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Abstract

A modified Nilsson-Clemenger model is combined with Strutinsky’s shell
correction method. For spherical clusters, the model potential is fitted to
the single-particle spectra obtained from selfconsistent Kohn-Sham calcula-
tions. The deformation energy surfaces of sodium clusters with sizes of up
to N = 270 atoms are calculated for a combination of triaxial, quadrupole
and hexadecapole deformations. The ground state shapes and energies are
determined by simultaneous minimization with respect to the three shape
parameters. A significant fraction of the clusters is predicted to be triaxial.
The deviations from the axial shape do not generate any systematic odd-even

staggering of the binding energies,

PACS 36.40; 35.20.We; 71.45.Nt



1. INTRODUCTION

Sheli structure in alkali metal clusters has been demonstrated experimentally for
the first time by Knight et al. {1]. In sodium cluster beam experiments, they found
enhanced abundances at the so-called "magic numbers” NV = §,20,40, 58,92, ... of
valence electrons, which were predicted theoretically by Ekardt [2] and Beck {3] in
the same vear. Clemenger was the first to interpret the fine structure in the mass
spectra of Ref. [1] between the magic numbers by spheroidal deformations [4], using a
modified Nilsson Hamiltonian {5] in close analogy to the methods of nuclear physics.
Like nuclei, clusters with closed shells have a spherical shape in most cases. When
a shell is only partially filled, the system tends to stabilize itself by spontaneously
breaking its symmetry, leading to a splitting of the highly degenerate spherical
energy levels. According to the Jahn-Teller effect {6], the resulting subshell structure
then leads to enhanced cluster stabilities between the spherical shell closings.

During the last years, cluster deformations have been extensively studied using
various techniques (for a recent review, see Ref. [7]). For clusters with N < 40,
the results of Clemenger’s phenomenological model have been confirmed by self-
consistent Kohn-Sham (KS) calculations in the jellium model [8, 31}, which for axial
symmetry recently have also been extended to the inclusion of hexadecapole and
octupole deformations [9].

The effects of the discrete ionic structure have been treated explicitly in Refs. [10,
11, 12}, but due to the numerical efforts inherent these methods, up to now they are
only applicable to the smallest systems with N < 20.

Using Strutinsky’s shell correction method {13}, spheroidal [14] and more general
axial shapes [15, 16] of sodium clusters have been determined for cluster sizes up
to NV = 800 atoms. A systematic study of cluster deformations with simultaneous
minimization of five-dimnensional multipolarity is given in Ref. {17], where a deformed
Woods-Saxon potential is used. For a particle in a cavity, spheroidal deformations
of very large systems with S 3000 have been investigated in Ref. {18].

In general, the results of the different approaches mentioned above are quite
simnilar. The restilts obtained from more sophisticated self-consistent calculations
[9] agree qualitatively well with the Woods-Saxon (WS) calculations of Ref. [15, 17],
as well as with the XS-Nilsson model (KSN) of Ref. [14]. This strongly supports the
application of the shell-correction method to larger cluster sizes, where up o now
the self-consistent methods are far too time-consuming,.
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Triaxial reflection symmetric shapes have been studied within the harmonic os-
cillator model {19, 22 as well as by means of the self-consistent local density jellium
calculations [23]. These calculations are restricted to the lightest clusters below
N = 50. In the present article, we extend the spheroidal KS-Nilsson model of
Ref. {14] to the calculation of non-axial shapes of cluster sizes up to N = 270.

2. THE KOHN-SHAM-NILSSON METHOD

The main idea of the KS-Nilsson model (KSN) suggested in Ref. {14] is to com-
bine the self-consistent KS calculations for spherical systems with the Nilsson Hamil-
tonian, which has a simple deformation dependence that facilitates the numerical
calculations appreciably. The Hamiltonian is constructed such that in the spherical
limit it approximates very closely the single-particle spectra of the KS calculations
using the jellium model and the local density approximation.

We start from the single-particle Hamiltonian
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The potential parameters wy and U depend on the spherical oscillator guantum
number Ny (see below). The hexadecapole part of the potential is chosen as a
smooth interpolation between the prolate (y = 0°) and the oblate axis (y = 60°).
The Hamiltontan {1} with an additional spin-orbit term has been used in nuclear
physics in order to study the fission barriers for heavy elements by Larsson et al. [24].

As the potential is reflection symmetric, the parity II = (—1)™ is a good quan-
tum number, and there are no couplings between even and odd Ny. It has been
shown in the original work by Nilsson [5] and later on for triaxial deformations by
Larsson et al. {24], that in strechted coordinates the couplings of states differing by
ANy = 2 vanish. Furthermore we neglect the couplings ANy > 4 between different
oscillator shells, which is known {5, 24] to change the single-particle spacings only
very shightly. Hence, we diagonalize the Hamiltonian {1) only within each major
shell Ny, which simplifies the numerical calculations very efficiently. The oscillator
frequency wy(Np) in Eq. (1) is scaled such that the deformed equipotential surfaces
confine a constant volume. For a more detailed description of the technical details
we refer to [24] and {25].

The P*~term in Eq. {1} yields an intermediate between a pure oscillator poten-
tial and a square well. In general, the parameter U{N) depends on the oscillator
quantum number Ny, Already the simple 1*-form of the Hamiltonian reproduces the
spherical spectra of self-consistent KS calculations extremely well. It is therefore
possible to determine U(Ng) directly from the KS results and to obtain a close cor-
respondence of the spherical spectrum of the Hamiltonian (1) with self-consistent
KS calculations. The detailed procedure is given in Ref. [14], we recall here only the
most important steps.

The starting point are the spherical KS levels ¢,(1), which we obtain from a
density-functional calculation using the spherical jellium model and the local density
approximation [26]. In Fig. 1 we show the KS energies {circles) for the cluster Nasys
as an example. Fach state is labeled by the corresponding values of the radial
guantum number n and angular momentum {. The squares denote the single-particle
energies used in the KSN. For Nagyg, the Fermi energy ¢ lies between the 1k and 3 f-
fevel, as marked in the diagram. From the I-dependence of the spherical eigenvalues
we see thai the exaet KS levels, whose quantum numbers (n,!) belong to the same
oscillator shell My = 2n ~ 1 + 1, lie approximately on siraight lines. Therefore, the
parameter I/ can be determined by a linear regression, where the value of {(hw)(/Vy)



is given in Eq. (4) below.

For large deformations, some of the levels belonging to rather high shells come
below the Fermi surface. Moreover, levels from several shells above the Fermi surface
ave needed in the Strutinsky averaging procedure. This necessitates the continuation
of the spectra to energies £ > &7 even into the positive energy region. The finite
depth of the KS potential, however, does not allow to calculate these levels. In
Ref. [14] the spectrum is continued by the deformed oscillator states, describing
asymptotic behavior of the Nilsson single-particle energies for large deformations. In
the present work we found it better to extrapolate the K5 levels to the continuum.
We proceed as follows: The lowest eigenvalue in each oscillator shell Ny has the
radial quantum number n = 1. These states have the energy e(,-1)(I) and are
connected by the full drawn line in Fig. 1. We extrapolate the function &(,=1)({)
linearly to higher quantum numbersn = 1 and I = If 44 with { = 1,2,3, ..., where I
denotes the angular momenturn of the highest energy level with n = 1 that has been
calculated in the spherical K8 potential. The levels with n £ 1 are then given by the
slopes fiwo(No)U(Nyg) for each oscillator shell Ng. This method is very efficient in
giving well-developed plateaus for the Strutinsky renormalisation, which enhances
the accuracy of our method especially for smaller clusters. The overall energy scale
of the potential is determined by the value of fiwg(Np). In order to adjust it to the
scale of the KS specirum, we relate it to the corresponding mean square radius. For
a given quantum number Ny the virial theorem for the harmonic oscillator yields
RNy +3/2) )

M) {(Ng)

In Eq. 4 we use the averaged quantity {r*}{Np) in each oscillator shell Ny, where the

ﬁwg(Ng) =

value of (r?) given by the KS calculations is weighted with its spherical degeneracy.

The cluster shapes are generated by the three deformation parameters g9, €4 and
7. Hereby, the two axial parameters £, and £4 fix the quadrupole and hexadecapole
deformations. The triaxiality parameter 4 describes non-axial deformations, where
7 = 0% corresponds to prolate and v = 60° to oblate cluster shapes. For axial
shapes the hexadecapole term describes the waist-line development. For triaxial
deformations the parameterization interpolates smoothly between the shapes at v =
0° and v == 60°. Note that following the “Lund convention”, the sign of g4 is chosen
opposite to the parameterization used in Refs. {15, 17, 9). Reflection asymunetric
shapes are not studied in the present paper; we refer to the work in Refs. [15, 17, 9L



Fig. 2 shows the spectrum of the Hamiltonian (1} for Nags as an example. In the
left panel the axial quadrupole deformation ¢, increases from zero to its equilibrium
value g; = 0.2. Accordingly, the spherical KS single-particle energies are shown
at the left-hand side of the diagram. As soon as g2 # 0, the spherical degeneracy
is broken. In case of axial symmetry, the projection A of the angular momentum
on the z-axis is a good quantum pumber. For the moderate prolate deformations
shown, A changes with ascending energy from 0 to the l-value of the spherical state
the levels emanate from. The degeneracy D of the states changes from D = 2(214-1)
in the spherical case to D = 2 for A = 0 {spin orientation) and D = 4 for A £ 0
{spin orientation and sign of A}, respectively. In the middie panel the hexadecapole
deformation is furned on. As axial symmetry is maintained, the only influence of the
gq-term is a shift in the position of the energy levels. The doublet-quartet structure
in the degeneracies remains. On the right side of this panel g4 reaches its equilibrium
value. In the right panel the triaxial deformation is switched on. Due to the breaking
of the axial symmetry, A is no longer a constant of motion. The quartets {solid lines
in the two left panels) appearing for axial shape are split and all states have only
the two-fold spin degeneracy {dotted lines). There may be accidental degeneracies,
but the states belonging to the same representation of the Dy, symmetry group of
the Hamiltonian must not cross. The triaxial ground state deformation of Nagg is
a clear consequence of the well-pronounced shell gap at (g2,24,7) = (0.2,0.1, 26)
marked in the diagram. The deformation energy surface of Nags is given in Fig. 3

below.

3. STRUTINSKY RENORMALISATION

In nuclear physics it has been well known for a long time that the sum over the
lowest occupied single-particle energies fails to correctly describe the deformation
energy of an interacting many-particle system. Therefore, we calculate the renor-
malized deformation energies by means of Strutinsky’s “shell correction method”
{SCM}, which was initially developed for nuclear physics [13]. It has already been
shown that this method is very efficient for the calculation of the ground state de-
formations of clusters in a very large size range, exploring a large class of axial
shapes {15, 17, 14, 18]. We recall here only the very principles of the method and
refer to Refs. [13, 27] for a more detailed discussion.

Considering the cluster as a quantal droplet, its total energy can be split up



into two paris: an average classical part, the so-called "liquid drop energy”™ (LDM),
which is parameterized by a macroscopic expression, and a “shell correction energy”,
8§ F(g2,24,77), which arises from the quantised electron motion inside the droplet. The
latter is related to the variations of the density of states around the Fermi surface
and can be determined from the total single particle energy £,,, which is the sum

of occupied levels

N
Espzzgz;:c?E-i—E, (5)
1=
where E is given by
ey
B f EG(E) dE, (6)

and &; corresponds to the Fermi energy. The average level density §(E) is defined
by folding the exact quantum density of states g(£)

N
g(B) =) §(E -« ()
tu=l
with a smooth distribution function foar{z), Usually one takes a Gaussian of hali-
width ' 2 A multiplied by a curvature correction polynomial. It is necessary to
impose on £ the stationary condition

dE)
( dr {rmf‘g}
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which is the differential form of the usual plateau condition, requiring that £ does
not depend on the averaging width I". We use a curvature correction polynomial of
the order 2M = 6 (cf. [27]}, which fulfills the plateau condition with respect to I'
very well. In most cases a smoothing width of I'yy = 1.2k is appropriate, where
fiwg 1s the average of the values fiwg{Vy) belonging to the three oscillator shells N
around the Fermi level. The continuation of the spherical spectrum high above the
Fermi energy suggested in this paper makes the plateaus more stable than the ones
obtained in Ref. [14] for the spheroidal KSN, where high-lying energy levels are
approximated by the anisotropic oscillator states. The plateaus ave even acceptable
for the light clusters N < 30, where it is generally expected that the uncertainties in
the shell correction §E due to badly developed plateans become sigaificant. For the
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accurate renormalisation it is important to include a sufficient number of shells. In
our calculations, we have reached convergence of the shell corrections §E(e2, ¢4, 7)
for Ny < 16.
To determine the equilibrium deformations for neutral clusters, we calculate the
“shell energy”
Eonent{e2,84,7) = AEsury + §E(22,84,7), 9

locating the zero point of the energy at the LDM energy for spherical shape. The
surface energy AFE;,.s relative to the spherical drop is given by

AES‘!&Tf = (g - (Bﬁuff(gjz, 84, ’Y) - 1) * N2/3 (10)

and depends on the cluster shape via the ratio By, {€2,£4,v) of the surface areas
of the deformed and spherical clusters of the same volume. The surface area is cal-
culated by numerical integration over the equipotential surface of the potential (1).
The details are described in Refs. [24, 28]. The constant a, is the bulk surface energy
and is given by

as = dwors, (11

where o is the surface tension. We fix the surface energy in Eq. (10) to its ex-
perimental value, obtained from extrapolating the measured surface tension given
in Ref. [29] to zero temperature. For a Wigner-Seitz radius r; = 3.96 a.u., using
the bulk value for o this yields a, = 0.79 eV, which is not too different from the
melting point value. Following the arguments given in Ref. [17], curvature terms
are negiected in the present calculations. The temperature of the valence electrons
is taken to be zero. It has been shown in Ref. [30] that the shapes of light clusiers
with ¥ < 100 are not significantly modified by the thermal fluctuations, whereas
the thermal averaging makes larger clusters around the magic numbers spherical.

4. RESULTS

The shell energy (9) is calculated as a function of the (g2, &4, 7)-degrees of free-
dom, generating a potential energy surface (PES) whose minima correspond to stable
or metastable shapes of a cluster. The PES are constructed for triaxial deformations
in the range 0° < -y < 607, where the quadrupole and hexadecapole deformations
are varied between 0 < g5 < 0.7 and ~0.2 < g, <0.2.



As examples, we show in Fig. 3 the contours of the PES in the (3, v)-plane for
the clusters with N = 12,14,16,28,86,132,186 and 228. Examples of the PES for
axial quadrupole and hexadecapole deformations for larger clusters N = 78,112,122
and 154 are shown in Fig. 4. For each sodium cluster with 10 < N < 270 valence
electrons, we minimize the shell energy (9) simultaneously for the three deformation
parameters {£2,£4,7). The results are presented in Fig. 5, showing the ground state
deformations as a function of the cluster size N. Fig. 6 shows the separation energies
and in Fig. 7 we compare the axial with the triaxial shell energies.

From Figs. 5-7 we see that strong spherical shells occur at N =20, (36), 58, 92,
38, 190 and 254, and subshells are found at N =78, 112, 122, 154, 162, 176 and 218.

In conformity with the results of the spheroidal XSN, the mintmized quadru-
pole deformation e2(/NV) is an almost periodic function, with its period given by
the distance between the spherical shell closings (cf. Fig. 5). Deformations on the
prolate side {7 < 30°) dominate, and most of the axial deformations on the oblate
side found in Ref. [14] become triaxial. Similar trends are known from atomic nuclei.
Larsson has already pointed out in Ref. [24] that the hexadecapole deformation
usually lowers the energy on the prolate side more than on the oblate side.

Triaxial ground state deformations are most frequent at the beginning and the
end of a shell. Strong triaxial deformations are found in the mass ranges 11-13, 15-
17, 23-25, 61-65, 71-73, 81-86, 95-101, 105-107, 131-135 and 186-191. The triaxiality
around 156 and 178 is very small (v < 7°). Compared to the two-dimensional
minimization of {£2,£4)-shapes the energy gain due to triaxiality may amount to be
~2 (.2eV for the light clusters and = 0.05¢V for the heavy ones {cf. Yigs. 3, 7).

In Fig. 3 we show the contour diagrams of the PES in the (£s,7)-plane for
the clusters N = 12,14,16,28,86,132,186 and 228. The PES are calculated at
the minimized hexadecapole ground state deformation €4 in each mesh point. For
Naia, the PES shows a single pronounced triaxial minimum at the ground state
deformation (g2,&4,7) = (0.52, —0.03,32°), which is separated from the oblate axial
saddle at {g9,£4,7) = (0.43,w0.03,60°) by = 0.2e¢V. For Nayy, the prolate ground
state at (€2,¢4,7) = (0.51,0.17,0°) and the oblate isomeric state at leg,e4,y) =
(0.5, —0.12,60°) are both stable with respect to triaxiality, and the saddle between
the prolate and oblate minimum is moved into the -plane. The PES of Nay
has a minimum slightly more on the oblate side (gy,54,7) = {0.48,0.09,37°) and
shows a prolate isomer at (£2,24,%) = {0.35,0.08,0°), separated from the triaxial



ground state by a barrier of = 0.1eV. Full KS calculations of non-axial asymmetric
guadrupole deformations without hexadecapole contributions [23] find triaxiality for
Nayy and Nagg, too. In the KSN, the clusters Nayg, Najy and Nayg are found to be ax-
ially symmetric. This agrees with the KS results of Ref. [9], which calculates the PES
of singly charged sodium clusters with 10 < Z < 44 valence electrons for (g9, e3,24)-
shapes in the structurally averaged jellium model. The PES of quadrupole and hex-
adecapole deformations for axial shapes (v = 0°,60°) are found to be very similar to
the KS results in a range N < 30 [32]. In the "ultimate jellium model” of Koskinen et
al. {33, one finds that the clusters with N = 14,21, 22 have both axial and reflection
syminetry, whereas Nayo is found to be axial, but asymmetric. Wholly unsymmet-
rical are the clusters with NV = 12,16,17,18. For Nags, we find a prolate minimum
at (g1,84,7) = {0.34,0.04,0°), and a triaxial isomer at (eq,e4,v) = (0.36,0.03,18°).
The oblate isomer is found at at (€2,24,7) = (0.35,~0.17,60°). Like for Nayy, we
find that allowing for triaxiality lowers the barrier between the axial isomers.

The spherical shell of Nayy is ot correctly described in our KSN. We obtain a
weak closure at 36 instead. The reason is the position of the 1f,2p and 1g levels
in the KS spectra for sharp edge jellium, which gives a too small shell gap between
2p and 1g (see Refl. [7] and Refs. quoted therein). Montag et al. {9] use for the KS
potential a diffuse surface of the ionic density. They demonstrate that a change in the
diffuseness has the largest effects around &V = 40, where i increases the energy gap
between the 2p and 1g level in the single-particle spectrum and, thus, reproduces the
experimental observation of the magic number N = 40. QOut of this critical region
around 40 our KSN is in accordance with the KS results of Refs. {31, 9, 32].

The triaxiality of larger clusters is illustrated in the lower part of Fig. 3 which
shows the (&9, y)-planes of Nags, Nayss, Najgg and Nagyg for the minimized hex-
adecapole deformation in each mesh point. Gernerally, the PES have a tendency of
decreasing quadrupole deformations and for £, = 0.3 almost no metastable min-
ima are found. With increasing cluster size, the magnitude of the axial equilibrium
deformations becomes smaller, what can be understood from the relative size of
the shell correction and surface energy, which scale with N'/3 and N /3 respec-
tively. Axial deformations are found to be more frequent for the large clusters. For
spheroidal deformations in the KSN, a systematics of shape transitions between two
magic shells from spherical — oblate — prolate — spherical has been found in
Refs. 14, 15, 17, 18]. Motivated by the success of the Balian-Bloch theory [34] in
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explaining the supershell structure {35] experimentally found in the cluster abun-
dancies [36, 37}, a semiclassical interpretation of the above deformation systematics
in terms of the triangular and rhomboidal classical periodic orbits confined to a
spheroidal cavity [38] has been given in Ref. [39}, adopting the results from nuclear
physics by Strutinsky et ol [13].

The PES for quadrupole and hexadecapole deformations of the clusters Nazs,
Najyg, Najo and Nagsy are shown in Fig. 4. Inspection of the three-dimensional
deformation space shows that all these clusters have axial shape, each with a pro-
nounced minimum at the prolate side and a stable oblate isomer, lying slightly higher
in energy. The energy differences B, — F, between the two stable oblate and prolate
isomers are given below each diagram, together with the corresponding shape pa-
rameters (&2,24). Generally we find for the larger clusters that the shape isomerism

is much more pronounced in the (€2, ¢4)-plane than for triaxial deformations. This
isa consequence of the fact that triaxiality leads to much smaller shifts of the single

particle energies than the axial deformations.
In Fig. 6, we show the separation energies
AVE(N) = BN ~ 1) = Eeot{N) (12)
calculated from the total energies
Eiotd N} = ay - N + @ - Bourg(2, €4, 7) N, (13)

where the first term corresponds to the bulk volume energy with ¢, = —1.12eV,
This value is obtained by exirapolating the bulk binding energies of liquid sodium,
as given in Ref. {40}, to zero temperature (for details <f. Refs. [17, 30]).

The major shell closings as well as the subshells clearly show up in the separation
energies. The dominant structure already comes from the axial deformations £, and
£4. Triaxiality leads to small energy shifts that are barely seen in the separation
energies {(c.f. the comparison of axial (g3,24) and triaxial calculations {g2,£4,7) in
the upper panel):

In Fig. 7, we compare the shell energies for the axial deformations (g9) and (g2, £4)
with the combination of axial and triaxial deformations {£q,7) and (29,54, 7). All
triaxial PES are found to be very soft, and the energy differences between the axjal

and triaxial minima are in the most cases too small to show up on the scale of Fig. 7.

11



Comparing the two-dimensional minimizations {3, 25) and (g2, v) with the one-
dimensional minimization () demonstrates clearly that it is the hexadecapole de-
formation that brings the important gain in binding energy. It may amount to 0.3eV
at the beginning and the end of a shell. Our study shows that the binding energies
calculated in Ref. {17} by minimizing a five dimensional family of axial shapes should
be rather accurate and non axial shapes should modify these values only slightly,

Restrictions in the shape parameterization generally lead to an overestimation of
the shell structure in the energies as function of the cluster size N. In Fig. 7 we see
that the shell energies for one-dimensional minimization (g,) have higher energies
as those with the hexadecapole deformations included (€2, £4), what is most obvious
at the beginning and the end of each shell. The hexadecapole deformation lowers
these spikes in the deformed regions, just as the spheroidal deformation cuts away
the huge shell maxima of the spherical clusters. Generally, with increasing variety
of shapes, the N-dependence of the shell energies tends to become smoother. A
semiclassical interpretation of these effects as well as an explanation of the higher
multipole degrees of freedom in terms of the periodic orbit theory for the deformed
clusters is of large interest [41].

Hamamoto et al. {42] used a modified oscillator potential for axial and non-axial
quadrupole deformations to calculate the equilibrium deformations by minimizing
the sum of the single particle energies. In qualitative agreement to the results
shown above, they find that at the beginning of a major shell, oblate shapes are
most favorable, whereas at the end of the shell prolate deformations are found.
The number of clusters with a prolate minimum is much larger than that of oblate
clusters, which is consistent with Fig. 5 of our calculations. Triaxiality is found
between ¥ ~ 70 and 75, between N = 80 and 85, around 105 and in the region
between 152 and 158 (see Fig. 20 in Ref. [42]). The energy gain in shell energies
by friaxial deformation turns out to be small, which confirms our results described
above. In the region between 152 and 158 octupole deformations of the Yiy— type are

found to be energetically more favorable than the triaxial quadrupole deformations.

5. EXPERIMENTAL CONSEQUENCES OF THE TRIAXIALITY

In order to find experimental quantities that are sensitive to the triaxiality of
the cluster shape, we discuss the following possibilities: abundancies, the splitting

of the plasmon resonance, separation energies and magnetic moments.



Comparing the separation- and deformation energies shown in Fig. 6 and Fig. 7
to the logarithmic derivatives of the experimental mass abundances of sodium clus-
ters in Ref. [36, 37, 14] one finds that there is an obvious correlation of the most
pronounced open-shell structures. In the experimental data of Refs. {36, 37, 14],
between the “magic” shells broad low-amplitude dips occur at the cluster sizes
N = 66,80,116,170 and 240. In the present work as well as in the spheroidal
KSN-model of Ref. [14] and the axial WS-calculations of Ref. [15, 17] the electron
numbers N == 72,112,172 and 236 correspond to particularly stable configurations.
The axial and triaxial results are found to be very similar. Thus, the shell structure
in the deformation energies as well as the experimental abundance spectra seems to
contain no obvious evidence for triaxiality (however, c.f. below the discussion of the

odd-even staggering in the separation energies).

As already well known from muclear physics and discussed in Ref. {19} for alkali
clusters, the plasmon resonance is expected to split into three peaks of equal in-
tensity if the shape is triaxial. The three resonances correspond to the eigenmodes
along the three principal axes. Selby et al. [19] observe for the neutral cluster Naj,
an absorption spectrum that seems to show three peaks. This agrees well with the
calculated strong and stable triaxiality in our model as well as with previous cal-
culations that also find triaxiality for this cluster [19, 23]. It also agrees with the
microscopic RPA-calculation of the dipole resonance in Ref. {43}. The absorption
cross sections for other neutral sodium clusters {19, 44] do not show enough siruc-
ture to allow definite conclusions. The the plasmon tesonance in singly charged
clusters has been measured by Borggreen et al. [20]. They do not include N=12.
For Na;z and Nays a low intensity low frequency peak and a high intensity high
frequency peak, characteristic for a prolate axial shape, is observed. We find Nay,
to be triaxial with (e2,4,7) = (0.51,0.11, 10°), and for Nay4 the prolate minimum is
well separated from the oblate isomer by a barrier in the {€3,7) - plane {cf. Fig. 3).
For N=17 and 18 a high intensity low frequency and a low intensity high frequency
peak is observed, characteristic for oblate shape. For N=13 and 18 a broad single
resonance is seen-that might correspond to three unresolved peaks. This would be
in accordance with our calculations in Fig. 5 showing a transition from prolate to
oblate shape with == 15 and IV == 16 being triaxial. For Nagg the axial calculations
of Ref. [15, 17] find a prolate and an oblate minimum at almost the same energy,
what may explain the experimental observation of two peaks of the same intensity
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[20]. We find a PES for Nass that has a prolate minimum and a {riaxial isomer with
almost no barrier between them, and the oblate isomer lies only slightly higher in
energy. The coexistence of the prolate and triaxial minimum should result in the
apperance of a third peak in the resonance.

The measurement of the plasmon resonance for the heavier clusters with pre-
dicted strong triaxiality, especially at IV = 64,72 and between 81 and 86 would be

a strong fest of our calculations.

The separation energies are expected to show different N-dependence for axial
and triaxial shapes. As discussed in Ref. {17], the quartets of electron states origi-
nating from the A # 0 levels (the degeneracy is four because of the two orientation
of the orbital angular momentum and the spin) show up in the plot Ay E(N) as
four points in a row on an upsloping almost straight line. For triaxial shapes there
is only a two-fold degeneracy, which will cause an odd-even staggering of the sep-
aration energies, if the electron levels are well separated. It is seen in Iig. 6 that
there are many quartets. This is partially due to the fact that many clusters are
axial but also a consequence of the relatively small energy gain by triaxial deforma-
tion. The comparison of the axial with the triaxial calculation in the upper panel
shows how for V =13 and N =23 the triaxiality generates a dip, thus destroying the
corresponding quartets. The dip at N =17 is less pronounced. The experimental
separation energies [21] and ionization potentials, however, show a systematic odd-
even staggering that cannot be explained by the occurrence of triaxial quadrupole
deformation for certain electron numbers, as found by our KSN calculations.

In Refs. [22, 33} it is demonstrated that the inclusion of a spin-dependent ex-
change-correlation potential in the KS calculations reduces the odd-even staggering
by about 30% from the result of the spin-independent formalism. Recent calculations
of even light clusters show that axial shapes with half-filled quartets, where the two
clectrons are in a triplet state, are energetically favoured by the spin-dependent

exchange correlations according to Hund's rule {45].

Fig. 8 shows the orhital magnetic moments of the light clusters with odd V. The
orbital part of the magnetic moment, measured in units of the Bohr magneton, is just
equal to the expectation value of the orbital angular momentum component /3. (The
other two components are equal to zero.) As discussed in Ref. [16], this expectation

value can only be nongero if the cluster has an axial shape. For triaxial shape

14




the orbital magnetic moment is quenched'. By comparing the calculated orbital
moments of the triaxial minimum to the one for the lowest axial saddle, Fig. 8
demonstrates that there is a number of clusters for which the triaxial deformation
will quench the orbital paramagnetic moment. Since the energy gain by iriaxial
deformation is always large compared with the interaction energy with the external
magnetic field (~ 107%eV for a magnetic fleld of 1T}, the field is too weak to restore
the magnetic moment. It has been demonstrated by de Heer [46] that paramagnetic
moments of the order of one Bohr magneton can be measured by deflection of the
cluster beam in a strong Stern-Gerlach magnet. Such experiments could provide a

rather direct evidence whether the cluster shape is axial or not.

5. CONCLUSIONS

In summary, we have shown that stable triaxial ground states exist for sodium
clusters in a size range N < 270. The dominant effects in deformation energies, how-
ever, come from axially symmetric quadrupole and hexadecapole deformation, and
triaxiality plays a minor role in the explanation of subshell closings in the abundance
spectra. The splittings of the plasmon resonances seein to contain some evidence for
triaxiality that may correlate with our predictions. However, the picture is far from
being clear. Triaxiality modifies the N - dependence of the separation energies, The
quartets, characteristic for axial shape, are disturbed and the odd-even staggering,
characteristic for only two-fold spin-degenerated electron levels appears. However,
a systematic odd-even staggering, as experimentally observed for the separation en-
ergies, the abundancies and the ionization potentials, cannot be reproduced by the
calculations, since not all clusters are found to be triaxial and the energy for tri-
axial deformation is often too small to generate a significant perturbation. Thus,
we conclude that the odd-even staggering has another origin. The measurement of
the paramagnetic moments by deflection of the cluster beam in a magnet seems to
be an interesting possibility to distinguish axial from non axial clusters, since finite

orbital moments exist only for the symmetric species.

ACKNOWLEDGEMENTS

'The quenching of the orbital parmmagnetic moment in a nos-axial crystal Boid Is & well known

phenomenon in solid state physics,

e
&



Discussions with Th. Hirschmann, M. Rotter, V. Pashkevich and 1. Hamamoto
are gratefully acknowledged. We thank especially Th. Hirschmann for his invaluable
help with the computer graphics and many numerical questions. We acknowledge
financial support by the Commission of the European Communities (EC project
ERB-SCI-CT92-0770) and the Deutsche Forschungsgemeinschaft for travel grants.

16



References

(1] Knight, W.D., Clemenger, K., de Heer, W.A., Saunders, W.A., Chou, M.Y.,
Cohen, M.L., Phys. Rev. Lett. 52, 2141 (1984); Knight, W.D., Clemenger, K.,
de Heer, W.A., Saunders, W.A., Phys. Rev. B 31, 2539 (1985)

{2] Ekardt, W., Phys. Rev. B29, 1558 (1984)
{3} Beck, D.E., Solid State Comm. 49, 381 (1984)

[4] Clemenger, K., Phys. Rev. B32, 1359 (1985), and Ph. D. Thesis, Berkeley 1985
{unpublished}

[3] Nilsson, 5.G., Mat.- Fys. Medd. Dan. Vidensk. Selsk. 29, 16 (1935)
[6] Jahn, H.A., and Teller, E., Proc. Roy. Soc. London A1861, 220 (1937)
(7] Brack, M., Rev. Mod. Phys. 65, 677 (1993)

{8] Ekardt, W., and Penzar, Z., Phys. Rev. B38, 4273 (1988)

{9] Montag, B., Hirschmann, Th., Meyer, J., Reinhard, P.-G., Brack, M., Phys.
Rev. Lett. 1994, in print.

{10] Rothlisberger, U., and Andreoni, W., J. Chem. Phys. 94, 8129 (1991)
[11] Martins, J., Buttet, J., and Car, R., Phys. Rev. B31, 1804 {1985)

[12] Poteau, R., Spiegelmanun, F., Phys. Rev. B45, 1878 (1992); J. Chem. Phys. 98,
6540 (1993)

[13] Strutinsky, V.M., Sov. J. Nucl. Phys. 3, 449 (1967), Nucl. Phys. A 95, 420
(1967); ibid. A 122, 1 (1963)

[14] Reimann, S.M., Brack, M., Hansen, K., 7. Phys. D 28, 235 (1993)
[15] Frauendorf, S., and Pashkevich, V., Z. Phys. D26, 98 (1993}

[16] Frauendorf, S., Pashkevich, V., and Reimann, S.M. Contribution to the IS-
SPICT in Kobe, Japan, (1894), Surface Letters and Reviews, in print {1095}

[17} Frauendorf, S., and Pashkevich, V., submitted to Phys. Rev. B (1994}

17



[18] Bulgac, A., and Lewenkopf, C., Phys. Rev. Lett. 71, 4130 (1993)

{19] Selby, K., Volimer, M., Masui, J., de Heer, W.A., Knight, W.D., Phys. Rev.
B40 (1989) 5417.

[20] Borggreen, J., Chowdhury, P., Kebaili, N., Lundsberg-Nielsen, N., Liltzenkir-
chen, K., Nielsen, M.B., Pedersen, J., Rasmussen, H.D., Phys. Rev. B 48, 23,
17507 (1993)

[21] Bréchignac, C., Cahuzac, Ph., Leygnier, J., Pflaum, R., Roux, J.Ph., and
Weiner, J., Z. Phys. D12 (1983} 199.

[22] Manninen, M., Mansikka-aho, H., Nishioka, H., Takahashi, Y., Z. Phys. D31
(1994) 259

(23] Lauritsch, G., Reinhard, P.-G., Brack, M., Phys. Lett. A160, 179(1991); Rot-
ter, M. et al, to be published.

[24] Larsson, S.E., Phys. Scripta 8, 17 (1973); Larsson, S.E., and Leander, G.,
Physics and Chemistry of Fission, Rochester, NY, (IAEA, Vienna 1974) p.177;
Leander, G., and Larsson, 5.E., Nucl. Phys. A239, 93 (1975)

[25] Bengtsson, T., Ragnarsson, 1., Aberg, S., Chap. 1 in Computational Nuclear
Physics I, ed. by Langanke, K., Maruhn, J.A., and Koonin, S.E., Berlin, Hei-
delberg, New York: Springer 1992

[26] Genzken, O., and Brack, M., Phys. Rev. Lett. 67, 3286 (1991); and Genzken,
O., Ph. D. Thesis, Regensburg 1992 (unpublished)

[27} Brack, M., and Pauli, H.-C., Nucl. Phys. A207, 401 (1973); Brack, M., Nuclear
Models, edited by Bengtsson, R. et al., Wiley, 1993, p.345

[28] Hasse, R.W., and Myers, W.D)., Geometrical Relationships of Macroscopic Nu-
clear Physics, Springer Series in Nuclear and Particle Physics, Berlin, Heidel-
berg, New York: Springer 1988

[29] Germer, D., and Mayer, H., Z. Phys. 210, 391 (1968)

(30] Frauendorf, S., and Pashkevich, V., Contribution to the ISSPICT in Kobe,
Japan {1994}, Surface Letter and Reviews, in print; and to be published

13




131] Hirschmann, Th., Brack, M., Meyer, J., Ann. Physik 3, 336 (1994}

{32] Hirschmann, Th., private communication

[33] Koskinen, M., Lipas, P.O., and Manninen, M., Univ. of Jyviskyla preprint 1994
[34] Balian, R., and Bloch, C., Ann. of Ph;ys. 63, 592 (1971); 69, 76 (1972)

[35] Nishioka, H., Hansen, K., and Mottelson, B.R., Phys. Rev. B 42, 9377 (1990);
Genzken, O., and Brack, M., Phys. Rev. Lett. 67, 3286 (1991)

[36] Bjgrnhoim, S., Borggreen, J., Echt, O., Hansen, K., Pedersen, J., Rasmussen,
H., Phys. Rev. Lett. 65, 1627 {1990); Z. Phys. D19, 47 (1991)

[37] Pedersen, J., Bjgrnholm, S., Borggreen, J., Hansen, K., Martin, T.P., Ras-
mussen, H.D., Nature 353, 733 (1991)

{38] Strutinsky, V.M., Magner, A.G., Ofengenden, S.R., Dgssing, T., Z. Phys. A
283, 260 (1977)

[39} Reimann, S.M., and Brack, M., J. Comp. Mat. Sci. 2, 433 (1993)

[40] Knacke, O., Kubaschewski, O., Hesselmann, K., Thermochemical Properties of
Inorganic Substances II, Berlin, Heidelberg, New York; Springer 1991, p. 1314.

{41] Magner, A.G. et al, to be published.
[42] Hamamoto, I., Mottelson, B.R., Xie, H., Zhang, X.Z., Z. Phys. D21, 163 {1991)
{43] Bernath, M., et al, Phys. Lett. A156 (1991) 307

[44] Selby, K., Kresin, V., Masui, J., Vollmer, M., de Heer, W.A., Scheidemann, A. |
Knight, W., Phys. Rev. B43 (1991) 4565.

[45] Kohl, C. et al., to be published

[46] de Heer, W.A., Thesis, University of California, Berkeley, 1985

19



Figure Captions

Figure 1:

Single-particle energies of the self-consistent spherical KS energies (circles} and
spherical energy levels of the KSN model {squares} as a function of I{{+ 1), where !
correspounds to the spherical angular mornentum. The corresponding radial quantum
numbers 7 and angular momenta [, as well as the Fermi surface and the function
&n=1(I) are given in the diagram. {We use the nuclear physics convention for the

radial quantum numbers n).

Figure 2:

Nilsson single-particle energies for quadrupole, hexadecapole and triaxial deforma-
tions, respectively. The spherical energy levels are shown at the left-hand side of
the plot, each indicated with the radial quantum number n and the corresponding
angular momentum I. In the left panels, the solid lines correspond to four-fold de-
generate states (A 5 0) for axial symmetry. The large gap for N == 86 leads to the
stable triaxial ground state deformation of {e2,24,7) = (0.19,0.09, 26).

Figure 3:

Contour diagrams of the PES for N = 12,14,16,28,86,132,186 and 228 in the
(g2, 7)-plane.

The triaxiality parameter « is represented by the angle 0° < v < 60°. The abszissa
Corresponds to the quadrupole deformation ¢; at the minimized hexadecapole de-
formation €4 in each mesh point. 7 = 0° corresponds to prolate, v == 60° to oblate
cluster shapes. The gray-tone scales indicate the relative energies, with the units of

éach step in the contours given below each diagram.

Pigure 4:

Deformation energy surfaces in the (gg,24)—plane for the clusters NV = 78,112,122
and 154. By minimization of the three-dimensional deformation space these clusters
are all found to have axial symmetry, with a pronounced minimum at the prolate
side,




Figure §;

Ground state shapes of sodium clusters as a function of cluster size N < 270. The
lowest panel shows the triaxial deformations with 0 < + < 60°. For v = 0°, the
shape is prolate, whereas oblate shapes correspond to v = 60°. The two upper
panels show the minimized axial quadrupole and hexadecapole deformations 22{V)
and e4(N). The sign of z; describes the waist-line development (g4 > 0) or its
opposite (g4 < 0).

Figure 6:
Separation energies Ay E(N) w B (N — 1) — Epe(N) as a function of cluster size

N for the minimized ground state shapes (2, 24,7).

Figure 7:

Deformation energies corresponding to one-, two- and three-dimensional minimiza-
tion of the shapes as a function of the cluster size N. The most dominant defor-
mation effects come from the quadrupole- and hexadecapole contributions, whereas
the triaxiality is much too small to reduce the deformations energies with respect

to the axial cases significantly.

Figure &:

The orbital magnetic moments of odd sodium clusters calculated for the KSN po-
tential. Dots display the lowest axial minima and triangles triaxial minima. The
quenching of the orbital magnetic moment by triaxial deformation is demonstrated

by the vertical lines. The lower panel shows the triaxiality parameter 7.
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