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For the cooling of fusion reactors the concept of a selfcooled liquid metal (LM) 

blanket offers a number of advantages (SMITH et al. (1984)). The employment of 

liquid Lithium (or Li/Pb) was proposed because, besides the high heat capauty and 
conductivity of the liquid metals, it can be used for tritium breeding and serves as a 
good protection against the neutron radiation. On the other hand specific =D- 
problems have to be solved. The lithium has to be circulated across the strong 

magnetic field needed for the plasma confinement. Thus, undiserable pressure losses 
appear, associated with the interaction of the B-field with the induced currents in the 
liquid metal. 

Another important point is to estimate the intensiv of the heat transfer properties of 

a liquid metal flow in the presence of strong magnetic fields. Until recently it was 

assumed that the flow is completely relaminarized if it is exposed to sufficientiy 

strong magnetic fields. This assumption seems to be confirmed by the experimental 

fact that the overall pressure drop corresponds to the predicted value for a mean 

laminar flow if the ratio Ha/Re is sufficiently high (BROUILETTE, LYKOUDiS 
(1967)). However, even in a very strong magnetic field some specific velocity 

perturbations persist which was shown experimentaily, for instance, by BRANOVER 
et. al (1965, 1974) or HUA, LYKOUDIS (1974). This type of turbulence, which is 

unknown in usual hydraulic engineering, can be explained in terms of two- 
dimensional MHD-turbulente. However, some questions remain unresolved with 

respect to the detailed flow structure and, in particular, concerning the heat and 

mass transfer in this special type of flow. A promotion of this two-dimensional 

turbulence should consequently lead to a distinct heat transfer enhancement. indeed, 

some first model experiments showed an inaease of the Nusselt number by a factor 

of 5 or even more (see ANDREEV, KOLESNIKOV (1993) or SUKORLANSKY, 
BRANOVER (1988) or BARLEON et al. (1994)). 

If such two-dimensional perturbations are also relevant at the parameters typical for 
fusion blankets, the mainly used laminar approach can lead to wrong, design 
restricthg conchsions. 

There is an ongoing research in the FZR MHD-group on local transport phenomena 
in a turbulent liquid-meta1 (Lw duct flow exposed to a transverse magnetic field. In 



the present state of the expenment argon gas bubbles are injected into a sodiurn flow 

in order to study the dispersion of the gas phase and the infiuence of the magnetic 

field on flow quantities such as mean void fraction, slip ratio, velocity and size of the 

bubbles. 

Some proposals exist concerning the use of LM two-phase flows in the fusion reactor 

cooling system. FRAAS (1973) investigated the possibility to bring the liquid meta1 
into a boiling regime before it enters the magnetic field. The use of a lithium/helium 

two-phase flow for blanket cooling was studied by ARITOMI et. al (1989) or INOUE 
et. al (1987). The advantages of such a design should be a reduction of Sie MHD 

pressure drop due to the resulting lower bulk electrical conductivity and a 
promotion of the turbulent fluid motion induced by the dispersed gas phase. 
However, the goal of the present paper is not Set in this direction. 

At first we Want to try to extract information on typical characteristics of MHD 
chamel turbulence from our two-phase measurements. The idea was to consider 

small gas bubbles as local tracers for monitoring the flow structure depending on the 

magnetic field strength. However, it shouid be emphasized that the bubbles cannot 

be considered as pure passive hacers. Due to their own velocity caused by the 

gravity force the bubbles may also act as turbulence promoters. In general, the 

nature of the velouty fluctuations encountered in a (single phase) turbulent shear 

flow is not identical with the fluctuations of the liquid velocity in a two-phase flow. 

In an ordinary bubbly flow (without external electromagnetic forces) these 
fluctuations may be considered as a superposition of the shear turbulence due to the 

mean flow, the perturbations induced by the random movement of the bubbles as 

weli as the turbulent fluctuations caused by the bubble wakes. 

It is well known that the possibilities for local measurements of hirbulent 

fluctuations in LMMHD flows (especially in alkali metais) are presently very 

limited. The problem of local measuring techniques must be considered as a crucial 

one for any LMMHD research and development. So it is a logical step in this process 

to use our existing two-phase test section and the estabiished, resistivity probe based 
measuring system in order to analyse the bubble transport in a LMMHD flow. 

Heat transfer measurements are planned as a next step in this experimental 

program. The comparison promises to become very interesting between the 

transport properties of a really passive scalar (heat) and the present results 



conceming the transport of a dispersed gas phase in the sodium flow exposed to a 

transverse magnetic field. 

2. Experimental set-UD 

A sketch of our experimental equipment is shown in Figure 1. The faality of FZR 

operates with a sodium/argon flow in a vertical test section consisting of a vertical 
rectangular channel with a cross sectional area of 45x50 mm2. The walls consist of 

stainless steel. Their thickness of 5 mm leads to a wall conduction ratio of C = 0,013. 

The flow is driven by an electromagnetic pump and passes a transverse magnetic 
field produced by a conventional electromagnet. The iength of the homogeneous 

field region is 320 mm. A field strength up to 0.45T can be reached. 

Figure 1: Csheme of the two-phase test section 

The gas is injected through a Single orifice located just at the beginning of the 

magnetic field region. The bubbles were injected in the centre of the channel cross 

section as well as nearby the channel wall. In order to guarantee a pure bubble flow 



regime it is necessary to work with smali values of the volumetric gas flow rate Qg. 

Consequently, the volumetnc quality (ß= Qg/Qg+Ql) was limited to values lower 

than 0.1. 

Single wire resistivity probes installed at the end of the homogeneous magnetic field 

region are used for the measurement of the local void fraction. The probe is 
connected with a traversing mechanism allowing to move the probe over the 
channel Cross section. 

The use of liquid sodium as working fluid gives the possibility to reach high values 

of the Stuart number with a moderate magnetic field strength. The working region 
of our facility in the (N, Re)-parameter space is displayed in Figure 2. 

Figure 2: Working region (below the line) of the FZR-facility 

In a second series of experiments a System of four cylindrical bars was installed in 
the test section a few centimetres beyond the entrance of the flow into the magnetic 

field region. The material of these bars is stainless steel, the Same material like the 

channel walls. The bars are rotatably mounted, so that any angle from 0...90° 

between the directions of the bars and the magnetic field lines can be selected. The 

grid is combined with the single orifice in order to inject the bubbles approximately 
lcm above the cylinders (see Figure 3). 



Figure 3: Grid consisting of 4 cylindrical bars in the ~ h a ~ e l  Cross section 

3. Distributions of the local void fraction 

Results have been obtained for mean iiquid velocities in the range of 0.1 ... 0.5 m/s. At 
first, our interest was focused on the influence of the transverse magnetic field on 

the turbulent dispersion of an initially narrow distribution of the gas phase. The 

strength of the magnetic field was varied between Zero and the maximal value 
(0.45T). It must be emphasized that in this first set of experiments there were no 

Special turbulence Promoters (like mechnical inserts or local variations of the wall 
conductance ratio). Only the enh-ance of the flow into the magnetic field serves as a 

promoter for the origin of Wo-dimensional vortices. In such a case only a relatively 

weak persistente of typical Wo-dimensional MHD vortices could be expected. In 
this context, attention has to be paid on the influence of the rising bubbles On the 
turbulent structure of the flow. This question will be diicussed below. 



Figure 4a-e) shows some local distributions of the gas phase for a Reynolds number 

of 9300 and various values of the magnetic field. In the case of vanishing magnetic 
field a nearly constant void fraction of about 3% was measured over the cross 
section. A magnetic field of 0.05T, that corresponds to a Hartmann number of 300, 

causes a serious concentration of the gas phase. With increasing magnetic field this 
tendency is intensified and for a Stuart number of 790 the gas distribution is nearly 
restricted to its region of injection. The reason for this focusing effect is the damping 
influence of the B-field on the turbulent fluctuations. 

On the other hand, a clear anisotropy of the bubble dispersion can be observed in 

the range of Stuart numbers up to approximately 700. The suppression of the gas 

dispersion is more pronounced in the direction of the field lines than perpendicular 

to it. This indicates a favourite existente of vortices in the flow with axes parallel to 
the magnetic field. The character of the turbulent flow becomes more and more two- 

dimensional. 

For high enough values of the Stuart number the distribution of the void fraction 

becomes very narrow and almost isotropic. Thus, in the case of sufficiently strong 

magnetic fields the two-dimensional perturbations are also damped and an almost 
relaminarized flow is obtained. 

This Situation is generally confirmed by void fraction measurements at a Reynolds 

number of 18600 (Figure 5a-e)). Figure 5a) demonstrates the nearly equal 
distribution for the case without magnetic field. Just as we have already Seen above, 

a distinct anisotropy can be observed provided that the flow is exposed to a 
magnetic field. 

Figure 6a-e) and Figure 7a-e) display local void distributions obtained at Reynolds 

numbers of 27900 and 46500, respectively. Again, the concentration of the gas phase 

affected by the B-field as well as anisotropic distributions can be observed. 

However, at Hartmann numbers greater than 2000 a new tendency can slightly be 

detected: A rewidening of the void distribution in the direction parallel to the 

magnetic field. The reason for this behaviour rnight be the pinch effect which is 
comected with the occurence of a pressure profile aaoss the channei cross section 
due to the induced magnetic field. SAITO et al. (1978) showed that the pinch effect 

Leads to a void fraction broadening parallel to the fieId lines due to the pressure 
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peak in the Center of the channel. The linear variation of the induced magnetic field 
along the field lines creates a pressure peak in the channel center-line forcing the 

bubbles to migrate in the direction of the chame1 walis. However, SAITO et al. 
concluded that the value S=N.Rrn shouid be the determining non-dimensional 

parameter in the sense that S > 1 indicates a measurable pinch effect. In our 

experiments the maximum value of S is appr. 36 and, therefore, a strong influence of 
this pinch effect should be detectable. However, no pinch effect comparable to 

SAITO's measurements was found. The explanation is that due to our analysis the 

nondimensional parameter which determines the strength of the pinch effect is not S 
but S'=Rrn. h2 1 N where h is the nondimensional pressure drop of the channel flow. 
The value of is proportional to C. N 1(1 +C) where C denotes the wall conductance 
ratio, provided C. Ha » 1. If (as usual) C « 1 the parameter C' is given by S'=N. Rm . cZ 

which differs from SAITO's value by c2, Their value of C is by a factor of appr. 6 

higher than in our experiments which explains the occurence of the pinch effect in 

their experiments and not in our's. Nevertheless, the beginning rewidening of the 
void distribution above Ha = 2000 might be a first indication of this pinching 

influence also in our measurements. It would be interesting to clearly detect this 

pinch effect also in our experiments which is possible either by increasing S' or by 

adding an additional coil providing a longitudinal magnetic field. 

a next step the position of the gas injection was changed to a position near the 

Chnnel wall parallel to the magnetic field. The distance between wall and orifice is 
about 5mm. In Figure 8a) and b) the corresponding gas distributions are shown. 

There does not appear a principle difference to the case of the bubble injection in the 
Cent= of the chme l .  The exposition of the flow to a transverse magnetic field leads 

a concentration of the gas phase. Moreover, the void distribution has kept its 

anisotropic shape. 



4. Coefficients of the turbulent dis~ersion 

As a next step it is necessary to get a quantitative description of the observed 

transport phenomena and its anisotropy. Therefore, turbulent dispersion coefficients 
parallel as well as perpendicular to the direction of the magnetic field are 
deterrnined fxom the measured data. 

For this reason the process of bubble dispersion is simply modelled by a two- 

dimensional diffusion equation with a convective term in flow direction: 

The mean flow is considered as one-dimensional in X-direction the transverse 
magnetic field is parallel to the Y-direction. Starting with a Gdistribution of the local 
void fraction a in the plane x=O we obtain for the void fraction downstream the 

following expression: 

Q, - volumetric gas flow rate, 
- 
"8 - mean bubble velocity, 
DJ"' - coefficients of the bubble dispersion, 

yorzo - y- and z-position of the singie gas injector 

This solution, which describes the widenuig of a given Gdistribution in the lapse 0f 

time, is well-known from standard diffusion problems. 

Eventually, the turbulent dispersion coefficients were obtained from the 

experimental data in the foilowing way: From the measured distributions the values 

of the local void fraction are taken along the chords parallel and perpendicular to the 

field lines, respectively, and fitted to a gaussian c w e .  Then, the respective 

dispersion coefficients can be calculated from the corresponding standard deviation. 



The volurnetnc gas flow rate as weii as the bubble velocity can be considered as 

constant for small distances between gas injector and probe and moderate changes 

of the pressure in flow direction. 

Due to buoyancy the velocities of the bubble and the surrounding liquid are not 
identical. Generally, a slip ratio S = vw/vbw z 1 can be observed. In detail, the 
quantity S depends on the flow Parameters (superficial velocities, bubble size, ...) as 

weii as on the strength and the direction of the applied magnetic field. Therefore, the 
mean gas velocity was calculated by means of a one-dimensional bubbly flow 

model, which was developed in our group in order to describe the mean quantities 

of a bubbly flow under MHD conditionc (ECKERT et al. (1993)). Here we are 

confronted with the first restriction of the assumption that the gas bubbles can be 
considered as passive local tracers. However, the motion of the bubbles can be 

conceived as a superposition of their own velocity caused by the buoyancy force and 

the turbulent velocity fluctuations of the flow. The influence of such an own particle 

velocity on the dispersion process is called as "crossing-trajectory effect" (YUDINE 

(1959)). It can be elucidated by the foliowing plausible picture: Due to their own 
velocity the particle gets faster from one vortex to another compared with the typical 

decay times. Thus, the influence of the decaying vortices on the dispersion and 

accordingly the value of the dispersion coefficient decreases with increasing particle 

velocity. Consequently, the values of the turbulent dispersion coefficients obtained 
from the experimental results by means of the described procedure should be lower 

than the real ones. A more detaiied analysis of this "crossing trajectoq effect" and 

the infiuence of a magnetic field on it is given by GERBETH, W A N N  (1989). 

According to the isoplots of the Iocal void fraction distributions (Figs. 4-8) a 

rernarkable differente between the dispersion coefficients in field direction and 

perpendicular to it can be expected. The dispersion coefficients case are displayed in 

Figure 9a) and b) as a function of the ratio Ha/Re. It demonstrates clearly, that the 
hirbuIent mass transfer is generally reduced for an increasing strength of the 
magnetic field. Tfüs fact is also confirmed by measurement of the tuibulence 

intensity using a potential probe (Figure 11) in a single-phase sodium flow. Here the 

ffuctuations of the longitudinal velociq component were evaluated. The tuibulence 

intencity shows a steep decrease and reaches values below 1% for a ratio of Ha/Re > 
0.02. 



Figure 9: Bubble dispersion coefficients as a function of the ratio Ha/Re 

a) in the direction perpendicular to the magnetic field 
b) in the direction parallel to the rnagnetic field 
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Figure 10: Ratio of the dispersion coefficients D, f Dy versus the ratio Ha/Re 



Furthermore, the dispersion of the bubbles is aiready damped rapidly for smaU 
values of the Stuart number (N=10), while the decrease of the coefficient in the 
direction perpendicular to the B-field is more slightly. The anisotropic character of 
the extemal tramverse field on the turbulent mass transfer is completely revealed in 

Figure 10, where the ratio between both coeffiuents is plotted versus Ha/Re. A 

distinct maxirnum can be noted for all series of different Reynolds numbers. The 
ratio between the coefficients reaches values up to about 6. The position of the 
maximum is shifted to smaller vaiues of Ha/Re with increasing Re. A second 

maximum can be detected for Re = 9300 at Ha/Re = 0.15. However, this result 

should be confirmed by some additional measurements. Due to the limitations 

regarding the field strength of the used magnet it was not possible to extend the 

measurement series connected with the higher Reynolds numbers on this Parameter 
region. In the case of sufficient strong magnetic fields (N=790 at Re=9300) the ratio 

of the turbulent dispersion coefficients becomes again unity. 

Figure 11: Turbulence intensity as a function of the ratio Ha/Re 



It is well-known from many publications, that a desired excitation of two- 
dimensional turbulence can be initiated by mechanical insertc, by passive electrical 

means such as changes in the wall conductivity or the magnetic field strength as well 

as by active eleckical amplification. For instance BRANOVER, GERSHON (1979) 

were able to show experimentally the possibility of turbulence enhancement in the 

presence of an external kansverse magnetic field by mechanical means. They 
inserted a grid with cylindrical bars parallel to the magnetic field and observed a 

significant enhancement of turbulent fiuctuations hansverse to the field. 

Thus, it was obvious to examine the influence of such mechanical inserts on the 
distribution of the local void fraction. A grid with cylindrical bars of diameter 2mm 

(see Figure 3) was installed in our test seetion. Then the bubble distribution was 

measured in the Same way and for the Same parameters as described above. 

In Figure 12 the isoplots of the local void distribution are displayed at N=244 for the 

cases with the bars aligned with the field lines a), perpendicular to the field 

direction b) and without any inserts C). However, the obtained results do not show 

the expected tendency. A n  anisokopic distribution can only be observed, if the bars 

are removed from the flow. Moreover, the direction of the bars seems to have no 
remarkable infiuence on the dispersion process. The impression, that the inserted 
cylinders, whatever their direction is, cause not a promotion but rather a damping of 

the mass hansfer perpendicular to the magnetic field, is confirmed by the 
corresponding bubble dispersion coefficients shown in Figure 13a) and b). The 
difference between the cases with and without grid becomes ver? clear in ti~e plot of 

the dispersion coefficients ratio versus Ha/Re (Figure 14). If the grid is present, the 

ievel of anisokopy is generally lower compared to the case of a pure i?ttanneI. 

Namely, the curves shows also a maximum, but a very slight cme with a value of 
about 2. The hope of an enhancement of the bubble disper.;i»n in thti directian 

perpendicular to the field liries was not fulfilled. The reasm for tius khnviour has 
not completely become clear until now. 
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Figure 14: Ratio of the dispersion coefficients D,/Dy versus the ratio Wa/Rr 



The following reflections may Seme as a first explanation of these results: 
For technical reasons the size and length of the bars were limited, some regions near 
to the walls remain without grid. in this case disadvantages regarding turbulence 
enhancement prevail. A considerable stimulation of WO-dimensional turbulence 
was not reached likely due to the mall diameter of the bars. Therefore, the 

installation of oniy two bars but with a larger diameter is recommended for the next 
experiment. Moreover, measurements of the channel velocity profile by means of 

potential probes show a low velocity region behind the bars in the core flow region, 
while higher values of the velocity arise near the channel wails in bo t .  directions. A 
decrease of the liquid meta1 velocity supports the closure of the induced currents. 
Cupplementary, the channel walls as well as the inserted grid itself were not made 

from an insulating material but from stainless steel. Thus, the damping of the two- 
dimensional perturbations is intensified. This fact could be the reason for the 

reduced mass transfer perpendicular to the magnetic field in comparison to the 
situation without grid. 

Apart from this, ihe interaction behveen the turbulent fluctuations induced by the 
grid and the bubbly flow in the Zone of an external magnetic field seems to be very 

complex. For this reason, some additional measurements, for instance of the bubble 

velocity profiles, are necessary in order to get better understanding of the action of 

mechanical turbulence promoters. 

6. Discussion and conclusions 

The effect of a transverse magnetic field on the mass transfer of small argon gas 

bubbles has been studied. The mass trmfer is generally suppressed due to the 
"fluence of the transverse magnetic field. 

However, as main result a strong anisotropy was found in the local void distribution 

measured in the Cross sectional chamel area. In a definite parameter region (see 
Figures 9 m d  10) the bubble dispersion is much more restricted parallel to the 

magnetic field than perpendicular to it. The anisotropic shape of the distributions 



can be considered as a clear indication for the presence of a flow structure typical for 
two-dimensional MHD turbulence. It is not clear which effect mainly serves as the 

origin of the Wo-dimensionality: Either the magnetic field entrance or the bubble 

motion. It cannot be excluded, that the bubbles act as the Promoters for the 

turbulence. FABRIS et al. (1978) carried out local mesurements in a NaK/N, two- 
phase flow by means of hot-film probes. They found, that the fluctuations in the 
liquid flow appear to increase in magnitude as the magnetic field strength increases, 

while for pure liquid flows the fluctuations are damped. Moreover, the higher- 
frequency components appear to be damped. 

On the first view our findings regarding the anisotropy of the local void distribution 

are in contradiction to experimental results obtained in mercury/nitrogen(argon) 

two-phase flows by LYKOUDIS (1985) and MICHIYOSHI (1989), respectively. They 
reported a nearly equal dispersion of gas bubbles in both directions parallel and 
transverse to the magnetic field lies,  with a slightly stronger focussing effect 

perpendicular to the field direction. These experiments were yet carried out with a 

complete different Set of dimensionless Parameters in a circular channel geometry. 
According to BRANOVER (1978), in the case of a transverse magnetic field the 

critical value of the ratio Ha/Re at which the pressure drop begins to correspond to 
laminar flow can be determined as follows: 

a - half-width of the cross section parallel to the magnetic field 

b - half-width of the cross section perpendicular to the magnetic field 

For ß=1 we get a critical value of about 6.5.10-~. While this value was cleariy 

exceeded in our sodium/argon flow, the critical ratio was just ixaclwd by 

LYKOUDIS or not reached by MICHIYOSHI in their experiments. In addition, n 
circular cross section does not provide if at all a good prerequisite for tk 
development of Wo-dimensional h/VID turbufence. So the crucial differrn~ce 

behveen the mentioned references and our experiment is that tht? preconditions fix a 

weil-deveioped Wo-dimensional m D  turbulence were given only in our Cast.. 

Because of the hig'dy empirical nature of Lh&lFfn h~n-p iwe  fli..ivs, it is i ~ t  M 

easy to find a quantitative description for the mass trattsler of the disperse& ~f iase .  



in the frame of our work the analysis of the experimental data was focussed on the 
estimation of turbulent dispersion coeffiuents. Some serious diiculties (statistical 
behaviour of the flow, buoyancy driven motion of the bubbles, etc.) prevent a proper 
determination of the 'real" coefficients, but this procedure has been proved to be a 

good tool in order to show the dependence of the mass transfer process from the 

magnetic field intensity. 

Furhermore the infiuence of the electromagnetic forces on the liquid velocity profiles 

has also tobe taken into account. For technical reasons it was not possible to install a 

honeycomb in the regions of the inhomogeneous magnetic field or to investigate the 
flow in a channel with non-conducting walls. Thus, a M-shaped liquid velocity 

profile has to be expected in the direction perpendicular to the field. This M-shaped 

profile was measured in the test channel by means of potential probes (Figure 15). In 
the region of moderate Reynolds numbers (Re<50000) the M-shape is not so strong 
established. Moreover, measurements of the bubble velocity profile by means of 
two-wire resistivity probes do not give an indication on a development of the M- 
shape in the gas veIouty profiles, too (Figure 16). So it can be concluded, that the M- 
shaped velocity profiles do not distort the obtained results considerably. 

- 
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Figure 15: Measued sodium velocity profiles for vanous b-field htensities 

(V„ = 0.8 m/s) 



Until now some two-phase specific infiuences are disregarded. For instance, the 
modifications of the induced currents paths due to inhomogenity of the local 
electrical conductivity (particularly in the region of the gas injection) are neglected. 
Their effect on the turbulent bubble dispersion is still an Open question. 

Note, that the proposed bubble tracer method is able to deliver a survey about the 

general flow properties relative quickly and plasticly (isoplots of the local void 
distributions). By means of the calculation of the corresponding turbulent dispersion 

coefficients the dependence of the mass transfer on the flow Parameter can be 

quantified. Because of the complexity of the W H D  two-phase flow, it is difficult 

to extract more detailed informations concerning a local characterization of the 

turbulent flow. Besides the detection of the local void fraction some additional 

measurements, for inctance liquid and bubble velocity profiles, are recommended 

for a deeper understanding. 

10.0 20.0 30.0 40.0 5 
y-dimension [mm] 

Figure 16: Measured bubble velocity profiles for various b-field intensities 

Furthermore, the obtained experiences advise some modifications of the 

experimental equipment with regard to a conhuation of the measurements such as 

the installation of honeycombs in order to get a definite flow structure at the 

entrance of the magnetic field 



* the irnprovement of the electrical boundary conditions (reduction of the wall 
conduction ratio by means of special inserts at the channel walls perpendicular to 

the applied magetic field) 
variation of the construction of the mechanical inserts 

These pouits were taken into account for the construction of the new test section for 
heat transfer measurements. Here we have organized constructive solutions which 
guarantee a high level of flexibility concerning the experimental configuration. 
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