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ABSTRACT

Hyperspectral scanners are increasingly being used in the
mining industry as a non-destructive and non-invasive tech-
nique to efficiently map minerals in drill core samples. Hy-
perspectral data allows the characterization of different min-
eral assemblages, structural features and alteration patterns
based on reflectance spectrum profiles. Traditional meth-
ods to analysis drill core hyperspectral data include the use
of reference spectral libraries by visual analysis or a well
established software. However, although these approaches
produce good results, they are time-consuming and prone to
errors. Therefore, in this paper, we take advantage of the
latest and advanced machine learning techniques proposed
in different scientific fields and explore the use of extreme
learning machines (ELM) to map minerals in drill core hy-
perspectral data. This is a supervised technique that provides
fast and automatic means to characterize hyperspectral data.
To be able to implement this technique, a reference map was
generated from the drill core hyperspectral data. The obtained
results indicate that ELM can successfully map minerals in
drill core hyperspectral data producing better quantitative and
qualitative results than a typical RF classifier.

Index Terms— Dirill cores, hyperspectral data, mineral
mapping, extreme learning machine, random forest.

1. INTRODUCTION

Drill core hyperspectral scanning is an emerging technique in
the mining industry for the exploration of mineral deposits.
Hyperspectral sensors record relevant spectral information
through a wide range of wavelengths in several tens of spec-
tral bands. The reflectance spectrum profiles in hyperspectral
data cubes can be effectively exploited to characterize differ-
ent minerals [1,2]. The hyperspectral drill core scanners offer
an non-invasive and non-destructive technique for economical
mineralogical analysis. More importantly, such analysis can
be achieved in a fast turn-around time for a large amount of
drill cores [3]. One of the most important tasks of hyperspec-
tral drill core analysis is to determine the spatial distribution
of minerals over the drill cores. This task is commonly known
as mineral mapping.

Traditional approaches to map minerals in drill core hy-
perspectral data rely on the visual interpretation of the spec-
tra and performing a comparison with the reference spectral
libraries (e.g., USGS Spectral library [4]). For example, the
Spectral Angle Mapper (SAM) has been frequently used to
find the best match between the unknown hyperspectral pixels
and the reference spectra [5, 6]. Taking different approaches
in [7], Kruse et al. first made use of the Minimum Noise
Fraction transformation (MNF) [8, 9], the Pixel Purity Index
(PPI), and n-Dimensional visualizer for the selection of the
endmembers [7]. Then, they visually analyzed and compared
the selected endmembers to reference spectra for their iden-
tification. These endmembers were then used with the Mix-
ture Tune Matched Filtering (MTMF) technique to produce
mineral maps and partial abundances [10, 11]. More recently
in [12], Mathieu et al. proposed to use different attributes of
the absorption features after applying the MNF transforma-
tion to the mosaic of several drill core hyperspectral images.
They mapped minerals based on the combination of the posi-
tion and depth of the absorption features, which were selected
after a visual analysis of the spectra using reference spectral
libraries.

Lately, machine learning algorithms have been introduced
in different scientific fields to improve the accuracy, speed,
and robustness of data analysis. These techniques offer au-
tomatic means to discover underlying relations within large
data sets [13]. Several techniques have been proposed in the
literature, such as support vector machines (SVM) [14], ran-
dom forest (RF) [15], and neural networks (NN) [16]. Re-
cently, advanced NN-based techniques are increasingly being
used specially for non-linearly separable data. Among dif-
ferent NN architectures, single layer feed-forward networks
(SLFN) are the most commonly adopted ones. However, most
of the existing learning algorithms used to train an SLFN do
not guarantee a global optimal solution, especially when the
parameters of the network are not properly fine-tuned [17]. To
tackle this issue, extreme learning machines (ELM) algorithm
has been recently proposed [18]. The hidden layer in the ELM
algorithm is not required to be iteratively tuned and randomly
fixed. Moreover, it has been shown that ELM networks are
accurate and less computationally complex while providing
comparable results with state-of-the-art algorithms [13].



Similar to other scientific fields, exploiting machine learn-
ing techniques for geological applications is also growing (see
e.g., [19]). However, the use of machine learning techniques
for drill core hyperspectral data analysis has not been well
addressed in the literature. This is mainly due to the fact that
in such data, defining meaningful classes and selecting repre-
sentative training samples required for the training phase of
a machine learning algorithm is not straightforward. There-
fore, in this paper, we present a drill core data set, which in-
clude hyperspectral data and a reference map generated with
the help of geologists. Then, we explore the capability of
machine learning techniques for mineral mapping using this
dataset. For the first time, we evaluate the ELM technique for
the analysis of drill core hyperspectral data quantitatively and
qualitatively. ELM is known for being remarkable efficient
in terms of accuracy and computational complexity [13]. For
comparison, we also explore the application of the traditional
RF classifier for mineral mapping.

The rest of the paper is structured as follows: section 2 de-
scribes the used ELM. Section 3 presents data description, ex-
perimental results, and discussions. Finally, the conclusions
are drawn in Section 4.

2. METHODOLOGY

We propose to use ELM to map minerals in drill core hy-
perspectral data (see Fig. 1). After the acquisition of the
hyperspectral data, a reference map was generated by a ge-
ologist. This reference data was used as the training and test
samples for the ELM technique. ELM is considered as the
generalization of SLFN. However, in contrast with traditional
training methods for the SLEN (i.e., iterative gradient-based
learning approaches), the idea in ELM is to reach the small-
est training error and the smallest norm of the weights [20].
The training of ELM consists of two stages: (1) the hidden
layer is constructed by using a fixed number of randomly
generated mapping neurons, and (2) the output weights are
solved by minimizing the sum of the squared losses of the
prediction errors. In this way, by fixing the input weights
w; = [wi1, Wiz, ,w;q)T, which connect the ith hidden
node with the input nodes, and by fixing the hidden layers
biases b;, the only parameters that need to be optimized in
the training process are the output weights between the hid-
den neurons and the output nodes. By doing so, SLFN can
be trained in a similar manner to solve a regularized least-
squares problem B of the linear system HS = Y where H
and [ are the output matrix of the hidden layer and the output
weight matrix, respectively. Y is the output matrix.
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Fig. 1. Flowchart of the proposed technique to map minerals
in drill core hyperspectral data. HSI stands for hyperspectral
image and ELM for extreme learning machine.

and K is the number of classes. Moreover, let h(x) be
[f(wi-x+b1),..., f(Wr - x + br)], where f(w; -x + b;)
is the output of the ith hidden node having the input sample
x. Then, from the theory of optimization, the previously
presented minimization problem can be reformulated:
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where &7 is the training error of the training sample x;, and C

is a regularization parameter. Finally, the output of ELM can
then be estimated as follows:

i=1,---,n,

f(x) = h(x)8 = h(x)HT(% +HHD)'Y. (1)

3. EXPERIMENTAL RESULTS

To evaluate the performance of ELM, we acquired the hyper-
spectral data from the unpolished half of the drill core sample
(see the RGB image of the drill core in Fig. 2). For the acqui-
sition, we used a SisuRock drill core scanner equipped with
an AisaFenix VNIR-SWIR hyperspectral sensor. The spec-
tral range of the camera covers from 380 to 2500 nm, with a
spectral resolution of 3.5 nm in the VNIR and 12 nm in the
SWIR. The total number of bands is 450 and the pixel size is
1.5 mm/pixel. For the pre-processing of the data, first, radio-
metric and geometric corrections were carried out to correct
the sensor shift and the effect of lenses, respectively. For this,
we used the toolbox presented in [21]. To avoid bands with
little or no coherence information, the data were spectrally
excluded from 380 nm to 538 nm and from 2486 nm to 2500
nm. The resultant wavelength range covers from 538 nm to
2486 nm in 400 bands.

A reference map was generated by an expert based on an
exhaustive visual analysis of the entire drill core sample and



its hyperspectral data. This reference map consists of the la-
beled samples and allows the use of supervised classification
techniques. In general, the matrix in the sample is dominantly
composed of feldspars and partly altered to white mica, chlo-
rite, and biotite. Two main vein types are presented, one con-
sisting of quartz and white mica and the other one consist-
ing of gypsum, white mica, and scarce pyrite. Hence, four
classes were considered enough to describe the drill core sam-
ple: White mica, Gypsum, Chlorite, and Biotite. Each pixel
was assigned to the most dominant mineral class and no class
label was assigned to these pixels in which the dominant min-
eral was not detectable (see reference map in Fig. 2).

For the ELM classifier, the number of nodes L was fixed
to 1000 and the regularization parameter C' was set in range
of C = 1,10',--- ,10° using five fold cross validation. To
train the algorithm, we used 10% of the available samples in
the reference map. The remaining samples were used as the
test set. The total number of pixels available per class for the
training and test sets are shown in Table 1. All the experi-
ments were repeated 30 times and the mean of the the class
accuracy, overall and average accuracies, and kappa coeffi-
cients are reported in Table 2. To better assess the perfor-
mance of ELM when mapping minerals, the results of using
the RF classifier are also reported. For this classifier, we con-
sidered an ensemble of 500 decision tree classifiers.

Several conclusions can be obtained from the experiments
reported in Table 2. First and foremost, it is noticeable that,
in general, the ELM technique outperforms the RF method.
More specifically compared to the RF method, the ELM ob-
tained 5.1% and 8.9% higher overall and average accuracies,
respectively. Moreover, based on the variability of the over-
all and average accuracies provided by the standard devia-
tion, it is evident that ELM produces more stable results than
RF. In ELM, the overall and average accuracies fluctuate only
by 0.5% and 1.7%, respectively, whereas in RF the variation
ranges by 0.9% and 3.1%.

If we focus on the class specific accuracies, we can see
that for the three main classes Wmca, Gp, and Chl the accura-
cies obtained by the ELM are higher than the RF. For instance,
the Gp class accuracy resulted by the ELM technique is 44.9%
higher than the one obtained by the RF method. However, for
the Bt class, the RF obtained higher accuracy than the ELM,
which can be considered to be the influence of the mixed char-
acteristics of the matrix. Qualitatively, from the ELM mineral
map and the RF mineral map in Fig. 2, it can be seen that
although RF mapped scarce Bt content, the Gp content in the
veins has not accurately mapped. However, the mineral map
obtained by ELM shows less Bf content in the matrix but very
well mapped Gp in the veins.

4. CONCLUSIONS AND REMARKS

In this paper, we use ELM to map minerals in drill core hy-
perspectral data. The ELM technique is highly efficient in
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Fig. 2. The classification results of the drill core sample ob-
tained by ELM and RF. Mineral abbreviations after [22].

Table 1. Total number of samples available in the reference
data.

Class [ Total | Training | Test
Wmcea 993 99 894
Gp 151 15 136
Chl 1088 108 980
Bt 155 15 140

Table 2. Classification accuracies per class (in %), overall ac-
curacy (in %), average accuracy (in %), and kappa coefficient
(is of no unit). Accuracy values are reported in percentages.

Class | ELM | RF
Wmca 96.6 92.6
Gp 80.6 35.7
Chl 96.7 93
Bt 5 21.7
Overall || 89.7 (£ 0.5) | 84.6 (£ 0.9)
Average || 69.7 (£ 1.7) | 60.8 (£ 3.1)
Kappa 0.8226 0.7356

terms of accuracy and computational complexity. Moreover,
the hidden layer is fixed and it is not needed to be iteratively
tuned. From the analysis of the results, we have seen that
ELM provides better classification results than RF in terms of
accuracies as well as qualitatively. Especially, ELM performs
better than RF when the materials are not highly mixed.

As part of our future developments, we will optimize
ELM and test different feature extraction techniques to be
used as input for classifiers since we want to increase the
accuracy and robustness for the mineral mapping task.
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