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Abstract 

A new strategy for finding optimal solutions to complex problems 
with many competing requirements is proposed. It consists in a si- 
multaneous optimization of the energy, cost or fitness function of the 
system itself, and of sub-systems of ali sizes with an appropriate weight 
function. For various spin glasses (the N - k  model, the lotv autocorre- 
lation binary sequence model and the Coulomb glass) and for travelling 
salesman problems the corresponding Monte Carlo algorithm is shown 
to yield results superior to those obtained by previons optimization 
techniques. 

PACS numbers: 02.60.Pn, 02.70.Lq, 05.50.+q, 87.10.+e 



The description of complex systems with many competing requirements 
generically leads to multi-peaked or "rugged" functions: the energy, cost or 
fitness landscape (over the space of all possible configurations of the sys- 
tem) is characterized by a complicated structnre with many local optima. In 
a physical context typical examples are the energy functions of many-body 
systems with a high amount of frustration: glasses and Spin glasses, anti- 
ferromagnetics on certain lattices and many random systems. In a broader 
setting rugged landscapes describe, e. g., the fitness of biological individuals 
(as a function of the pheno- or genotype structure), the "payoff" of econom- 
ical or social actions (as a function of the sequence of undertaken decisions 
in the Course of time) or the cost or time required to achieve a certain aim. 
Finding the global optimum of such systems is a highly non-trivial problem 
since fulfiUing one requirement often leads to an increase in the mismatch of 
others. In the notion of energy or fitness landscapes such situations corre- 
spond to local optima, i. e., to situations from which no way out by changing 
a single degree of freedom is possible. 

Different strategies have been proposed to tackle this problem, adopt- 
ing - in view of the general validity of the problem - ideas from different 
areas of science. Most prominent examples are simulated anneding and 
its recent developments [I, 2, 3, 41 (based on the thermodynamically mo- 
tivated Metropolis algorithm [5]), evolutionary and genetic algorithms im- 
itating adaptive processes in biological systems 16, 71 and neural network 
techniques [SI. A common featnre of these approaches is that they consider 
exclusively the energy or cost of ithe total system - trying to find configura- 
tions improving this quantity without completely excluding "steps into the 
wrong direction" (in order to avoid trapping in local optima). 

It is the aim of the present Letter to formnlate an opposite approach. 
Based on the assumption that an optimal (or near-optimal) solution to com- 
plex problems can be found by an interplay of individual interests, synchro- 
uized to a certain extent by group and system regulations, I propose an 
eEcient and robust Monte Carlo optimization algorithm, often performing 
better than previously used techniques. Apparently, there is some support 
for the above assumption from one of the most complex systems - human 
society - relying, at least partially, on similar principfes. Vice versa, the 
mathematicai formulation presented below allows a more detailed insight into 



why dernocratic structures, allowing individuals and groups of them to follow 
their own interests - taking into acconnt those of other individuals as well 
as of the system as a whole -, are most capable of solving complex problems. 

In order to be specific I use a physical terminology and try to find a global 
minimum ("ground state") of the energy E of a system with IV degrees of 
freedom (called spins or sites). I suppose that each of them can take only a 
finite number M of values; the generalization to continuous problems can be 
formulated in a straightforward way. Every configuration of the system can 
be specified by a vector s = {SI,. . . , s,v),s; E (1,. . . , M ) ,  and the energy 
landscape is given by a map from the set of all possible configurations into 
the real numbers: s -+ E(s). The aim of a Monte Carlo algo~ithm is to  evolve 
a random initial configuration into the ground state (or close to it) within the 
smallest possible amount of configuration changes by generating the latter 
randomly, usually considering only single-spin flips. Than, the optimization 
strategy is determined by the criterion according to which a configuration 
chauge is accepted or discarded. 

For finite N, the total energy fnnction E(s) may be represented as a sum 
of k-spin interaction terms, 0 < k < N: 

where E0 is configuration independent, and the general form of Ek reads 

The basic objects of the algorithm are the single-spin energies E"' defined i"' as the sum over all interaction terms in which the spin with Iahe n occurs 
- taking the orientation of all other spins as given: 

where 6„ = 1 for n = m and 0 otherwise; the weigbt factor 1 Jk is necessary 
to insure the additivity relation (4) (see below). From expression (31, one 



can construct the set of all multiple-spin energies hy defining E:,,~~)(S) = 

E ~ , ) ( s )  + E?i2)(s), etc. Obviously, the number of different Ii-spin energy 

functions generated in this way is given by the binomial (g), so that the 

total number of energy landscapes equals C$=, (E) = 2N - 1. 

The key idea of the proposed optimization strategy is to search for minima 
not on the single landscape E, but on the ensemble of landscapes defined 
above, i. e., to perform a random walk on a multivalued landscape - looking 
at each moment of time for steps diminishing the value of a randomly chosen 
member of this landscape ensemble. These are two properties of the ensemble 
that make this approach work. 
1. Different landscapes arenot independent of each other but synchronized in 
the sense that, for all I< and any of the system's configurations, the average 
value of Ii-energies is proportional to the system energy: 

Therefore, on average, an optirnization of group energies brings the system 
closer to its global energy minimum. 
2. The strncture of localminima is, at least for sufficiently random systems, 
different for different landscapes. As a consequence, switching from the opti- 
mization of E to those of its sub-systems, and vice versa, avoids the danger 
of getting trapped into local rninima. 

The Monte Carlo algorithm realizing this approach for a system S of N 
spins Looks as follows. 
1. For each site n construct the set of all sub-systems of S affected by a 
Bip of spin n, i. e., the "neighborhoods" of n. If the number of different 
neighborhoods is too large, e. g., for spin glasses with medium or long range 
interactions, it is impossible to consider all of them. In this case, I selected 
a specific sequence of "I<-neighborhoods", Ii = 1,. . . , N, defined by site n, 
and the Ii-1 sites most adjacent to it, correspondingly. Note that in appli- 
cation to travelling salesman problems (TSP) instead of single-site flips an 
elementary configuration flip has to be considered (see betow). 
2. Define a weight function P over the set of chosen neighborhoods. This 



function determines the probability of selecting a given neighborhood to be 
active for optimization. The structure of P is of central importance for the 
performance of the algorithm: If P is concentrated on large landscapes, cov- 
ering almost the whole system S, the algorithm spends most of its time in 
local minima of E. On the other hand, peaking P on small landscapes, the 
amount of purely "egoistic" moves prevails, and the total euergy strongly 
fiuctuates at a comparatively high level. The hest choice should be somehow 
in between: I obtained good results by generating a random number X uni- 
formly distributed between 0 and 1, and determining the neighborhood size 
I< according to 

where KmX is the interaction radius, i. e., the maximum uumber of sites 
affected by a single-spin Aip, and LY is a small positive number being roughly 
proportional to l/IC„,; [I denotes the integer part. Note that the parameter 
a characterizes, loosely speaking, the "amount of democracy" in the algo- 
rithm. Lage positive a almost completely exclude spin Rips preferable for 
individuals only, corresponding to a "totalitarian", "centralized" evolution, 
whereas large negative a lead to an "anarchic" behavior - in both cases the 
performance of the optimization algorithm turns out to be poor. The fact 
that the optimal cu decreases with increasing I& indicates, in particular, 
that - contrary to naive expectation - with raising complexity of a system 
the röle of centralism should be reduced. 
3. Randomly choose a site n and oue of its neighborhoods, for any moment 
of discrete time. Accept a flip of spin n if it lowers the corresponding neigh- 
borhood energy ('>random updating"). If the acceptauce rate of trial Aips is 
smaller than the inverse number of possible Rips a more effective prescription 
is the following: Choose a sub-system size Ii according to P(I<), examine 
all possible single-spin &ps and accept a randomly chosen one which leads 
to lower energy of its I<-neighborhood ("fitter updating") [9, 101. I used the 
first variant for TSP and the latter one for spin glasses (SG). 

The algorithm has been tested, first, on three SG. 
I. Kaufhan's IV-k model [11]. This is a system of N spins, each inter- 



acting with k others. The system energy is given by 

I considered the k sites ii, . . . , ib to be adjacent to i on a twodimensional 
lattice and the Ei to be random numbers uniformly distributed between 0 
and 1. The structnre of the energy landscape ( 6 )  has been studied in great 
detail. The number of local optima changes from 1, for k = 0, to 0 ( 2 " / N )  
for k = Ar - I, and tbeir energies are shown to be normally distributed for 
large k [12]. A numerical test on 200 randomly chosen local minima for 
N = 24' and k = 12 yields a mean energy per spin m of 0.314, with a stan- 
dard deviation of abont 0.007. The N-k model served as a testing ground 
for a first attempt to use the minimization of sub-system energies for the 
optimization of the total E .  The approach followed by Kauffman et al. [9] 
assumed a static division of the system into "patches" of equal size selfishly 
trying to minimize their energy. It has been fonnd that an optimal choice 
of the patch size allows the system to reach energies better than m by 2a 
[see the dashed line in Fig. 11. In the Same Figure, the results of 25 rnns 
of the aigorithm formulated above are shown. I used N = 24' and k = 12 
(correspondingly, I&, = 13) and the fitter updating; a good choice for the 
parameter a turned out to be a = 1. After 5000 time steps, i. e., less than 
10 executed flips per spin, an average energy per spin of N 0.266 has been 
reached, corresponding to almost 7 standard deviations below the mean local 
optimnm (solid line). One clearly sees the advantage of the algorithm pro- 
posed - demonstrating the importance of using sub-systems of all sizes and 
trying to find a permanent balance between individual, group and system 
energies. 

2. The loiv autocorrelation binary sequence (LABS) model [13]. This 
optimization problem originating from communication engineering consists 
in finding the low lying states of an ordered onedimensional spin glass with 
long-range Cspin interaction given by the energy function [14, 101: 

The problem is very hard, the deep minima of E ( s )  being presnmably of 
"golf-hole like" character 1141. The exact ground states are known only for 



AJ < 32, within a restricted dass of configurations up to iV = 59. For 
larger system sizes the best results obtained by algorithms based on simu- 
lated annealing (CA), differ by a factor of almost 2 from the ground state 
energies expected on the basis of ergodicity arguments [14, 13, 151 as well 
as from an extrapolation of the small-N energies. With a = 0 (corre- 
sponding to the long-range diaracter of the problem, I& = N) the al- 
gorithm presented above easily recovers the exact results for small N and 
makes a considerable step beyond SA results for larger N. In a series of 25 
runs each over 100000 time steps, it found for N = 101 an average min- 
imum energy per spin of 0.079 [see Fig. 21, the best configuration given 
by s„ = 612212221217111211234413112112124511111332232311111. Here, 
each digit denotes the number of consecutive spins with the Same orientation. 
The energy of s,,,i,, is E„/N = 0.059798 ..., corresponding to 6 U below the 
mean local energy minimum (m = 0.137, ß- x 0.013). Note that the number 
of Monte Carlo steps necessary to reach the above mentioned energies within 
SA can be estimated to be 101"or E / N  = 0.08 and 10200for E/N = 0.06 [14]! 

3. As another example with long-range interaction I treated a random 
Coulomb system. Specifically, I considered 500 points randomly distributed 
withiu the unit cube by applying the NAG-routine g05caf after an initial- 
ization of the random uumber generator by a call of g05cbf(ll) [M]. In the 
spirit of the Coulomb glass problem [17] I looked for the distribution of pos- 
itive and negative unit charges realizing the global minimum of tbe energy 
function .. 

The positions of 25 randomly chosen local minima for each value of the neigh- 
borhood size I< are plotted in Fig. 3. One can See the existence of an optimal 
patch size in Kauffman's sense of tbe order of 3, followed by a counterreaction 
between sizes of 20 - 40, and a slow relaxation towards the local minima of 
E(s). The latter have a mean value of m = -8490, with a standard deviation 
U of about 80. Fig. 3 also shoivs a typical time evolution generated by the 
optimization algorithm (with a = 0), reaching energies below -9000 after 
N 3 X 104 fitter steps. The best value found by the algorithm, was -9094, 
again more than 7 ß- below m. 



I conclude that for spin glasses with < 500 sites the algorithm is capable 
of finding, after a few 104 time steps, energies that are ahout 7 standard 
deviations below the mean local energy minimum. 

Another extensively investigated class of hard combiuatorial problems is 
that of TSP. The aim is to find the shortest cyclic tour connecting a given 
number of points ("cities"). Characterizing a tour by the order the cities 
are visited, for a problem with N cities each tour may be represented as 
a permutations of (1,. . . , 1V), the total number of possible configurations 
being equal to N!. Given any configuration, another one can be obtained by 
cutting the tour at two segments (connecting, say, sites i and j ,  and sites 
k and I )  and inverting one of the parts, i. e., replacing the configuration 
..., i-l,z',j:j+l, ..., k - l , k , l , l + l ,  ... hy ..., i - l , i , k , k - I , . , . ,  j+  
1, j ,  1 , 1 +  1,. . . [18]. The "energy" to be minimized is the length of the tour 
defined as the sum of distances d, between the cities: 

where the numbering is assumed to go along the tour, and all indices are to 
be taken modulo N. In line with the algorithrn, single-site energies are . . 

E['] Ohviously, any defined by E!:} = ;(d„-i + d„+l), so that E = C,=, <n). 

configuration change of the type mentioned above affects only four sites (in 
the above representation, those with indices i, j ,  k, and I) so that, for any 
given flip, the energy changes on 15 landscapes have to be considered (one 
4-site, four 3-site, six 2-site and four 1-site energies). One has, therefore, 
I&, = 4, and I considered all 15 landscapes in parallel; a good choice for 
<Y turned out to be 2.5. On the other hand, at each moment of time the 
number of possible Bips is large (N X (N - 2) 12) so that I preferred the trial 
flip evolution to the fitter one. 

In order to test the algorithm, I took three problems for which the opti- 
mal configuration is known [19]: 
1. The 100 city tour kroA100. In a series of 25 runs the algorithm found the 
true optimum within 4 X los to 3 X 107 trial fiips. These numbers can be 
improved by adopting the heuristic rule [20] that configuration changes are 
promising onIy if all affected cities are rather close to each other in the plane. 



Restricting myself to trial flips for which the site with index I¿- is one of the 
nb cities located closest to site i I obtained good results already for nb = 'i: 
The algorithm finds extremely fast configurations close to the optimal one 
at the 1 % level and needs between 1 X 10' and 12 X 106 trial flips (with a 
mean value of about 3 X 10" in order to find the global minimum. This is 
illustrated in Fig. 4 where the resulting curves are compared to one obtained 
by another recently proposed Monte Carlo technique [4]. 
2. Grötschel's 442-problem (pcb442). The exact optimum is of length 50,783 
(in the notation of Ref. [19]). With the Same parameters as above, the best 
tour found by the algorithm within a series of 10 runs, each continuing over 
2 X 10' trial flips was of length 50,936, slightly improving the results reported 
in Ref. [20]. 
3. The 532-city problem of Padberg and Rinaldi [21] (att532) where the op- 
timal solution is of length 27,686. The algorithm finds 27,802, less than 0.4% 
above the true minimum. 

In Summary, a new optimization strategy for finding optimal or near- 
optimal solutions to problems with many competing requirements has been 
proposed. It is based on the simultaneous optimization of the fitness, cost or 
energy landscape of the System and of the individual sites forming it - with 
a weight function realizing a balance between interests of different scales. 
On its basis, a Monte Carlo algorithm has been formulated and tested for 
a number of SG and of TSP. The proposed algorithm turns out to be supe- 
rior to other Monte Carlo techniques in quality and speed, reaching its most 
significant advantage for very hard problems. Coming back to the consider- 
ation of social Systems the algorithm illustrates why democratic structures 
are effective in finding optimal solutions to complex problems and how an 
optimal relation between individual and global interests could look like. 
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Figure captions 

Fig. 1 
Best-so-far energies of 25 runs for the N-k model (6) with N=24' and 
k=12. The full straight line indicates the value of the mean local minimum, 
the dashed one the best result of Ref. [ll] .  

Fig. 2 
Maximum, mean (over 25 runs) and minimum values of the best-so-far ener- 
gies for the LABS model(7) with N-101. The straight lines give (from above 
to below) the value of the mean local minimum, the best result achieved by 
simulated annealing [14,10] and the expected position of the global minimum 
for large N [14, 13, 151. 

Fig. 3 
Points: Values of 25 local minima of the Coulomb glass (8) as a function 
of the neighborhood size K .  Curve: Time evolution of a single run of the 
algorithm for this energy function. Note the typical "Manhattan" Panorama. 

Fig. 4 
Best-so-far length as a function of time Tor the TSP problem kroA100. A 
total of 25 runs is displayed and compared to the curve published in Ref. [4]. 
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