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Abstract:

Centra! and semi-central Au 4+ Au collisions at 150 A-MeV and 250 A-MeV are
investigated in the framework of a hybrid model with dynamical and statistical
components. Starting from the BUU approach an ansatz for the Wigner function
is made which describes thermal and collective motion of the nucleons and models
the transition from the one-source to the two-source behaviour. Anisotropic flow
energies and temperatures as well as angular momentum are extracted. Nucle-
onic flow and pre-equilibrium emission reduce considerably the excitation energy
of the matter. The cluster formation is described by the Copenhagen multifrag-
mentation model. Charge spectra, energy spectra and two-particle correlations
of the fragments are reproduced. Agreement with experiment can be improved
by assuming a reduced transverse flow.




1 Introduction

Heavy-ion collisions offer the possibility to study extremely heated and com-
pressed nuclear matter. The break-up process of such a matter is called multi-
fragmentation. It leads to many intermediate mass fragments (IMFs) which are
defined here as fragrents with charge > 3. Very sophisticated detectors have been
developed in order to measure IMFs. The experiments (see e. g. [1]) mitiated
many theoretical studies. Although it is generally assumed that multifragmenta-
tion is connected with a liquid-vapour phase transition (c. £. {2, 3, 4, 5]) the final
proof is lacking and multifragmentation is still not fully understood.

In nearly central heavy ion collisions at energies of several hundreds of MeV
a very short lived hot region is formed. On the first view it seems to be unlikely
that, at this large energies, a source is formed which decays in many IMFs. If
the energy would be equally distributed among the degrees of freedom an im-
mediate vaporization would take place. At the same time very large radial {low
was established which contains roughly one third of the available center-of-mass
energy [6, 7]. The presence of nucleonic flow was predicted long time ago [8] and
is the backbone of the application of hydrodynamics to heavy ion collisions. This
large collective motion reduces considerably the energy which can be distributed
randomly over the remaining degrees of freedom and which 1s available for statis-
tical fragmentation of the nuclei. In addition, non-equilibrium emission of light
fragments is also essential. This is well known from measurements of source sizes
which always turn out to be smaller than one would expect from the nucleon
number of the total system [9].

From the theoretical point of view the violent phase and the fragmentation
phase should be treated with the same dynamical model. At present such a
model is not at hand although much progress has been achieved recently. Molec-
ular dynamical models (see e. g. {10, 11]) are most promising which can take into
account many-body correlations on a classical basis trying to include quantum
mechanical aspects by representing each nucleon by a wave packet. The present
molecular-dynamical transport models are guite successful in describing collec-
tive effects (e. g. bounce-off, squeeze-out). They fail, however, in reproducing the
observed fragment multiplicities [12, 13, 14]. An extension of these molecular-
dynamical descriptions is provided by the fermionic molecular-dynamical model
[15]. In this model the Pauli-principle is regarded by an antisymmetrized product
of wave packets and the widths of the wave packets are dynamical parameters.
The equations of motion are derived from a quantum variational principle. How-
ever, the large computational effort needed has prevented an application of this
model to nuclei with mass numbers above 40 until now.

Alternatively to such models, one can construct so-called hybrid models {16,
17, 18] on the basis of the Boltzmann-type transport equation. These models
make use of the fact that one-particle observables are well described by calculating
the one-particle phase-space density[19]. Therefore these models are applied to
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describe the evolution of a nucleus-nucleus systera from the initial stage of the
collision up to the moment at which it breaks into fragments. The final evolution
of the system is described by a statistical model. These models [20, 21, 22]
are based on the assumption of statistical equilibrium and take into account the
quantum states of the formed fragments. They are quite successful in reproducing
the observed charge distributions {12, 13, 23].

In order to gain insight into the mechanism of Au on Au collisions at 150
A-MeV and 250 A-MeV incident energy, we have constructed such a hybrid
model which consists of the Boltzmann-Uehling-Uhlenbeck model [24] {dynami-
cal model) and the Copenhagen model [22} (statistical model). Special attention
will be drawn to the role of the nucleonic flow. In a former work [18] we have
analysed the behaviour of the flow pattern as a function of the impact parameter
and found a radially symmetric flow for impact parameters smaller than 2.5 fm.
For larger impact parameters the flow becomes very asymmetric and the system
begins to form two independent fragmenting sources. One aim is to implement
this behaviour in the statistical fragmentation model. In this way we are able to
treat central collisions on the same footing as semi-central collisions.

Within this hybrid model we shall analyse the two-particle correlation func-
tions as well as the charge and the kinetic energy spectra. Special attention will
be drawn to the role of the nucleonic flow and the characteristics of the frag-
menting matier (i. e. mass number, volume, excitation energy, temperature and
angular momentum).

The paper is organized as follows: At first we give some introductory remarks
on the applied Boltzmann-Uehling-Uhlenbeck (BUU) model in section 2 and af-
terwards on the Copenhagen model in section 3. In the subsequent section we
describe in detail how we connect these two models. Then we will discuss the
results in section 5 and a summary will be given at the end.

2 The BUU model

The BUU equation [25, 26] describes the time evolution of the single-particle
phase-space distribution function f and reads as follows

LFF Rt + s 5 Vo fF 58— VLU () - Vo f (75 t) =
R / Lo P pad®py 8(elp® + 15— P ~ N O+ - - ) [T F
- f('f:a ﬁ$i)f(:’::ﬁ?: f)[l - f(Fall;;:t)][}‘ - f(';‘ ﬁ.‘!"‘ t)]} (\})

Here, T denotes the transition matrix for the transition from the momentum

g Seed |

states 77, p? to states 7, 7» which are influenced by the medium. The integral
of | T |? over the final momenta p{ and F, including the twe delta functions is
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proportional to the in-medium nucleon-nucleon cross section. There are several
hints from theorstical {27, 28] as well as from experimental investigations (see e.g.
[29]) that the in-medium cross sections might be changed compared to the free
ones. However, since this is still an open question we use the free nucleon-nucleon
cross section which gives a quite satisfactory agreement concerning the stopping
of the nucleons.

For the potential energy per nucleon V' and the corresponding mean-field
potential I/

1]

three different parameter sets derived from density-dependent Skyrme forces are
taken into account. The parameters ¢y == —356 MeV, ¢; = 303 MeV, ¢ =
7/6 correspond to an incompressibility of K = 210 MeV (soft equation of state
(EOS)), ¢y == —218 MeV, ¢z = 164 MeV, o = 4/3 refer to K = 235 MeV (medium
EOS) and ¢; == —124 MeV, ¢z = 70.5 MeV, ¢ = 2 belong to K = 380 MeV {stiff
EQS). The nuclear matter saturation density ng is taken to be 0.168 frn=2,

Eq. (1) is solved using the parallel ensemble method [24, 30]. In our calcu-
lations we use 200 test particles per nucleon, a cell size of 1 fm® to calculate the
density in the coordinate space, and a cell size of (2rh)® is taken to determine
the phase-space density used to calculate the collision term on the r.h.s. of eq.

(1). :

The parallel ensemble method ensures that the mean field {2) has a smooth
behaviour and that two-body and higher correlations are washed oui. So the
algorithm governs the time evolution of the single-particle phase-space density
F(7,p.t) and describes the expansion of dense and excited matter formed dur-
ing the collision. Due to the lack of higher correlations it cannot describe the
formation of fragments. Further, we remark that although the BUU algorithm
is based on a nonrelativistic mean field potential the nucleons obey relativistic
kinematics.

To check how well the BUU model describes the experiment of collisions of
gold on gold we calculate the transverse momentum which is carried by the nu-
cleons. In the experiment this transverse motion is characterized by the quantity
E, . which is defined as ratio of the of transversal to longitudinal kinetic energies
seen in the forward hemisphere in the c.m. frame {c. {. Ref. [31})

j\?‘
> Pi,i/m!\f’

Erat e
T X,

(3)

>0

We have calculated the E,,; distribution and the polar-angle distribution for gold
on gold collisions at 150 A-MeV incident energy, see fig. 1 and fig. 2. The E, 4
distribution was generated for the hard as well as for the soft EOS in the full range
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of impact parameters up to b = 15fm (the generation of the E,,; distribution by
dint of the BUU code is described in appendix A). In fig. 3 we depict the relation
between £,,, values and the impact parameter assuming a perfect detection of
all particles. This relation is used to determine the impact parameters of single
events in experiment. Due to the statistical fluctuations an exact mapping is not
possible. Detector cuts and trigger conditions make the situation worse.

It is seenin fig. 1, that the BUU calculations agree fairly well with the data for
0.4 < Brer < 1.2. The peak between (.2 < Erat < 0.4 corresponds to large impact
parameters. The lack of cross section at small E,, might be due to the fact that
the BUU code is not able to produce clusters which certainly become important
for large impact parameters. For central and semi-central collisions our BUU
model predicts sufficient stopping compared with experiment. Since the stopping
depends essentially on the nucleon-nucleon cross section the agreement of Fy,:
with experiment confirms our choice of the cross section.

Fig. 2 shows the polar-angle distribution which is also sensitive to the tran-
verse flow. One sees clearly that the transverse peaking of the cross section
occurs only for very small impact parameters and already disappears for an im-
pact parameter of 1.0fm. This is in line with our finding in ref. [18]. Due to
the limited detector acceptance a straight comparison with experimental values
is not possible at present (c. f. [32]).

As one can see from fig. 1 and fig. 3 there is no big difference between the
soft and hard EOS. So, we apply the medium one in the remainder of this paper.

3 The statistical multifragmentation model

The fragment formation is described within the framework of the Copenhagen
model [22]. The fundamental assumption of the model is that a thermodynamical
equilibrium is reached as the matter enters the instable region of nuclear matter.
The model is based on Boltzmann’s principle:

Sp o lnWy, {4)

where Sy denotes the entropy and W, the statistical weight of state f. The state
S can be any final state of the excited system. It is essential that a sufficiently
large sample of partitions with fixed nucleon number and excitation energy £*
is taken. The entropy of each configuration is calculated making use of standard
thermodynamics. For this purpose a temperature T is associated to each partition
by the requirement

B = S Nag (B +27), (5)
AZ
where N, 7 denotes the numbers of the fragments with mass number A and charge

number Z. The first part on the r.h.s. is the sum over the internal energies while
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the second part is the translational energy per nucleon in the classical limit.
The internal energies are determined by means of a liquid-drop model which is
generalized to finite temperatures. Since the excitation energy of the system
is a given quantity the temperature depends on the actual partition and is a
fluctuating quantity.

Now the entropy is calculated for each partition by

St = SUNazhTV) = -3 Naz (& [FI, +Fig),).  (6)

AZ

where F , is the translational and F{" the internal contribution to the free
energy of the fragment.

The statistical multifragmentation model now provides us an ensemble of
partitions which are chosen randomly by Monte-Carlo methods with weights ac-
cording to Boltzmann’s principle. The fragments within this partition are highly
excited and one has to consider their cooling which is caused by evaporation of
light and heavier particles. The evaporation processes are computed on the ba-
sis of Weisskopf’s statistical compound evaporation model {34]. If a fragment ¢
decays into channel = by emission of a light particle with mass number a, then
the decay rate per kinetic energy Epi, is given [35] by

dsz Lagm Sint(Aw’ T:z:) - Sint(Ac’ Tc)
) pomnd g < N Eiczn €!+ﬁ| e ¥ (7)
dEndt m2R>

where g; is the spin degeneracy factor and A, A, denote the mass number
of the residual and initial fragment, respectively. The temperature T3 can be
calculated from the initial temperature T,. For the decay into channel z the
rate depends on the compound-nucleus formation cross section 0%, , = 7{Ra +
R.)*(1 — Vg/ Erin)O{Ein ~ Vi) with Vp being the Coulomb threshold and ©
standing for the step function.

The life time 7 of the fragment is given by integrating the rate function (7)
over By as 7= (3 dNz/dt)'. Assuming an exponential decay law the consec-
utive decays of 2 hot fragment are sampled using a Monte-Carlo method. Eq. (7)
controls also the energy distribution of the emitted particles. This is important
when the kinetic energies of the final cold fragments has to be calculated.

4 The hybrid model

Our hybrid model couples the two models introduced in the foregoing sections.
From the BUU calculations we extract the properties of the source, namely nu-
cleon number, break-up volume and excitation energy per nucleon. These quan-
tities determine the break-up in fragments. Further, we extract the velocity dis-
tribution of the nucleons and take their collective motion explicitly into account.
This velocity distribution will be transferred to the fragments.




It is important to determine the break-up time at which such a transition is
to be made. In the highly diluted parts of the matter, nucleons are too far away
from each other to form clusters. Therefore we assume that clusters are formed
in the internal zone where the density is larger than a certain limiting density
Nianit- Lhis concept excludes the fast pre-equilibrium particles. These particles
take away a large part of the energy of the system. Therefore, the excitation
energy of the remaining matier becomes smaller than one expects if the beam
energy is equally shared among all nucleons. The limiting density together with
the break-up time determines, for a given excitation energy, the number of the
fragments which are formed. This is the main criterion which will be used in the
following. It has turned out that both parameter are not independent from each
other, so small break-up densities are connected to early break-up times.

To extract the collective properties of the velocity pattern we choose a coor-
dinate system given by the principal axes of the energy flow tensor ©

N
05 = 5hw ZPE“’FE“J, (8)

ezl

where the sum runs over all N nucleons with p§"’ being the i-th component
of the nucleon momentum ™ in the c.m. frame of the fragmenting matter,
and my denotes the nucleon mass. This coordinate system is referred to as ©-
frame. Further we introduce an L-frame which is oriented according the nucleon
distribution of the systemn:

N
Ly = fy nr. (9)

n=1

At small reaction times the principal axes of this system deviates considerably
from the O-system.

Now we determine the fragment velocity distribution in two steps. First we
make an ansatz for a single-nucleon phase-space density w{7, #). For this purpose
we divide the coordinate space into two half-spaces separated by a plane ry = 0
which is perpendicularly to the largest axis of the ellipsoid of the tensor L {c. {.
left panel of fig. 4). We write for the distribution function w> in the upper half
of the system:

1 o3 2
AT Adpi— Bilri— BY )~ g7)
- - 2 i=y YA il q H R
w{F,p) < f{F) € )
and a corresponding ansatz w< for the lower half with vectors B< = —F> and
gy = —g; . This ansatz is motivated by the position and momentum density pic-

ture generated by the BUU approach. A typical picture for an impact parameter
of 6 tm at a time of 70 fm/c (related to the moment where the two nuclei touch



each other) is shown in fig. 4. It is seen that there are almost two separated
sources for semi-central collisions. The vectors A<, B> and §<,7” denote the
centres-of-gravity and the mean momenta in the region above or below the plane,
respectively. The quantities B; as part of the diagonal tensor B characterize an
anisotropic radial flow centred around A. For large impact parameters there is
a gap in the velocity distribution at the plane r3 = § of the ©-frame, describing
two receding sources. Eq. (10) is also suitable for head-on collisions. In this case
the gap disappears and Bj = Ry = g3 holds. Then, the distribution functions of
the upper and the lower plane merge to a smooth function for a single expanding
source with an asymmetric momentum distribution.

The parameters A; give the widths of the distributions around the collective
velocity and can be connected to temperatures T;

1
= = 1,2,3}. 11
—r (=129 (1)

For simplicity we assume that the spatial distribution f(¥) = 1 if + lies
within a cylinder of height 24 and radius g and f(7) = 0 otherwise. The cylinder
-is parallel to the 3-axis of the L-system. The elements B; are connected with the
expanding flow energies per nucleon E.zy. flow,: In transverse direction

2 2.2
Pi Bio .

Ee:cp. Howg: =

and the flow in longitudinal direction is composed of an expansion and a frans-
lational part in the direction of the momentum gs:

By B g
QmN 24mpy QTTZN

Effow,S = (13)
The background of the derivation of egs. (12} and (13) is provided in B. The
parameters £, f?; 2, 4, B; and A; are given in appendix C.

In a similar manner we calculate the r_ptational motion in the reaction plane.
The angular momentum J is given by J = ZnN A x 5™ and the rotational
energy F,, = %ﬁM"lj with the tensor of inertia M = mpy 3. (72 — L),

In the second step we transform ansatz (10) into a fragment velocity distri-
bution. In the spirit of the coalescence model one can find this distribution by
calculating the overlap of the product of all single-nucleon phase-space densities
with the Wigner function Wy, of a fragment with mass number A.

nx=l

A A
w?’mg(ﬂ-mg,i‘}mg) x /dSA?. Lz {H w>{7"(“},ﬁ(“)):1 S35 7 — AT frag) X

=1

A
(30 T — Abjrag) W prag (71, 5. (14)
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The two é-functions define the centre-of-gravity 7., and the velocity ¥, of
the fragment.

The coalescence model neglects correlations which evolve during the frag-
mentation process. This leads generally to an underestimations of the formation
probability of fragments with large nucleon number. We use eq. {14) to obtain a
guide for the velocity distribution of the fragments by approximating Wy,,, as

A
Wiesy o< ][ — 7). (15)

neZ

This means that all nucleons are located at the centre-of-gravity of the fragment.
After some algebra we get for respective w< and w”:

Am?2, .
e - - z?ml Ailviragi — ,,‘%,‘(Tfmg i— R - —g—
-LUfTGQ(Tff‘GH: Ufrag) o e

. (16)

Hence, the velocity of the fragment is distributed around a flow velocity which
is given by (B(Ffrey ~ R) + §)/mn. Thus, the fragment obtains a flow energy
in proportion to its mass number A while the random part of the motion has a
kinetic energy of > 1;/2 independently of its mass number.

Now, we calculate the excitation energy per nucleon by adding the potential

energy V(n) of eq. (2), the average kinetic energy E.;,, = Zi BEI(2mpaN)
and the Coulomub energy per nucleon E.,, = Zi <n trn—rml/N (Z =

proton number, e = elementary charge) and subtract the ground state energy
per nucleon [y, the rotational energy F,., as well as the flow energies:

2
E* = V(n)+ Beout + Epin — Fo — Erpp — Z Eezp ylowi — Eftowa.  (17)

tal

Now, we discuss briefly the relations of our guantities § and B to standard
observables for the collective behaviour of nuclear matter. The sidewards flow,
observed in non-central collisions, is a complicated function of our parameters. Its
value < p, > at projectile rapidity is roughly given by g3sin a, where o denotes
the flow angle between the beam axis and the largest principal axis of the energy
flow tensor. The slope of the side flow f; < pr > as a function of rapidity ¥
is mainly determined by the ratio myBy/B;. Eq. (16) contains also the effect
that the reduced side flow % < pz/p1 > increases with the mass number of the
fragment [36]. This is caused by the fact that the flow pattern becomes more
elongated with increasing fragment mass due to the translational motion g3. The
squeeze-out phenomenon is connected with the transverse part of the radial flow.
It is observed in non-central collisions by the ratio of particles emitted out of the
reaction plane and those emitted in the plane. Recent theoretical investigations
[37] have shown that this squeeze-out ratio increases with the mass of IMFs. This
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of impact parameters up to b = 15 fm (the generation of the E,q; distribution by
dint of the BUU code is described in appendix A). In fig. 3 we depict the relation
between E,.; values and the impact parameter assumning a perfect detection of
all particles. This relation is used to determine the impact parameters of single
events in experiment. Due to the statistical fluctuations an exact mapping is not
possible. Detector cuts and trigger conditions make the situation worse.

It is seen in fig. 1, that the BUU calculations agree fairly well with the data for
0.4 < E,a: < 1.2, The peak between 0.2 < E,,;: < 0.4 corresponds to large impact
parameters. The lack of cross section at small E,.; might be due to the fact that
the BUU code is not able to produce clusters which certainly become important
for large impact parameters, For central and semi-central collisions our BUU
model predicts sufficient stopping compared with experiment. Since the stopping
depends essentially on the nucleon-nucleon cross section the agreement of E,,,
with experiment confirms our choice of the cross section.

Fig. 2 shows the polar-angle distribution which is also sensitive to the tran-
verse flow. One sees clearly that the transverse peaking of the cross section
oceurs only for very small impact parameters and already disappears for an im-
pact parameter of 1.0fm. This is in line with our finding in ref. [18]. Due to
the limited detector acceptance a straight comparison with experimental values
is not possible at present {c. f. [32]).

As one can see from fig. 1 and fig. 3 there is no big difference between the
soft and hard EOS. So, we apply the medium one in the remainder of this paper.

3 The statistical multifragmentation model

The fragment formation is described within the framework of the Copenhagen
mode] [22]. The fundamental assumption of the model is that a thermodynamical
equilibrium is reached as the matter enters the instable region of nuclear matter.
The model is based on Boltzmann's principle:

Sf & in“Wf, (4)

where Sy denotes the entropy and Wy the statistical weight of state f. The state
S can be any final state of the excited system. It is essential that a sufficiently
large sample of partitions with fixed nucleon number and excitation energy £7
is taken. The entropy of each configuration is calculated making use of standard
thermodynamics. For this purpose a temperature 1" is associated to each partition
by the requirement

E* = 3 Nag(Efy+1T), (5)
AZ

where N, 7 denotes the numbers of the fragments with mass number A and charge
number Z. The first part on the r.h.s. is the sum over the internal energies while
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the second part is the translational energy per nucleon in the classical limit.
The internal energies are determined by means of a liguid-drop model which is
generalized to finite temperatures. Since the excitation energy of the system
is a given guantity the temperature depends on the actual partition and is a
fluctuating quantity.

Now the entropy is calculated for each partition by

S; = S{NaghTW) = =5 Naz (& FI+F3],), (6
AZ

where F, is the translational and F{'} the internal contribution to the free
energy of the fragment.

The statistical multifragmentation model now provides us an ensemble of
partitions which are chosen randomnly by Monte-Carlo methods with weights ac-
cording to Boltzmann’s principle. The fragments within this partition are highly
excited and one has to consider their cooling which is caused by evaporation of
light and heavier particles. The evaporation processes are compuied on the ba-
sis of Weisskopf’s statistical compound evaporation model [34]. If a fragment ¢
decays.into channel z by emission of a light particle with mass number a. then
the decay rate per kinetic energy Fiy, is given [35] by

2 Sint(Ag;, Tm) — Sim Ac, Tc)
¢ L2 B0l , € ( ) (7)

dEpndt — x?R
where g, is the spin degeneracy factor and A;, A; denote the mass number
of the residual and initial fragment, respectively. The temperature T, can be
caleulated from the initial temperature 7. For the decay into channel z the
rate depends on the compound-nucleus formation cross section of, ; = (R4 -+
R)H1 ~ V[ Epin)O(Erin — V) with Vg being the Coulomb threshold and ©
standing for the step function.

The life time 7 of the fragment is given by integrating the rate function (7)
over By, as 7= (3 _dN,/dt)™'. Assuming an exponential decay law the consec-
utive decays of a hot fragment are sampled using a Monte-Carlo method. Eq. (7}
controls also the energy distribution of the emitted particles. This is important
when the kinetic energies of the final cold {ragments has to be calculated.

4 The hybrid model

Our hybrid model couples the two models introduced in the foregoing sections.
From the BUU calculations we exiract the properties of the source, namely nu-
cleon number, break-up volume and excitation energy per nucleon. These quan-
tities determine the break-up in fragments. Further, we extract the velocity dis-
tribution of the nucleons and take their collective motion explicitly into account.
This velocity distribution will be transferred to the fragments.
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It is important to determine the break-up time at which such a transition is
to be made. In the highly diluted parts of the matter, nucleons are too far away
from each other to form clusters. Therefore we assume that clusters are formed
in the internal zone where the density is larger than a certain limiting density
Tetimir- This concept excludes the fast pre-equilibrium particles. These particles
take away a large part of the emergy of the system. Therefore, the excitation
energy of the remaining matter becomes smaller than one expects if the beam
energy is equally shared among all nucleons. The limiting density together with
the break-up time determines, for a given excitation energy, the number of the
fragments which are formed. This is the main criterion which will be used in the
following. It has turned out that both parameter are not independent from each
other, so small break-up densities are connected to early break-up times.

To extract the collective properties of the velocity pattern we choose a coor-
dinate system given by the principal axes of the energy flow tensor ©

N
O = 5w Zpﬁ“’pﬁ-"’, (8)
n=%

where the sum runs over all N nucleons with pgn) being the i-th component
of the nucleon momentum ™ in the c.m. frame of the fragmenting matter,
and my denotes the nucleon mass. This coordinate system is referred to as O-
frame. Further we introduce an L-frame which is oriented according the nucleon
distribution of the system:

N
Ly = gy (9

n=1

At small reaction times the principal axes of this system deviates considerably
from the ©-system.

Now we determine the fragment velocity distribution in two steps. First we
make an ansatz for a single-nucleon phase-space density w(, ). For this purpose
we divide the coordinate space into two half-spaces separated by a plane ry = 0
which is perpendicularly to the largest axis of the ellipsoid of the tensor L {c. f.

left panel of fig. 4). We write for the distribution function w”> in the upper half
of the system:

3L Al — Bl — RY ) — a7 )’

w” (7 F) « f(F) € ' ‘ (10)
and a corresponding ansatz 1< for the lower half with vectors B< = —F> and
g5 = —g3 . This ansatz is motivated by the position and momentum density pic-
ture generated by the BUU approach. A typical picture for an impact parameter
of 6 fm at a time of 70 fm/c (related to the moment where the two nuclei touch
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each other} is shown in fig. 4. It is seen that there are almost two separated
sources for semi-central collisions. The vectors £<, > and 3,5 denote the
centres-of-gravity and the mean momenta in the region above or below the plane,
respectively. The quantities B; as part of the dzamﬁai tensor B characterize an
anisotropic radial flow centred around R. For large impact parameters there is
a gap in the velocity distribution at the plane ry = 0 of the O-frame, describing
two receding sources. Eq. (10) is also suitable for head-on collisions. In this case
the gap disappears and Bs * Ry = gz bolds. Then, the distribution functions of
the upper and the lower plane merge to a smooth function for a single expanding
source with an asymmetric momentum distribution.

The parameters A; give the widths of the distributions around the collective
velocity and can be connected {o temperafures T;

1

. = ;= 1,2, 3).
o= e (=129 (11)

For simplicity we assume that the spatial distribution f(r) = 1 if ¥ lies
within a cylinder of height 2A and radius p and f(F) = 0 otherwise. The cylinder
is parallel to the 3-axis of the L-system. The elements B; are connected with the
expanding flow energies per nucleon F.pp. fiow, in transverse direction

pi , _ Bi

Eem'p.ffow,i == (Qm;\; - SmN (l' = 172)7 (12)
and the flow in longitudinal direction is composed of an expansion and a trans-

lational part in the direction of the momentum gs:

2 272 2
D Bih g
(5= 2 > (13)

E = =z .
flow3 2my 24mpy 2m

The background of the derivation of eqs. (12) and {13) is provided in B. The
parameters h, &, 9, §, B: and A; are given in appendix C.

In a similar manner we calculate the rotational motion in the reaction plane.
The angular momentum J is given by J = Zf ™ x p{*) and the rotational
energy Ero = LJTM™'J with the tensor of inertia M = my 3 (792 — L).

In the second step we transform ansatz (10} into a fragment velocity distri-
bution. In the spirit of the coalescence model one can find this distribution by
calculating the overlap of the product of all single-nucleon phase-space densities
with the Wigner function Wy, of a fragment with mass number A.

W70y (Tireg, Ugrag) f 4 & {H w” (7™, 'M)} 53(2 A} A ) X
nxl

A
& 2 RS Al prag) Wy mg(%{n}v iy, {14}
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The two é-functions define the centre-of-gravity 7y, and the velocity vy, of
the fragment.

The coalescence model neglects correlations which evolve during the frag-
mentation process. This leads generally to an underestimations of the formation
probability of fragments with large nucleon number. We use eq. (14} to obtain a
guide for the velocity distribution of the fragments by approximating Wy.., as

A
Wiy o« [[ 65 ~ 7). (15)

==

This means that all nucleons are located at the centre-of-gravity of the fragment.
After some algebra we get for respective w< and w”:

Am? . \ . Lo
"'""%EE Zle Ai(vf'rag,i - f_;‘(?‘fr“g,i - R:) - 1_711.%)2

. (16)

Hence, the velocity of the fragment is distributed around a flow velocity which
is given by (B(Freg — B) + 7)/my. Thus, the fragment obtains a flow energy
in proportion to its mass number A while the random part of the motion has a
kinetic energy of > 7;/2 independently of its mass number.

Now, we calculate the excitation energy per nucleon by adding the potential
energy V{(n) of eq. (2), the average kinetic energy Frn = » . _, bof/(2maN)
and the Coulomb energy per nucleon Eou = }:Z —ezﬂn /N (Z =

mEn [Fn—

Werag(Tirag, ﬁfrﬂg) x €

proton number, e = elementary charge) and subtract the ground state energy
per nucleon £y, the rotational energy E..:, as well as the flow energies:

V1
E* = V(n)+ Epu+ Ein — Eg — Eppr ~ }: EBezp tlowi — Eftowa.  (17T)

=1

Now, we discuss briefly the relations of our quantities § and B to standard
observables for the collective behaviour of nuclear matter. The sidewards flow,
observed in non-central collisions, is a complicated function of our parameters. Its
value < pr > at projectile rapidity is roughly given by gssin o, where o denotes
the flow angle between the beam axis and the largest principal axis of the energy
flow tensor. The slope of the side flow % < p; > as a function of rapidity y
is mainly determined by the ratio myB,/B;. Eq. (16) contains also the effect
that the reduced side flow Ed;, < p./pL > increases with the mass number of the
fragment {36]. This is caused by the fact that the flow pattern becomes more
elongated with increasing fragment mass due to the translational motion g;. The
squeeze-out phenomenon is connected with the transverse part of the radial flow.
[t is observed in non-central collisions by the ratio of particles emitted out of the
reaction plane and those emitted in the plane. Recent theoretical investigations
[37] have shown that this squeeze-out ratio increases with the mass of IMFs. This
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effect is not contained in eq. (10) which has a symmetric spatial distribution.
Fig. 5 shows that the momentum perpendicular to the reaction plane is enhanced
for moderate impact parameters.

At last, we have to fix the break-up time fireak-up. It is chosen sauch that a
reasonable break-up density is reached. A Hmiting density nyyg = ne/7T is used
which is compatible with the assumption of the statistical multifragmentation
model. The break-up time is taken to be 65 fm/c and 55 fm/c after touching
of the nuclel for the reaction of gold on gold at 150 A-MeV and 250 A-MeV,
respectively. For larger bombarding energies the system expands faster and the
break-up starts earlier.

In fig. 5 we show the volume of the ellipsoid of the energy flow tensor versus
time for a beam energy of 150 A-MeV. The volure rises in the compression stage
and declines during the expansion. It has nearly reached its minimum value at
the chosen break-up times.

Having obtained the properties of the source we can implement them into the
statistical multifragmentation model. Every event is created in accordance with
the probability (4) and the positions of the fragments are distributed randomly
within the cylinder in the L-frame. Then we determine the momenta of the frag-
ments by means of relation (16) in the O-frame. Afterwards the positions and the
momenta are transformed back in the laboratory frame. The following expansion
of the fragments is described by Newtonian equations which take into account
only the mutual Coulomb forces between the fragments. During the expansion
the hot fragments emit statistically light particles and cool down. The emission
rates and the energy distribuiions are simulated by a Monte-Carlo method based
on eq. (7).

As the result of the calculation we obtain finally a statistical ensemble of cold
fragments with given velocities taking into account the most important correla-
tions produced by the Coulomb repulsion.

5 Results and discussion

5.1 Properties of the fragmenting matter

Using the break-up times mentioned in the foregoing section we represent in fig. 6
ihe mass number, the excitation energy and the volume of the fragmenting matter
as well as the temperatures as a function of the impact parameter . Dividing
the mass number by the volume one gets break-up deusities between lng and
%no for collisions at 150 A-MeV beam energy for different impact parameters.
For collisions at 250 A-MeV beam energy, break-up densities between 1 ng and
}—ing have been obtained. Similar values were found in refs. 38, 39}

The excitation energy {17} is shown in fig. 6 for both bombarding energies.
The maximum values around 12 MeV are obtained for small impact parameters,
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Smaealler values of about 5 MeV refer to impact parameters around 8fm. The
values are similar for both bombarding energies, however they belong to quite
different mass numbers. The excitation energy together with the break-up den-
sity influence sensitively the number of IMFs calculated within the statistical
multifragmentation nodel.

The temperature parameters 7; rise with the impact parameter, cf. fig. 6.
However, one would expect a higher temperature for head-on collisions than for
semi-central collisions. The behaviour shown in fig. 6 is connected with the pure
classical ansatz for the distribution function {10) together with eq. (11) which
interpretes Fermi motion as temperature. A solution of this problem has been
has been proposed in ref.{40] by using Fermi-Dirac distributions for the nucleons
a method which requires large numerical expense. In our analysis this problem is
of minor importance since the thermal energies are smaller than the bombarding
energy in the centre-of mass system and small compared to the flow energies we
are interested in.

Now we turn fo the flow properties of the source which are shown in fig. 7
for bombarding energies of 150 A-MeV and 250 A-MeV, respectively. For impact
parameters b < 4 fm the translational flow parameter g3 and the parameter B;
of the radial expansion describe together a flow in the 3-direction which linearly
rises from the origin of the centre-of-mass system, because relation By Rz = g3 is
fulfilled. Therefore, we have depicted the sum (13) of the corresponding energies
in fig. 7. For larger impact parameters the two sources recede from each other,
and we plot the translational part separately from the radial part. One recognizes
that the transverse flow energy E,up. fiow atd Eepp fou2 smoothly decreases with
rising impact parameter, Also the total radial low energy diminishes for large im-
pact parameter which explains that the ALADIN measurements [41] has found
only marginal effects of flow in contrast to central collisions. The energy con-
tained in the translational motion approaches the bombarding energy for large
impact parameter. For small impact parameters the flow is nearly spherically
symmetric. We mention that for very central collisions { & < 0.5fm) the particle
flux dN/d cos f is even sidewards peaked as we have already seen in fig. 2.

Fig. 8 shows the angular momentum of the source. The total angular momen-
tum is mainly given by the input of the incoming projectile and is only meaningful
for very central collisions. For impact parameters larger than 4 fm the rotational
motion is much smaller if considered locally. The two sources which are created
separately get angular momentum due to the mutual friction of the remnants of
target and projectile. As can be seen from fig. 8 each half of the fragmenting
matter gets a relative small angular momentum. Its maximum value of about
100 A is reached at b = 5 fm and the corresponding rotational energy amounts to
0.5 MeV per nucleon only. The rotation of the total system is already included
in the ansatz (10) for the phase space distribution by the translational term g3
together with the twist between the ©- and the L- system.

To compare our further calculations with experiment we define central events
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to have impact parameters values between 0 fin and 3.5 fm and semi-central ones,
which include the central events too, to have impact parameters values between
0 fm and 8 fm. This is in accordance with the experimental cuts {6, 42}, where
central events belong to the PM5 class and semi-central ones to the PM3-PM5
class.

The charge spectra obtained by the statistical multifragmentation model are
depicted in fig. 9 for central and semi-central gold on gold collisions. We find a
satisfactory agreement for the IMF production. The discrepancy for charge Z = 1
might be due to the fact that light fragments as deuterons and tritons may be
formed by coalescense of the pre-equilibrium particles which are not considered
within the statistical model. The deviation for charges Z > 9 do not play an
important role in our further analysis because these fragments are very rare.

5.2 Omne-particle kinetic energy spectra

One-particle spectra of IMFs are very sensitive to the amount of flow since,
without flow, the fragments obtain only the small amount of thermal energy.
In fig. 10 we compare the calculated spectra of lithinm, berylium, boron and
carbon isotopes for central gold on gold collisions at 150 A-MeV beam energy with
experiment. We recognize that the heavier the fragment the better the agreement
between theoretical and experimental values is. Obviously the heavier fragments
have sufficient flow whereas the lighter have not. This leads to the suggestion that
the How might depend on the projectile mass. This is understandable from eq.
(14), but contradicts to eq. (16}). Without using the zero-range approximation
{15) the formation of heavy {ragments needs the integration over a large volume.
Therefore, heavy fragments are formed with larger probability in the inner region
of the fragmenting source, where they obtain only a small amount of flow energy.

From the spectra one extracts usually the mean kinetic energy as a function of
the mass number and obtains the flow energy according to Ey, = %T + AE fipm.
Using this formula we get a flow energy of 18 MeV for 150 A-MeV in rough
agreement with experiment [7]. For 250 A-MeV we get 25 MeV. From the flow
values shown in fig. 7 one obtaines respective values of 12 MeV and 19 MeV
only. Part of this difference comes from a final Coulomb acceleration which is also
proportional to the fragment mass. In addition the kinetic energy increases by the
recoil which the fragments obtain by evaporating particles. Further, we mention
that the impact parameter selection is very essential since the measurements
are made in forward direction between 25 and 45 degrees in the centre-of-mass
system. Contributions from larger impact parameters contain also a certain part
of translational motion of the projectile remnant.



5.3 Two-particle velocity distributions

A widely used tool [1, 43, 43} for the investigation of final state interactions is
the two-particle correlation function C: defined as the ratio of the two-particle
velocity distribution Vi, to the mixed two-particle velocity distribution Y miz
calculated by mixing two different events:

K?(vred)

02('0?‘85{) = Y.:L?.,mix(vrea')’

(18)
where v,.q denotes the reduced relative velocity [46] between two fragments with
charge numbers Z; and Zs, Vrea = %1 — v2 | [V 71 + 2. Both velocity distribu-
tions are normalized to the same number of detected pairs.

The correlation function C; is translationally invariant and contains valuable
information about the dynamics of the fragmenting source {see e. g. [1]). Por
IMFs it can be caleulated by trajectory calculations since quantum mechanical
effects are not importani because the distance between the fragments is much
larger than their wave length. The Coulomb forces between IMFs suppress the
correlation function for values smaller than v,.4 & 0.04c/+/d/ frn independently
of the fragment charges, where the quantity d is the average inter-fragment dis-
tance. Thus, the size of this Coulomb hole measures the break-up density and,
henceforth, the source radius. However, C5 is also sensitive to other variables
like flow and secondary evaporation of light particles. Because of this fact the
interpretation of the function Cy is not trivial.

For central collisions we compare the velocity distributions together with
the corresponding corrvelation functions with experiment in fig, 11. The calcula-
tions have been performed by reducing Eopp w1 88d Loy plows by 2 factor of
2. Otherwise they would have peaked at too a large reduced velocity similarly
to the results of ref. [18, 47]. The Coulomb hole of the correlation function is
only slightly influenced by the radial flow justifying the standard method for the
estimation of the break-up density.

Next, we turn to semi-central events. The correlation functions and the
corresponding velocity distributions are displayed in fig. 12. For consistency
reasons the tranverse flow has been reduced in the same manner as for central
collisions. In conirast to the central collisions the correlation function exhibits a
clear peak at v.eq = 0.02 ¢. It originates from the finite flow angle together with
the small aspect ratio §(©11 + O22)/Oas of the flow tensor. Both effects make the
flow pattern very sensitive to the azimuthal angle. Therefore, the mixed velocity
distribution Y12 s is much wider than the true one Yj;. The peak disappears if
all events are rotated into a unique reaction plane {45].

Although there is an overall agreement with experiment the size of the
Coulomb hole of the computed correlation function differs distinctly from the
experimental one at 250 A-MeV beam energy for semi-central collisions. We
propose two different explanations to improve the agreement. On the one hand
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one could reduce the transverse flow further. The crosses in fig. 12 refer to a
reduction by a factor of four. However, there is no reason to assume that the nu-
cleonic flow is transferred differently as a function of energy. On the other hand
the break-up density could be diminished. For a very small break-up density,
however, the statistical multifragmentation models would predict charge spectra
which fall off much stronger than observed. This would mean that the fragments
are not formed in thermodynamical equilibrium but rather in a non-equilibrium
scenario as it is claimed by the QMD meodels, see e.g. ref. {10},

6 Summary

We have constructed a hybrid model to analyse central and semi-central collisions
at 150 A-MeV and 230 A-MeV beam energy. The model consists of both the
BUU model and the Copenhagen model. In addition we we have adjusted the
nucleonic phase-space distribution by the ansatz of eq. {10} to the results of the
BUU calculations. This distribution takes into account the effect that around an
. impact parameter of 4fm the reaction changes its pattern from a one-source to
a two-source behaviour. From this ansatz the phase-space distribution (16} for
fragments is derived.

Our approach 1s based on the idea that in the collision centre an equilibrated
source is formed which has fewer particles and less energy then the total colliding
system. Intermediate mass fragments are formed in this source which is defined
as consisting of nuclear maiter with a density larger than about 1/7 of normal
matter density. This source fragments when the momenta of the nucleons are
relaxed and the flow ellipsoid has shrunk nearly o its asymptotic value. Under
this conditions we found relatively moderate excitation energies ranging from 12
MeV down to 5 MeV and source sizes between one and two thirds of the total
mass number for impact parameters up to 8 fm which are covered by the recent
experiments we have analysed. The multifragmentation of these sources leads to
charge spectra in agreement with experiment. The effect of angular momentum
was found to be unimportant for the calculation of excitation energies.

The BUU calculations reproduce well the experimental E.,, distribution of
nucleons. It turned out that the polar-angle distribution exhibits a peak at very
central collisions and the shape of the flow pattern is spherically symmetric.
For impact parameters larger than 4 fm two sources are formed which recede
from each other and their excitation energies become remarkably lower. Tor
very central collisions the flow energy was 12 and 19 MeV per nucleon. These
values are about 5 MeV smaller than those obtained from the calculated kinetic
energy spectra. We have explained this difference by the additional energy gain
by Coulomb expansion after break-up and the recoil which the fragments obtzain
from the evaporation processes during this expansion. The analysis of the one-
particle kinetic spectra has revealed that the flow of heavier fragments might be
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smaller than that of lighter ones. However, the quality of the agreement is not
good enough to allow a quantitative statement.

Finally, we have discussed the two-particle velocity distributions. The peak
in the correlation function for semi-central collisions is explained by the finite
angle between flow ellipsoid and beam direction and by the small transverse
flow compared to the longitudinal flow. As this ratio decreases with increasing
bombarding energy the peak increases. The small Coulomb suppression observed
at high energies in the correlation function could not be explained satisfactorily
and might hint to the fact that at high energies one approaches the limit of the
validity of equilibrium models.
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Appendix A
GENERATION OF THE do/d( ;) DISTRIBUTION.

To calculate the E,,; distribution it is essential that fluctuations are taken
into account. This is not possible in standard BUU model. To circumvent this
problem we have made use of the parallel ensemble method and have identified
every ensemble with one event.

In the calculation we have included the filter routine of the plastic wall of the
FOPI collaboration {48] together with the rapidity condition Ypersice > Yem and
have used impact parameters up to 15fm.

Appendix B
SOME ASPECQTS OF FLOW.

The flow analysis is based on the assumption thai the velocity of the matter
increases linearly as a function of the distance from the centre. This is a good
approximation to the flow pattern obtained in BUU calculations where the mean
velocity is curved only for very large distances. Then, for a spherically symmetric
radial flow the momentium of a aucleon at distance F reads

ﬁﬂow = of, (B}-)

where the quantity o can now determined by a least square fit of eq.(B.1} to the
nucleon momenta 7

: N

nz=l

This leads to the kinetic energy of a spherical velocity field

(Zle . ;:cn))ﬁ

2myN Yoo, ()

(B.3)

Esphericml Flow =

This concept is easily extended to asymmetric fiow defining three different
flow energies corresponding to the main axis k of the O-frame:

N n) {n E
(Znu—;i pé )Tlg ))

(B.4)
2N I (87)

Eﬂ'ow,& =
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which is the basis of eqs. (12), (13) and {C.5).
We mention finally that the following unequality relations hold:

3
Z' O = Yopes Bfiowis = Espherieal flow- (B.5)

Appendix C

PARAMETERS OF THE ANSATZ FOR THE SINGLE-NUCLEON PHASE-SPACE DEN-
SITY.

The parameters h, ﬁ, o, 4, B; and A; read

ho= (s}, (C.1)
R = %& (C.2)
e = 24/((3) - 0u5)/(1-03), (C3)
g = (p)és, (C.4)
B = ({prs) - 20335%535)/((7"?) . (3‘93{)2), (C.5)
Ay = ((p]) ~ Bi{pirs) — (95 — O3 Ba%)gnbai) ™, {C.6)

where the average value of a quantity ¢ is defined by (£) = [&wd®rd®p. The
matrix elements O;; determine the transformation between ©- and L-frame and
the coordinates p; and r; in the equations above are calculated in the @-frame.
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Fig. 1 Calculated E,,; distribution for the soft and hard EOS, respectively, in
comparison with experiment [33].
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impact parameters which are cquivalent to three different frq: values.
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Fig. 3 E,.: as a function of the impact parameter b for the soft, medium and hard
EOS, respectively. The simulation was done applying a perfect detector.
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