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Abstract 

The p meson self-energy in an isospin asymmetric pion gas at finite temperature 

and charged-pion chemical potential is evaluated. We utilize a conventional effective 

n-p  Lagrangian and the functional integral representation of the partition function in 

the second order in the p x n  coupling constant. We analyze the gange invariant rho 

meson polarization operator and its dependence on the invariant mass iM and spatial 

momentnm Ipl of the p meson. The pole positions and the d u e s  of the imaginary 

parts of the seif-energy for different polarization states have different functional 

dependences on M and /P/ .  The corresponding dielectron rate (calculated from the 

imaginary part of the polarization operator) shows a distinctive asymmetry when 

the momentum t = p+ - p- is perpendicular or parallel to p, where pi: are the 

momenta of the electron pair. 

'Permanent address: Physical and Technical Institute of Uzbek Academy of Sciences, 700084 Tahkent, 

Republic Uzbekistan 



1 Introduction 

The intriguing question for modifications of hadron properties in hot and dense nuclear 

matter is currently an interesting problem in relati'iistic heavy-ion collisions physics and 

has been addressed by many authors. Most investigations focus on the temperature 

dependence of hadron masses and vvidths. Besides other aspects, the rho meson dynamics 

is crucially important here because it may he related directly to observables. According to 

the vector dominance model [I] the pion electromagnetic form factor is almost completely 

dominated hy the p meson below an invariant mass of ahout 1 GeV [2]. So one hopes to 

explore in-medium properties of the rho meson via the dilepton production in the n+n- 

annihilation process [3, 41 in the Course of heavy-ion collisions. 

The investigation of the rho meson properties in dense and hot matter is quite am- 

bitious, especially in the region below the chiral phase tnansition. Above the critical 

temperature, which probably coincides with the deconfinement temperature, the p meson 

should disappear from the hadronic spectrum of excitations as found in both the chi- 

ral mean field models [3] and lattice calculations [Ei]. The details of predicted p mesou 

properties below the chiral phase transition depend on the physical picture of the matter 

constituents and their interactions with the rho meson [6]. The models based on (park 

degrees of freedom, such as QCD lattice calculations in quendied approximation [i'], &CD 

sum rules [8], the effective Lagrangians of the Nambu-Jona-Lasinio type [9], or the models 

based entirely on the hadronic degrees of freedom [10, 11, 121 result in partially different 

predictions of the in-medium effects. 

For an understanding of the röle of conventional hadronic interactions for the p meson 

modification under extreme conditions, it seems to be appropriate to study first the sim- 

plest model system of strongly interacting matter: a dense and hot pion gas with a small 

or negligibte baryon admixture; such a matter state is often expected to be produced 

in the central region in ultra-relativistic heavy-ion collisions. This can be considered as 

background for more complete models (which should include also the baryonic degrees of 

freedom in case of intermediate and relativistic heavy-ion collisions) and for more exotic 

inter-particle interaction types. 

Gale and Kapusta [I31 have analyzed the temperature modification of the p meson 

self-energy in the one-loop order (order g:) at vanishing pion chemical potential. They 

found a modest increase of the p width and mass with temperature; this means that, if a 



high energy experiment would show a substantial modification of the dilepton spectrurn 

with an invariant mass in the p region, it could be considered as some indication of a 

more exotic process. 

The model of Gale and Kapusta is extended by Koch [14j who considers the pion 

system in a chernical non-equilibrium state described by a positive chemical potential P,. 

The chemical potential is associated with the total pion density of the pion gas, and it is 

supposed that p, has the same value for n+ and s-. Previously, this idea has been put 

forward by Kataja and Ruuskanen [15] as an explanation of the observed enhancement of 

pions at low transverse momentum in relativistic heavy-ion collisions [16] as a consequence 

of the Bose-Einstein statistics. In Ref. [14], it is found that the incorporation of the 

pion chemical potential p, gives a strong enhancement of the muon pair yield in the 

low invariant mass region, provided the lepton pairs are produced predominantly via pion 

annihilation. This might serve as explanation of the so-called dilepton excess [17] observed 

in the present CERN-SPS heavy-ion experiments [M]. 

In principle, one needs to consider an additional degree of freedom in the conventional 

p-n dynamics, namely a possible non-zero total electric or isospin charge of the pionic 

system. Due to the presence of other charged particles there may be an pronounced xi 

- s- asymmetry. Some experimental data [19] and theoretical investigations [20] indeed 

point to this possibility. It may be a consequence of the proton-neutron asymmetry of the 

colliding heavy ions, which increases with increasing atomic weight of the colliding ions. 

(For example, new experimental data for Au +- Au collisions at I GeV per nucleon seem 

to find for the ratio of s- to nf multiplicities values from 2 to 0.7 depending on the pion 

energy [21].) The electric charge of a pionic system is controlled by the charge chemical 

potential pg, which must not be confused with the chemical potential used by Koch [I41 

p, = pz. The latter one is a measure of the chemical equilibrium breaking. Instead, thc 

chernical potentials for positive and negative pions are p,+ = pz i p ~ .  

The incorporation of the potential pg into the theory leads to some non-trivial ef- 

fects as, for example, the dilepton enhancement at invariant mass 2m, [22], or a strong 

modification of the Goldstone modes 1231. 

Here, vve explore this additional degree of freedom pg + 0. Our aim is an extension 

of the results of Gale and Kapusta [I31 to the p meson self-energy at finite temperatures 

and finite values of the chemical potential p ~ .  The r6le of baryonic degees of freedorn 



and the estimate of the dynamics of the isospin asymrnetry are beyond the scope of our 

current consideration. Despite of such simplifications we believe that our work may be 

considered as a necessary part of a more complete theory of the pion-rho subcomponent 

in a hot and dense baryonic isospin-asymmetric environment. 

In our recent work 1241, we restricted ourselves to the simplest case when the vector 

field, describing the rho meson, is considered in its rest frame with momentum p = 0. 

In such a case we h d  a weak increase of both the p meson mass and the width with 

increasing temperature and chemical potential pq. In the present paper we generalize our 

approach to an arbitrary finite value of the rbo meson momentum. We evaluate the p 

meson self-energy by using, as starting point, a conventional effective T - p  Lagrangiau and 

the functional integral representation for the partition function, which is familiar frorn 

the relativistic quantum field theory at finite temperature and charge chemical potential. 

We take care of the gauge invariance of the rho polarization operator and analyze its 

dependence on tbe invariant mass M and the spatial momentum Ip/ of the p meson. We 

shovi that this dependence leads to a noticeable modiiication of the shape of the thermal 

dilepton production rate, which vve calculate from the imaginary part of the polarization 

operator. Moreover, at large values of pq we find for different polarization states a 

distinctive difference in the pole positions and in the values of the imaginary parts of 

the self-energy as functions OE M and /P/ .  This leads to  a pronounced asymmetry of the 

dielectron production rate when the momen.tum t = p+ - p- is perpendicular or parallel 

to p, where p+ are the momenta of the electron pair. This non-trivial in-medium effect 

can be, in principle, verified experimentally with sufficient accuracy. 

Our paper is organized as follows. In section 2 we present the functional representation 

of our x - p model system. In section 3 we evaluate the p meson self-energy in one-loop 

order at finite temperature and chemical potential pq. The rho meson self-energy is 

analyzed in section 4. With this at hand we calculate in section 5 the dilepton rate from 

the imaginary part of the polarization opaator and discuss the asymmetry for different 

polarizations. The sumniary can be found in section 6. 



2 The Model 

Our starting point is the effective Lagrangian L which describes a system of charged pions 

and neutral vector p mesons 

where 4 is the complex charged pion field, p stands for the vector field with the strength 

pPY = aPpY - &,P,,, and D, = 8, - ig,p, is the covariant derivative; p  and V are Lorentz 

indices. The Harniltonian of the system is related to the Lagrangian of Eq. (1) in the 

usual way 

with y = ( 4 ,  P,  P). The reference for what follows is the paper of Gale and Kapusta 

[13], who considered the Same model system at finite temperature but p , ~  = 0. 

Let us consider now the case when the system admits some conserved electric or isospin 

&arge. We focus on the case p: = 0 and concentrate on the incorporation of P*. A finite 

value of the chemical potential p ~  leads to a transformation of the Hamiltonian which we 

use for the calculation of the partition function 

where Ja is the time component of Noether's current 

The p meson propagator D in a medium is related to the self-energy II via 

with Dr as the free propagator. 

In Euclidean space, the rho meson self-energy may be obtained by the partition func- 

tion with a functional integral representation of the form [25] 

where x, = dL/a(aop) are the conjugate momenta to 9. The integration over T, gives 



where So = So, + So, describesthe non-interacting part of the total effective action, and 

Sint corresponds to the interaction part, i.e., 

1 znt = 1' dT dx(p:p2~di2 + ~ ( P * Y  + P Q P ~ I ~ I ~ ) ) ,  (7) 

aa P* where ~p = 'Dp . det(8,) (with det8, = det (e)) and j, = i/2(4"dF4 - &?,F), 
ido = an po = ip4, etc. SO, includes the gauge fixing term. We use the Landau gauge 

with a -t 0. 

Expanding Eq. (6) in power series in Smt and taking the logarithm of both sides, we 

get in the second order of g, 

where 

The polarization Operator D„ is related to a functional derivative of the partition 

function as follows 

3 The rho meson propagator 

The calculation of In Zi, may be performed by utilizing the methods of Ref. 1251 and text- 

book recipes [26]. After some tedious algebraic exercises we get the following expression 

for II„ 

where 



In the above, the fourth component of the momentum four-vectors is the Matsubara 

frequency, i.e., k4 or p4 = 2xTxinteger. The functions Alt and B* depend on the chemical 

potential as 

and A ( k )  = A*(p = 0 ) ,  B ( k )  = B*(p = 0 ) .  The function 3 ( p Q , p ,  k) is a combination 

of A* and Bi 

In the limit of pg = 0, Eq. (11)  reduces to the self-energy of Ref. [13], obtained within the 

framework of finite-temperature Feynman rules. We calculate the self-energy of Eq. (12)  

by utilizing the standard technique [26, 271, i.e., the discrete summation is replaced by 

the contour integral as 

m 1 
iao 

1 
T C f ( k o = i k 4 )  = - / d $ [ f ( k a ) + f ( - k o ) ]  

n=-m 27ri 
-iao 

The first term, I%, in Eqs. (12)  does not depend on the external momentum p, and its 

calculation gives 

where N ( w )  = n ( ~ + ~ ~ ) + n ( w - ~ ~ ) ,  n ( w )  = (eWIT-I)-'  and w2 = k2+m?;. Calculating 

12" and 1; we See that only the poles located at ko = a1,2, 61-2, 

contribute to the contour integral. For example, the contributions to I;,* and I: stemming 

from al yield 



and their contributions to gpZll'"(/lQ,p) in Eq. (11) result in 

1 ‘14 (4)  - d3k { % + P $  2kOrn) 
- , IZ~I  + 8 ~ ~ 1 3 4 1  - 2 J  - 

"+ W+ 

1 

(W+ - p0)2 - W- b=01 

d3k 1 (U+ -po /2 ) z  1 
= -2 J -- 

( ~ T I ~  W+ (W+ - P O ) ~  - W! ( i + n ( W + + m ) }  

(po = ip4). The final result for the components of II'" is 
m 

g; k2dk 4wZ - pZ E44 = -- ip4w 

(2%). I- { 4kq 
41n(a) + -ln(b) - 2 

kq 

P4p' „4 E45 = -- 
p2 

P'@ W' = P A  + -a 
p2 

(15) 

where 

a = (p4 + p 2  - 2klpI)' + 4p;w2 b = (P: + P')' - 4 ( h w  + 2 k j ~ l ) ~  
(P: + p2 + 2 k l ~ 1 ) ~  + 4p2w2' (P: + p2Iz - 4 ( 2 p 4 ~  - 2 k l ~ l ) ~ '  

One observes that all the dependence on the chemical potential PQ and the temperature 

T is absorbed into the Bose-factor iV(w). The substitntion of 

1 - + PQ) + n(w - P Q ) }  * "'(W) 2 

in the above equations reproduces the results of Ref. [13]. 

In Minkowski space the self-energy E'" may be expressed in the form 

nwu = F P ~  + GPF, (17)  

where G and F  are the so-called longitudinal and transverse masses, and P r  and PF 
are the longitudinal and transverse projection tensors 

. . . . 
Z p00 - poi - = 0, p'l - 6" - , T -  T -  T  T  - 

p r  = p ~ p " / p 2  - g'Y - P"" T ' 



The tensor structure of Pr and P$" is determined by the current conservation, which 

results in the transversality of 11"" with respect to the external momentum. The final 

ex~ression of the in-medium p propagator in the Landau gauge reads [28] 

DPo = - PL" - F,"" 
p Z - m 2 - F  P p Z - m Z -  G' 

For applications we must perform an analytical continuation from the discrete Matsubara 

frequencies to the Minkowski space, i.e., po = ip4 + po = E + i6, and calculate the diver- 

gent part of the self-energy, and regularize it with counterterms. We use the dimensional 

regularization as in Refs. [13, 241 and find 

(2w - E)Z 
FI,,,,~~ = I W N 4 k l p l  C, = O ( k  - k - )  . O(k+ - k ) ,  

2 p2 2x 

where k* = I E ( ~  - 4m:/M2)'f2 zt lpl / ,  and "mat" and "uad' denote the matter depen- 

dent contribution at  finite T, p ~ ,  and the vacuum contribution at T = 0, pp = 0, respec- 

tively. 



4 The rho meson self-energy 

From the above we See that the in-medium effects manifest themselves in (i) the shift 

of pole position of the rho meson propagator because of modification of the real part 

of the self-energy, (ii) the modification of the imaginary part of the self-energy, which 

is responsible for the decay width, and (iii) the difference in (i) and (ii) for different 

polarizations. All these phenomena depend on T, and p ~ ,  and the rho meson momentum. 

At large values of the spatial momentum Ipl all medium corrections vanish because this 

case corresponds to short range correlations, where the many-body effects become rather 

small. At Ipj-0 we have no preferential direction and the directional differences in (i) 

and (ii) disappear. 

The matter corrections as functions of T and /P/ at PQ = 0 have been studied in 

Ref. [13]. It is shown that the corrections decrease rapidly with decreasing temperature 

T. So we focus on large values of T. In our calculations we use m, = 139.6 MeV, 

m, = 770 MeV, aud $/4a = 2.93. 

Let us first discuss the dispersion relation, i.e., the dependence of the p energy on the 

spatial momentum. In the medium, this dependence is different from that in the case 

of the free meson, W;,, = m: + pZ. Moreover, the dispersion relations are different for 

different polarization states: the longitudinal and transverse dispersions are defiued by 

the functions Re G ( p o ,  p) and Re F(po,  p), res~ectively, and are determined as solutions 

of the equations 

At jpl-0, WL,T represent just the in-medium p mass. 

In describing the matter modification for longitudinal and transverse dispersions it is 

more illustrative to specify the difference AwLgT = WL,T - wp0 which is displayed in Fig. 1 

for different values of the chemical potential pp =0, 60, 120 MeV at T = 150 MeV. We 

find that (i) A w L Z T  increase with increasing chemical potential, (ii) AWL,T decrease with 

increasing momentum IpI, and (iii) the matter modifications for different polarizations 

are similar in shape but they do not coincide exactly. Within the present conventional 

a - p dynamics model, as in other hadronic models too [12], an increasing in-medium 

mass is obtained. (This is at variance to the &CD-sum rules resu1ts which predict a 



decrease of all in-medium masses [6, 81, See, however, recent lattice calculations [T ] . )  IVYe 

find that extremely large values of p~ s 120 MeV (which should be considered as an 

upper limit of the realisticaiiy expected values of p~ [24]) lead to corrections which are 

about tvvice as large as those at p~ = 0 (at the Same temperature). Nevertheless, these 

in-medium corrections turn out as comparatively small, i.e., a 4% (10%) mass shift at 

p~ = 0 (pq = 120 MeV) and T = 150 MeV. These values appear compatible with the 

recent QCD lattice results [7]. 

In parallel with the dispersion relation it is interesting to look at the pole positions 

11/I~,~(p), defined as I W ~ , ~ ( P )  = wLsT(p) - which coincide with WL,T at /P/ = 0. Fig. 2 

shows the difference of the shifts of the pole position AIVL,T = ML,T - mp for different 

polarization states. One observes that AML decreases faster with increasing values of /P/. 

This is due to the inequality ReF < ReG at /P/ > 0. 

Fig. 3 shows the dependence of the imaginary parts of the self-energy on the p invariant 

mass IM at high temperature and for different values of p ~ .  We find increasing values of 

Im G and Im F with increasing M ,  which leads to an increase of the damping constants. 

We also find some difference between I m  F and Im G, given by Eqs. (23) and (24), where 

/ ImF/  /ImG/ at finite values of /P/. The largest difference is Seen in the region of 

M - 0.3 - 0.5 GeV for finite values of /P/. This is illustrated in Fig. 4 where the ratio 

Im GfIm F as a function of M at different values of /pl and p~ is displayed. Here and in 

the following discussion we have restricted ourselves to the extreme cases p~ = 0 and 120 

MeV. In Ref. [24] a value of ,uq 60 MeV is estimated for presently available experimental 

data. As Seen in Figs. 1 and 2 such a valne of pg does not cause a dramatic effect. But 

without explicit calculations this statement can not be anticipated. 

5 The thermal dilepton production rate 

Now we try to elucidate whether the predicted in-medium effects can be Seen in the 

dielectron production rate. Recall that the thermal dilepton production rate within the 

vector dominance model is related to the imaginary part of tbe p propagator as follows 

[13,291 



with 

where p  = p+ + p- is the total pair momentum, p  = (E, p ) ,  = M 2 ,  and t = p+ - P - .  

The function [ depends on the angle between the vectors t and p and varies from 0 at 

@- = ir/2 up to 1 at &tp = 0. Integrating Eq. (25) over the lepton directions we get the 
tP 

rate as function of the invariant mass as 

Fig. 5 shows the differential rate given by Eq. (25) as function of M at different values 

of Ip/ at E = 0, where both the polarizations Vv~,ii,~ coutribute with the same weight. This 

value of 6 corresponds to eveuts where the leptons have equal energies, E+ = E- = E / 2 ,  

and the angle between their momenta is related to M and E by sin(8+-12) = IWE. One 

can see that at small values of /P /  the standard double hump structure of the rate appears. 

The first hump is attributed to a combination of opening the available phase space at 

threshold and the suppression caused by the factor n ( d m / T ) / M 2  in Eq. (25) ,  

while the second bump is the consequence of the resonance-like behavior of the rate. At 

large values of Ipl, the first bump is suppressed by the Bose factor n ( d w / T ) ,  which 

leads to a suppression of the total rate as well. We also confirm the conclusion of Ref.[l3] 

that the shape of the distribution at fixed Ipl is not very sensitive to the temperature at 

At small values Ipl there is no difference between the two polarizations, and the mat- 

ter correction to the pole shift at finite values ~ L Q  is largest. Comparing the calculated 

distributions a t  different values p~ we find that the modification of the second bump 

position is too small to be verficable experimentally in the spectra. However, we see a 

noticeable in-medium dependence of the rate shape. This is explained by the Bose factors 

proportional to (exp { ( M / 2  - p Q ) / T )  - I)-' in Eqs. (23, 24) whidi are most important 

at small values of M. At large values Ipl the difference of Fmat and Gmt leads to different 

contributions to the longitudinal and transverse polarizations and; as consequence, the 

net rate suffers an additional defor~nation. 



Fig. 6 shows the integrated rate as function of the invariant mass. \Ve See that the 

shape is close to the shape of the differential rate in the region jp/ = 0.3 - 0.4 GeV which 

gives the largest contribution to the integral of Eq. (27). There is some effect' of the finite 

potential pg, however, it seems hardly measurable. Note also that we display in Fig. 6 

again the extreme cases pp = 0 vs. 120 MeV. For the more realistic value pg 60 MeV 

[24] the effect vanishes. As a rule, the temperature dependence of the rate is stronger 

than a chemical potentiai dependence [30]. 

The effect of the difference of the longitudinal and transverse polarization contributions 

manifests itself most clearly in the asymmetry of the differential distributions, which we 

define by 

This asymmetry is displayed in Fig. 7.  At mall values Ipl one gets I.ti m WT, and 

the asymmetry vanishes. In the case of finite values p, at M -+ 2m,  we find All, -i 

O.S(A&IT- AiVI i ) /m;  E 0. On the other hand, one can See that Alll has a second Zero at 

M m,+S(p),  where 5 ( p )  is a smoothly decreasing function of p2 with S ( p ) / m ,  < 10-=. 

So, the asymmetry reaches a maximum between the two zeroes: Sm, < M < m, because 

of I m G  < I m F  at M < m,. We find that the asymmetry increases with Ipl and it may 

be as much as 0.25 for pg = 120 MeV, whereas at p~ = 0 it is about three times smaller. 

For the realistic value pg 60 MeV the asymmetry reaches its maximum value 0.13 at 

M = 500 MeV, i.e., there is a 20% effect compared to p~ = 0. 

Probably, this is the most interesting in-medium effect of our consideration which can 

provide a fresh insight into the dilepton production as a probe for the hadron properties 

at extreme conditions. Note, however, that the presence of other mesons and baryons 

needs to be regarded for more realistic predictions. 

6 Summary 

In Summary, we have calculated the p meson self-energy in a pion medium at finite temper- 

atures and charge chemical potential p ~ ,  d i c h  is responsible for the differeuce between 

T+ and .ii- densities in matter. The calculation is performed within the functional in- 

tegral representation for the partition function in second order of $. We find that the 

pole positions and the imaginary parts of the self-energy are modified in the medium, 



and this modification is different for different polarization states. TVe show that the shift 

of the pole positions is too modest to be seen in dilepton production rate. However, the 

incorporation of a large chemical potential changes the shape of the rates, both differen- 

tial and integral. Another non-trivial effect is the predicted asymmetry in the differential 

dielectron distribution which increases with increasing charged pion potential pq. But 

we would not like to ~~eremphasize our results because at the present stage the predicted 

effects have more a methodical relevance than a direct relation to experimental data. For 

the latter, on the one hand one has to consider the space-time evolution of the hadronic 

system. On the other hand, a more realistic calculation should take into account the bary- 

onic degrees of freedom and their contribution to the complete picture. The most likely 

source of the large pion charge chemical potential is the neutron-proton asymmetry of the 

colliding heavy ions. In this case, the pions are produced in a rich baryon environment 

where the interaction of the rho meson and baryons cannot be neglected. From this point 

of view, our present work may be considered as a necessary step towards generalizing 

the vector dominance model to the case of a hot and dense nuclear isospin-asymmetric 

system. 

Acknowledgments: Useful discussions with E. Bratkovskaya, V. Lukyanov, and 0 .  

Teryaev are acknowledged. This work was supported in part by Grant No MP8000 from 

the International Science Foundation and by BMFT under grants No 06 DR 107 and 06 

DR 666 I(4). 



References 

[I] 5.3. Sakurai: Currents and mesons, Chicapo: University of Chicago Press 1969. 

121 G.J. Gounaris, J.J Sakurai: Phys. Rev. Lett. 21, 244 (1968). 

[3] R.D. Pisarski: Phys. Lett. B 11, 157 (1982). 

[4] F. Karsch, K. Redlich, L. Turko: Z. Phys. C 60, 519 (1993) 

[5] A. Goksch: Phys. Rev. Lett. 67, 1701 (1991). 

[6] C. Adami, G.E. Brown: Phys. Rep. 234, 1 (1893). 

[7] G. Boyd, S. Gupta, F. Karsch, E. Laermann, B. Petersson, K. Redlich: Phys. Lett. 

B 349, 170 (1995). 

181 A.I. Bochkarev, M.E. Shaposhnikov: Nucl. Phys. B 268, 220 (1986); 

T. Hatsuda, Y. Koike, S.H. Lee: Nucl. Phys. B 374, 221 (1993); 

M.K. Volkov, V.I. Zakharov: Yad. Fiz. (Russian J. Nucl. Phys.) 57, 1106 (1994). 

[9] V. Bernard, U. Meisner: Nucl. Phys. A 489, 647 (1988); 

M. Jaminon, G. Ripka, P. Stassart: Nucl. Phys. A 504, 733 (1989); 

M. Lutz, S. Klimt, W. Weise: Nucl. Phys. A 542, 521 (1992); 

M.K. Volkov: in Proceedings of the International School-Seminar'93 "Hadrons and 

Nuclei from QCD" Tsuruga, Vladivostok and Sapporo (ed. by K.Fujii et al.), 1993, 

p. 238; 

T.I. Gulamov, A.I. Titov: Yad. Fiz. (Russian J. Nucl. Phys.) 58, 337 (1995). 

[10] C. Gale, J.I. Kapusta: Phys. Rev. C 35, 2107 (1987). 

[ll] C.L. Korpa, S. Pratt: Phys. Rev. Lett. 64, 1502 (1990). 

C.L. Korpa, L. Xiong, C.M. Ko, P.J. Siemens: Phys. Lett. B 246, 333 (1990); 

C M  Ko, L.H. Xia, P.J. Siemens: Phys. Lett. B 231, 16 (1989). 

[12] H, Herrmann, B.L. Friman, W. Nörenberp, 2. Phys. A 343,119 (1992); Nucl. Phys. 

A 560, 411 (1993). 

[13] J.L. Kapustq C. Gaie: Nucl. Phys. B 357, 65 (1991). 



[14] P. Koch: Phys. Lett. B 288, 187 (1992); Z. Phys. C 57, 283 (1993): 

B. Kämpfer, P. Koch, O.P. Pavlenko: Phys. Rev. C 49, 1132 (1994) 

[I51 M. Kataja, P.V. Ruuskanen: Phys. Lett. B 243, 181 (1990). 

[16] J.W. Harris et. al.: in Proceedings of the International Workshop on the Grass 

Properties of Xuclei and Nuciear Exitations XV; Hirschegg, Austria, 1987, P. 67. 

[17] E.V. Shuryak, L. Xiong: preprint SUNY-NGT-94-14. 

[B] A. Mazzoni: Nucl. Phys. A 566, 9% (1994). 

[19] M. Goriin: Nucl. Phys. A 553, 799c (1993). 

(201 M.I. Gorenstein, S.N. Yang: Phys. Rev. C 44, 2875 (1991); 

D. Bandyopadhyay, M.I. Gorenstein, H. Stöcker, W. Greiner, H. Sorge: Z. Phys. C 

58, 461 (1993); 

MI. Gorenstein, H.G. Miller, R.M. Quick, S.N. Yang: Kiev preprint ITP-94-22E, 

Phys. Rev. C in print. 

[21] D. Pelte: private communication (1995). 

[22] H.A. Weldon: Phys. Lett. B 274, 133 (1992). 

[23] T.D. Cohen, W. Broniowski: Preprint INT, Univ. of Washington - DOE/ER/40561- 

173-IhTT-94-00-77. 

1241 T.I. Gulamov, A.I. Titov, B. Kämpfer: Preprint FZR Rossendorf, FZR-66, December 

1994. 

2 5  C.W. Bernard: Phys. Rev. D 9, 3312 (1974). 

1261 J.I. ICapusta: Finite temperature field theory, Cambridge: University Press 1989. 

1271 M.B. Kislinger, P.D. hforley: Phys. Rep. 51, 65 (1979). 

E281 C. Quigg: Gauge theories of the strong, weak and electromagnetic interactions, Menlo 

Park, CA: Benjamin/Cummings 1983. 

1291 H.A. Weldon: Phys. Rev. D 42,2384 (1990) 

[30] B. Kämpfer, O.P. Pavlenko, M.I. Gorenstein, A. Peshier, G. Soff: preprint FZR-94-50 



AwL (MeV) AuT ( M e V )  

FIG. 1. The in-medium modifications of the longitudinal (ieft panel) and transverse (right 

panel) dispersion relations ALOL,T = WL,T - W O  for various values of the chemical potential 

p4 = 0,60,120 MeV (T = 150 MeV) as function of the momentum. 

FIG. 2. The shift of the pole ppositions for different polarization statees = -m, 
for various values of the chemical potential ~ L Q  = 0: 60,130 MeV - aso &V) as func- 
tion of the momentum. 
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M ( G e V )  

FIG. 3. The imaginary parts of the polarization Operators - ImF and -ImG as functioris 

of the invariant mass M at temperature T = 150 MeV and p meson momentum jpl = 0.75 

GeV. Solid (dashed) curves depict pq = 120 (0) MeV. 

FIG. 4. The ratio Im G j l m  F as function of the invariant mass iCf for different values 

1p1 and pp  = 0 and 120 MeV (left itnd right panels; T = 150 MeV). 



FIG. 5. The dielectron production rate for different total momenta p,  as function of the 

invariant mass M (T = 150 MeV, the dashed and solid curves are for ,UQ = 0 and 120 
MeV, respectively). 

FIG. 6. The integrated dielectron production rate as function of the invariant mass M 
(notations as in Fig. 5). 



FIG. T. The asymmetry All, as function of the invariant mass M for different values Ipl 
axld for PQ = 0, 120 MeV (left, right panels; T = 150 MeV). 
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