Saxon (WS) calculations of Ref. 115, 171, 
as weI1 as with the KS-h"i1ssoit model (KSN) of Ref. [14]. This strongly supports the 

application ol the sbeil-correction niethod to larger cluster sizes, where up to now 

tlie self-consistent rnethods are far too time-consuming. 



Triaxial refiection symmetric shapes have been stndied wittnin the harmo~iic os- 

cillator model [19, 221 as weil as by means of the self-consistent local density jellium 

calculations [23]. These calculations are restricted to the lightest clusters below 

N = 50. In the present article, we extend the spheroidal ES-Nilsson model of 

Ref. [14] to the calculation of uon-axial shapes of cluster sizes up to ,I- = 270. 

2. THE KOHN-SHAM-NILSSON METHOD 

The main idea of the E-Nilsson model (KSN) susested in Ref. [ll] is to com- 

bine the self-consistent KS calculations for spherical systerns with the Nilsson Hamil- 

toxiian, whicli has a simple deformatiou dependence that facilitates the numerical 

calculations appreciably. The Handtonian is coristructed such that in the sphcricai 

limit it approximates very closely the single-particle spectra of tlie KS calculations 

using the jellium model and the local density approximation. 
We start from the single-particle Haniiltonian 

I = H . .  - hwo(~V0). U(h5) . 1" 
1 

with  HA.^. = T + -hc~~(iVo) - p2 . I - 7 - COS-t . & -+ 
2 { 

where p is the radius vector in triaxially stretchod coordinatea 

whicli are defined by the aiiisutropic oscillator basis \*;itSi tlie tiaree frequ~e~icies 



The potential Parameters wo and U depend on tlie spherical oscillator quantum 

number No (see below). The hexadecapole part of the potential is cliosen as a 

smooth interpolation between the prolate (7 = 0') and the oblate axis (7 = 60°). 
The Hamiltonian (1) with an additional spin-orbit term has been used in nuclear 

physics in order to study the fission barriers for heavy elements by Larsson e t  al. [%I. 

As the potential is reflection symmetric, the parity II = (-1)"0 is a good quan- 

turn number, aud there are no couplings between even and odd No. It has been 
shown in the original work by Nilsson [5] and later on for triaxial deformations by 

Larsson e t  al. [24], that in strechted coordinates the couplings of states differing by 

A& = 2 vanish. Furthermore we neglect the couplings Ai% 2 4 between different 

oscillator shells, which is knowi [5, 241 to change the single-particle spacings only 

very slightly. Hence, we diagonaiize the Hamiltonian (1) only within each major 

shell No, which simplifies the numerical calculations very efficiently. The oscillator 

frequency wo(&) in Eq. (1) is scaled such that the deforxned equipotential surfaces 

confine a constant volume. For a more detailed description of the technical details 

we refer to [24] and 1251. 

The 1'-term in Eq. ( I )  yields an intermediate between a pure oscillator poten- 

tial and a Square vvell. In getieral, the parameter U(lY0) depends on tlie oscillator 

quantum nuniber AG. Already the simple 1'-form of the Hamiltonian reproduces tlie 

splierical spectra of self-consistent IG calculations extremely well. It is therefore 

possible to determine U(No)  directly from the KS results and to obtain a close cor- 

respondexice OE the spherical spectruni of the I-lamiltonian (1) with self-consistent 

ICS calculations. The detailed procedure is given in Ref. [14], we recall here only the 

niost iniportant steps. 

The starting point are the spherical ISS levels i„(l), which ure obtain froin a 

dettsity-functional calculation using the spherical jellium model and the local density 

approxiination [26]. In Fig. I we show the EIS energies (circles) for the cluster Nazis 

as an example. Each state is labeled by tlie corresponding values of the radial 

quantum nuinber n arid angular mo~nentum I .  The Squares denote the single-particle 

energies used in the ICSN. For NaZz8, the Fermi energy E, lies between the 1k and 3 f- 
ievel, as marked in the diagrani. From the I-dependence of the spherical eigenvalues 

we See that the ertact ISS lcvels, whose quantum nuinbers (n, I) belong to tlie same 

oscillator sliell J\% = Zn - 1 + 1 , lie approximately on straight lines. Therefore, the 

parameter W can be deterrnined by a linear regression, where tlie value of (fiw)(&) 



is given in Eq. (4) belom. 
For large deformations, some of the levels belonging to rather high shells come 

below the Fermi surface. Moreover, IeveIs from several shells abotre the Fermi surface 

are needecl in the Strutinsky averaging procedure. Tliis necessitates the continuation 

of the spectra to energies r » r f  even into the positive energy region. The finite 

depth of the ICS potential, however, does not allow to calculate these levels. In 

Ref. [14] the spectrum is continued by the deformed oscillator states, describing 

asyrnptotic behavior of the Nilsson single-particle energies for large deformations. In 

the present wo& we found it better to extrapolate the KS levels to the continuum. 

We proceed as follows: The lowest eigeiivalue in each oscillator shell 1% has the 

radial quantum number n = 1. These states have the energy ~ ~ , = ~ ) ( l )  and are 
cons~ectecl by the full drawn line in Fig. 1. We extrapolate the function ~ + ~ , ( l )  

lineariy to Iiigher qua~iturn nurnbers n = 1 arid l = If + i  with i = 1,2,3, ..., rvhere lf 

clesiotes the angular momentum of tlie highest energy level with n = 1 that Iias been 

calculated in the spherical I<S potential. The levels witli n f 1 are then given by the 

slopes ZLuo(i&)U(NO) for each oscillator shell No. This metliod is very efficient in 
giving wem-developed plateaus for the Strutinsky renormalisatioii, which enhances 

t l ~ e  accuracy of our metliod especially for snialler clusters. She overali eiiergy scale 

of the potential is determined by tlie value of fiwo(No). In orcler to adjust it to the 

scale of the I<S spectrum, we relate it to the corresponding mean square radius. For 
a given quiliititm nusnber 1% the virial theoresn for the barrnonic oscillator yields 

In Eq. 4 we use the averaged quaiitity (v2)(&V0) iii each oscillator shell AG, tvhere the 

value of (r:) given by the f<S calculatio~ts is weighted a i th  its splierical degeneracy. 

The clcister shapes are geiierated by tlie three deformation paraxneters and 
y. Hereby, the two axial pararneters and E* fix the quadrupole and hexadecapule 
deformatioiis. The triaxiality pararnetec -, describes non-axial defor~nations, wherc 

-! = 0' corresponds to prolate aiicl -I = (iOe to oblate cluster shapm. For axial 

shapes thc, hexadecapole term describes the waist-line dsvelop~netit. For triaxiai 
deformatioris the parameterization iriterpoiates snioothiy bctween tlie shapes at y = 
0' and -( = 60'. Xote that followiiig tlie * L u d  coiivcxitioii'" kthe sign of ~ ; 1  is chosen 

opposite to the parameterization nsed in Refs. 115, 17, 91. ReRection asyrnmetric 

shapes are not stiidied in tlie preserit paper; we refer tu the work in Refs. [l;i,If, 91. 



Fig. 2 shows the spectruin of the Hamiltonian (1) for Nas6 as an example. In the 

left panel the axial quadrupole deformation e* increases from Zero to its equilibrium 

value 62 N 0.2. Accordingly, the spherical KS single-particle energies aie shown 

at the left-hand side of the diagram. As soon as ~2 i 0, the spherical degeneracy 
is broken. In case of axial syminetry: the projection h of the angular momentum 

on the z-asis is a good quantuni ~iumber. For the moderate prolate deformations 

shown, S changes with ascending energy from 0 to the I-value of the spherical state 

the levels emanate from. The degeneracy 'D of the states changes from 'D = 2(21$1) 

in the spherical case to 'D = 2 for A = 0 (spin orientation) and V = 4 for A # 0 

(spin orientation and sign of !I), respectively. In the middle panel the hexadecapole 
deformation is turned On. As axial symmetry is maintained, the only influence of the 

&er111 is a shift in the positioii of the energy levels. The doublet-quartet structure 

in the degeneracies remains. 011 the right side of this panel reaches its equilibrium 
value. In the right panel the triaxial deformation is switched on. Due to the breaking 

of the axial symmetry, A is no longer a constant of motion. The quartets (solid lines 

in the two left panels) appearing for axial shape are split and all states have only 

the two-fold spin degeneracy (dotted lines). There may be accidental degeneracies, 

but the states belonging to the Same representatioii of the D2h symmetry gioup OE 
the Hainiltonian must not Cross. The triaxial giound state deformation of Na„ is 

a clear consequence OE the weli-pronounced shell gap at (EI, e4,7) ' ~ i  (0.2,0.1,26) 
inarked in the diagram. The deformation energy surface of Nass is given in Fig. 3 
below. 

3. STRUTINSKY RENORMALISATION 

In nuclear physics it bas been well known for a long time that the suin over the 

lowest occupied single-particle energies fails to correctly describe the deformation 

energy of an iriteractiiig many-particle systein. Therefore, we calculate the renor- 

~naIizcd deformation energies by nieans of Strutinsky's %hell correction method" 

@CM), whicii was initially developed for nuclear physics [13]. It has already been 

shown that this method is very efficient for the calculation of the ground state de- 

formatious of cinsters in a very Iarge size range, exploring a large class of axial 

shapes [15, 17, 14, 181. We recall bere only the very principles of the method and 
refer to Refs. 113, 271 for a inore detailed discussion. 

Co~isiderin~ the Cluster as a quairtal droplet, its total energy can be split up 



into two parts: an average classical part, the so-called "liquid drop energy" (LDM), 
which is parameterized by a niacroscopic expression, and a "shell correction energy", 

SE(ez, r4 ,  y), which arises from the quantised electron motion inside the clroplet. The 

latter is related to the variations of the density of states around the Fermi surface 

and can be determined from the total single particle energy E„, which is the sum 

of occupied levels 
.V 

E,=C~~=SE+E, 
i=1 

(5) 

- 
where E is given by 

E = J E ;(E) dE, (6) 
-Ce 

and 6, corsesponds to the Fermi euergy. The average level density g(E)  is defined 

by folding the exact quantum density of states g(E) 

ivith a snlooth distribution funciion fz,w(z). Usualiy oiie tabes a Gaussian of half- 

width T > fiwo multiplied by a curvature correction polynornial. It  is iiecescary to 

irnpose on E the statioiiary condition 

which is tlie differential form of the usual plateau conrlition, requiring tliat E does 
not depend on the averaging ividtli T. 1% use a curvature correction polynomial of 
the order 21W = 6 (cf. [27]), wliich fulfills tlie plsteau coiidition rvitli respect to F 
very well. In most cases a smootliing width OE rz l.%fir;.o is appropriate, where 
hwo is the average of the values fiwo>oji&) belonging to tlie three osciltator sliells 

around the Fermi level. The contiiiuation of tlle spherical apectrum high abotie tlie 

h m i  euergy suggested in this paper zi&es the plateaus more stahle than ehe or1w 
obtained in Ref. I1J.j for tlie spheroidal KSN, where high-lying eztergy levels are 

appsoximated by the aiiisotropic oscillator states. Tiie platkaus are even acceptable 

for the light clusters N 5 30, kvhrie it is $enerally expected that the iit:cc:rtairlties iai  
the sbell correctioii SE dur tu bsdiy developed plateaus become sUgnificanC. F Q ~  thc. 



accurate renormalisation it is important to include a suEcient riumber of shells. In 

our calculations, we have reached convergence of the shell corrections SE(ci, E ~ , - / )  

for 1\& < 16. 
To deterrnine the equilibriurn deformations for neutral clusters, we calculate the 

"shell energy" 

Esheii(c2, ~ 4 ,  Y )  = AEsurf + 6E(cz, i4,y),  t9) 
locating the Zero point of the energy at the LDhl energy for spherical sliape. She 

surface energy .&EaTf relative to the spherical drop is given by 

and depends on the cluster sbape via the ratio B„,f(~z ,~. , ,  y) of the surface areas 

of the deformed and spherical clusters of the same volume. The surface area is cal- 

culated by mmerical integration over the equipoteirtial surface of the potential (1). 

The details are described in Refs. [24,2S]. The constant a, is the bulk surface energy 

and is given by 
a, = 4 ~ ~ 1 . 9 ,  ( 1 1 )  

wliere U is the surface tension. We fix the surface energy in Eq. (10) to its ex- 

perimental value, obtained from extrapolating the measured surface tension given 

in Ref. [29] to Zero temperature. For a Wigner-Seitz radius T, = 3.96 a.u., usiug 

the bulk value for o this yields a, = 0.79 eV, which is not too different from the 

melting point value. Following the arguments given in Ref. 1171, curvature terms 
are negtected in the present calculations. The temperature of the valence electrons 

is talcen to be zero. It has been sliown in Ref. [30] thüt tbe shapes of light clusters 

witli iV 5 100 are not significantly modified by the thennal fluctuations, whereas 

tfie thermal averaging maltes larger clusters around tlie magic numbers spherical. 

4. RESULTS 

The shell energy (9) ic calculated as a function of the (e2,c„ 7)-degrees of free- 

dom, generatiug a potential energy surface (PES) whose minimacorrespo~id to stable 

or metastable shapes of a cluster. Tlie PES are coristructed for t r ia ia l  deformatioiis 

in the rarigc 0" < y < GO0, where the quadrupole arid hexadecapoie deformations 

varietl betweeri 0 < e.;. < 0.7 and -0.2 < E,  5 0.2. 





ground state by a barrier of rt: O.le%'. Full I<S calculations of rioii-axial asymmetric 

quadrupole deformations without hexadecapole contributions [23] find triaxiality for 

Salz and Nal6, too. In theKSN, the clusters Kalo, Na14 and Na18 are found to be ax- 
ially symmetric. This agrees xvith the IiS results of Ref. 191, which calculates the PES 

of singly charged sodium clusters with 10 <: Z 5 44 valente electrons for (C*, E ~ , E ~ ) -  

shapes in the structurally averaged jellium model. The PES of quadrupole and hex- 

adecapole deformations for axial sbapes (7 = Oo,  60') aIe found to be very sirnilar to 

the KS results in a range N 5 30 [32]. In the "ultimate jelliuni model" of ICosltinen e t  
al. [33), one 6nds that the clusters with Ar = 14,21,22 have botli axial and refiectiou 

synimetry, whereas Nalß is fonnd to be axial, but asynnnetric. Wliolly unsymmet- 

rical are the clusters with iV = 12,16,17,18. For Naza, we find a prolate minimurri 

at  ( E ~ ,  E'&, 7) = (0.34,0.04, Oo),  and ü triaxial isomer at ( E ~ ,  E ~ , Y )  = (0.36,0.03,1S0). 

The oblate isomer is found at at ( ~ E z , E ~ , - { )  = (0.35,-0.17,60°). Like for Nal4, we 
find tbat allowing for triaxiality lowers the barrier betwecn the axial isomers. 

The spherical shell of is not correctly described in our KSN. We obtain a 

vveak closure at 36 instead. The reason is the position OE the 1 f ,2p aiid 1g levels 

in the I<S spectra for sliarp edge jellium, wliich gives a too sinall shcll pap betweeu 

2p and Ig (see Ref. [7j and Refs. quoted therein). hIontag et al. [9] use for the KS 

potential a diffuse surfaceof the ionic density. They deinonstrate that a cliange in the 

diffuseness has the largest effects around iV = 40, where it increases the energy gap 

between the 2 p  and 1g level in the sirigle-particlespectrum and, thus, reproduces the 

experimental observütion of tlie magic number IV = 40. Out of this critical region 

around 40 our IiSN is in accordaiice with the IiS results of Refs. [31, 9, 321. 

The triaxiaiity of Iarger clusters is illustrated in the lower part of Fig. 3 which 

shows the (c.2, y)-planes of Kaa6, Na132, Na186 azld Nazz8 for the rninimized hex- 

adecapole deformation in each inesli point. Generally, the PES have a tendency of 
> decreasing quadrupole deformations and for EZ = 0.3 almost 110 metastable min- 

ima are fouud. With increasing cluster size, the inagnitude of the axial equilibrium 

deformations becornes smaller, what can be understood froni the relative size of 

the shelt correction and siirface eriergy, which scale with Nil3 and respec- 

tively. Axial deformations are found to be more frequent for the lasge clusters. For 

splieroidal deforniatioiis in  tlie KSN, a systematics of shape trausitions between two 

niagic shells from spherical ---, oblate -4 prolate --t sptierical has been found in 

Refs. f14, 15, 17, 181. hlotivated by tlie success of the Balian-Bloch theory [34] in 



explaiiiin~ the supershell structure [33j experimentally found in the clustcr abun- 

dancies [36, 371, a semiclassical interpretation of the above deformation systematics 

in terms of the triangular and rho~nboidal classical periodic orbits confined to a 

spheroidal cavity 1381 has been given in Ref. [39], adopting the results from nuclear 

physics by Strutinsky et al. [13]. 
The PES for quadrupole and hexadecapole deformations of the clusters Naia, 

Nali2, lIal2z aud Nals, are shown in Fig. 4. Inspection of the three-dimensional 

defor~nation space shows that all these clusters have axial shape, each with a pro- 

nounced ~nininlumat the prolate side and a stable oblate isomer. lying slightly higher 

in energy. The energy differences E. - E, between the two stable oblate and prolate 

isorners are given below each diagrain, together with the corresponding shape pa- 

raineters (cZ,e4). Gerierally we find Eor the larger clusters that the shape isomerism 

is much rnore pronounced in the (e2,c4)-plane than for triaxial deformations. This 

is a consequence of the fact that triaxiality leads to mucli smaller shifts of the single 

particle energies tlran the axial deformations. 

In Fig. 6, we show the separation eiiergies 

calculated froin the total energies 

where the first terni corresponds to tlie b u k  volume energy with U ,  = -1.12eV. 
7 ,  lhis vaiue is obtaiiied by extrapolating the bulk bitiding energies of liquid sodiiim, 

as given in Ref. [40], to Zero teinperature (for details cf. Refs. 117, 301). 

The major sliell closings as well as the subshells clearly show iip in the separation 

energies. The dominant structure already Comes fxom the axial deformations E-2 and 

e4. Triaxiality leads to small etrergy sllifts that are barely seen in the separation 

energies (c.f. tbe coinparison of axial (c2,c4) and triaxial calculations ( t z , ~ , ~ )  in 

tlie upper pauei): 

In Fig. 7, we coinpare tlie sliell eiteiryies for tlie axial deformations (ea) aiid ( E * , Q ~  

with tlie coinbination of axial aiid triaxial deformations ( ~ n ; 7 )  and (c2,¿4,7). All 

triaxial PES are foiirid to be very soft, and the eiiergy differences between Eire axial 

aiid triaxial niininia are in the most cases too sniall to sliow iip on the scah of Fig. 7. 





Cornparing the separatioil- and deformation energies shown in Fig. 6 and Fig. 7 
to the logarithmic derivatives of the experimental mass abundances of sodium clus- 

ters in Ref. [36, 37, 141 one finds that there is an obvious correlation of the most 

pronounced open-shell structures. In the experimental data of Refs. [36, 37, 141, 

between the "magic" shells hroad low-amplitude dips occur at the cluster sizes 

iV = 66, SO, 116,170 and 240. In the present worli as well as in the spheroidal 

KSN-rnodel of Ref. [14] and the axial WS-calculations oi Ref. [15, 171 the electron 

numbers IV = 72,112,172 and 236 correspond to particulariy stable configurations. 

The axial and triaxial results are found to be very similar. Thus, the shell structure 

in the deformation energies as well as the experimental abundante spectra seems to 

contain no obvious evidence for triaxiality (however, c.f. below the discussion of the 

odd-even staggering in the separation energies). 

As already well known from nuclear physics and discussed in Ref. [19] for alkali 

clusters, the plasmon resonance is expected to split into three peaks of equal in- 

tensity if' the shape is triaxial. Tiie three resonances correspond to the eigenniodes 

along the three principal axes. Selby et al. [19] observe for the neutral cluster Naln 

an absorption spectrum that seems to sliow three peaks. This agrees well with tlie 

calculated strong and stable triaxiality in our model as well as with previoiis cd-  

culations that also find triaxiality for this cluster [19, 231. It also agrees with the 
microscopic RPA-calculation of the dipole resonance in Ref. [43j. Tlie absorption 

Cross sections for otlier neutral sodiuni clusters [19, 441 do not show enougii struc- 

ture to allow definite conclusions. The tthe plasmon resonance in singly cliaiged 

clusters has been measurecl by Borggreen et al. PO]. l l ~ y  do not include N=i% 
For Na13 and Nale a low intensity low frequency peak ancl a high intensity liigh 

frequency peak, characteristic for a prolate axial shape, is observed. Frve find Na13 

to be triaxial with ( E ~ , E ~ ,  Y) = (0.51,0.11> 10')) ancl for Nald the prolate rninin~umis 

well separated from the oblate isomer by a barrier in the ( E Z ,  y) - plane (CF. Fig. S). 
For N=17 and 18 a high intensity low frequeucy and a low intensity high frequency 

peab is observed, characteristic for oblate shape. For N=10 and 16 a broad singlc 

resonance is seen.that might correspond to tllree unresolved peaks. Tiiis is-ould be 
in accordance with our calculaiions io Fig. 5 sho:vi~ig a tsatisition f r i~ l i  prolate to 

oblate sliape with N = 15 and IV 'i' 16 being triasial. riur Nazs t lx  mial cal~ulittiolis 

of Ref. [l5, 171 find a protate and an oblate niinimum at ahmst the saine ener,t; 

what xnay explain tlie expecinlental observation of &wo peaks nt' the same inteiisity 



[20]. 'C% find a PES for Nazs that has a prolate minimum and a triaxial isoriier with 
almost iio barrier between them, and the oblate isomer lies only slightly higher in 

energy. The coexistence of the prolate and triaxial minimum should result in tke 
apperauce of a third peak in the resonance. 

The measurement of the plasmon resonance for the heavier clusters with pre- 

dicted strong triaxiality, especially at 1V = 64,72 and betwee~i 81 arid 86 would be 

a stroiig test of our calculations. 

The separation energies are expected to show different iV-depende~ice for axial 

m d  triaxial shapes. As discussed in Ref. [I?], the quartets of electron states origi- 

nating froni the 11 # 0 Levels (the degeiieracy is four because of the two orientatio~i 

of tlie orbital angular momentum and the spin) show up in the plot AlE(N)  as 

four points in a row on an upsloping almost straight line. For triaxial shapes tliere 

is only a two-fold degeneracy, which will cause an odd-even staggeriiip of the sep- 
aration energies, iE the electro~i levels sre weil separated. It is seen in Fig. 6 that 

there are niany qitartets. This is partially due to tlie fact that ma~iy  ciusters are 

axial but also a coilsequence of the relatively small energy gairi by triaxiai ckforma- 

tion. The couiparison of the axial with tlie triaxial calculatio~i in tlie upper panel 

Shows ~ O W  for iW =13 arid 1x1 =23 the triaxiality ge~icrates a dip, thus destroying the 

corresponding quartets. The dip at N =17 is less prortounced. Tlie experimental 

separatioli energies [21] and ionization however, sliow a systematie odd- 

ewIk staggering that camiot be explained by the occurrence of triaxial quadrupole 

deformation for certain electron numbers, as found by our I<SN calculations. 

In Refs. [22. 331 it is demonstiated that the inclusion of a spiii-dependent ex- 
cha~ge-c~rrelation potential iii the IiS calculations reduces the odd-eveii staggcring 

by about 30% from the resuft of the spili-independent formalism. Recent calculations 

of e m  light clustcrs show that axial shapes with half-filled quartets, where the two 

electro11s are in a triplet state, are energeticaily favoured by the spin-dependent 

excha%F correlations according to Hund's rule [45]. 



tlie orbital magnetic moment is cpenchedi. By compariug the calculated orbital 
moiiiexits of the triaxial minimum to the one for the lowest axial saddle, Fig. 8 

denionstrates that there is a number of clusters for which the triaxial deformation 

will querich the orbital paraniagnetic moment. Since the energy gain by triaxial 
deformation is always large compared with the interaction energy with the external 

magnetic field (W 10-4eV for a magnetic field of IT), the field is too weak to restore 

the magnetic moment. It has been demonstrated by de Heer [46] that paramagnetic 

moments of the order of one Bohr niagneton can be measured by deflectioii of the 

duster beam in a strong Stern-Gerlach magnet. Such experiments could provide a 

rather direct evidence whether the cluster shape is axial or not. 

5. CONCLUSIONS 

In Summary, we have shown that stable triaxial gronnd states exist for sodium 

clusters in a size range iV 270. Tlie dominant effects in deformation ene-ies, how- 

ever, conle from axially symmetric quadrupole and hexadecapole deformation, and 
triaxiality plays a minor iole in tlie explanation of subshell closings in tlie abundante 
spectra. She splittings of the plasinon resonances seein to contain some evidence for 
triaxiality thdt may correlate witli our predictions. However, thc picture is far from 

bemg clear. Triaxiality modifies the N - dependence of the separation e~iergies. The 

quartets, characteristic for axial shape, are disturbed 2nd the odd-even staggering, 

characteristic for only two-fold spin-degenerated electroii levels appears. Kowever, 

a systematic odd-even staggering, as experinientally observed for the separation en- 

ergies, the abundancies and the ioiiization potentials, cannot be reproduced by etir 
calculations, since not all clusters are fouiid to be triaxial and tlie energy for tri- 
axial deformation is often too small to generate a significatit perturbatioti. Thus, 

we conclude that the odd-everi staggering has anotlrer origin. Tlie iilcnsurornent, af 

the pramagnetic moments by deffectioii of tlie cluster beam iti a tiragnet seems to 

be an iiiteresting possibility to distinguish axial from non axial clusters, sirice finite 

orbital moments exist only for the symmetric species. 
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Figure Captions 

Figure 1: 

Single-particle energies of the self-consistent spherical I<S energies (circles) and 
spherical energy levels of the KSN model (squares) as a function of 1(1+ I), where 2 
corresponds to the spherical angular momentum. The corresponding radial quantuni 

numbers TL and angular momenta 2, as well as the Fermi surface and the functio~i 

E,=~(Z) are given in the diagrani. (We uus the nuclear physics convention for the 

radial quautum numbers n). 

Figurz 2: 

Nilsson single-particle energies for quadrupole, hexadecapole and triaxial deforma- 

tions, respectively. The spherical energy levels are shown at the left-hand side of 

the plot, eacli indicated with the radial quantum number TL and the corresponding 

aiigular momentum I. 111 the left panels, the solid lines correspond to four-fold de- 

generate states (A f 0) for axial symmetry. The Iarge gap for N = 86 leads to  the 

stable triasial ground state deforination of ( ~ 2 ,  ~ q , y )  = (0.19,0.09,26). 

Figure 3: 

Coiitoiir ciiagranis of tlie PES for 1%' = 12,14,16,28,86, 132,186 and 228 in the 

(€2, ?)-plane. 
P, 

l h e  triaxiality paranieter y is represented by the angle 0" 5 y <: 60'. The abszissa 

Corresponcls to the quadrupole defoririatioii E:! at the minimized hexadecapole de- 

foiinatioii s, in each inesli point. -1 = O" corresponds to prolate, y = 60- to oblate 

cluster shapes. The gay-totie scales indicate tlie relative energies, with the units of 

each step in the cantoiirs given below each diagram. 

&mv 4: 
Deformation energy surfaces in tiie ( E ~ ,  E*)-plane for tlie clusters N = 78,112,122 

and 154. Ry minimization of the tbree-dimensional deformation space tbese clusters 

are all fonnd to have axial synimetrh with a pronounced mininiurn at the prolate 
side. 



Figure 5: 
Ground state shapes of sodiurn ciusters as a function of ciuster size I\; <: 270. The 

lowest panel shovvs the triaxial deformations with 0 5 -/ 5 60'. For -1 = O 0 ,  the 

shape is prolate, whereas oblate shapes correspond to 7 = 60'. The two upper 
panels sliovv tlie minirnized axial quadrupole and hexadecapole deformations zz(iV) 

aud ~,(ili). The sign of E,  describes the waist-line de'velopnient (E, > 0) or its 

opposite ( E ,  < 0). 

Figure 6: 
Separation energies A ~ E ( I V )  = EtOt(iV - 1) - Etd(N)  as a function of ciuster sizc 

h' for the minimized ground state shapes ( ~ ~ , e ~ ; y ) .  

Figu~e 7: 

Deforniation eiiergies corresponding to one-, two- and three-dimensional miiiirriiza- 

tion of the sliapes as a function of the cluster size 1V. The most dominant, defur- 

rnation effects come from the quadrupole- aiid hexadecapole contributions, wliereai; 

the triaxiality is niuch too small to reduce the deformations enerpies with respect 

to tlie axial cases ~ignificantl~. 

Figure 6: 

The orbital iiiagnetic moments of odd sodiuin clusters calculatecl for thr MSN po- 
tential. Dots display tlie iowest axial miiiiina arid triangles triaxial ~niniriia. The 
queilcliiiig of tlie orbital magnetic inoinent by triaxial defor~nntiun is d c t n o t ~ ~ t ~ a t e d  

by the vertical liries. The lower panel sliows tlie triaxi:~lity p;uamctt:r 3. 
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