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The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-
Spruit dynamo model for the generation of stellar magnetic fields, but it is also discussed
as a mechanism that might hamper the up-scaling of liquid metal batteries. Under some
circumstances, the T1 involves a helical flow pattern which goes along with some a-effect.
Here we focus on the chiral symmetry breaking and the related impact on the a-effect that
would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic
Prandtl numbers, we observe intrinsic oscillations of the a-effect. These oscillations serve
then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly
link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.

Introduction. Current-driven instabilities have been known for a long time
in plasma physics [1]. A case in point is the so-called z-pinch [2], i.e. a straight
current j, guided through the plasma which produces an azimuthal magnetic field
B,. This field is susceptible to both the axisymmetric (m = 0) sausage instability
and the non-axisymmetric (m = 1) kink instability.

In plasmas, the kink instability is saturated by two processes which can be
interpreted in terms of mean-field MHD. First, the § effect leads to a (radially
dependent) counter-current which modifies the radial dependence B, (r) so that
the (ideal) stability condition d(rB}(r))/dr < 0 [3] becomes marginally fulfilled.
Second, the a-effect leads to some azimuthal current j,, producing a B, compon-
ent, which contributes to saturation according to the Kruskal-Shafranov condition
for the safety parameter. However, the occurrence of a finite value of « is not ob-
vious, since it requires a spontaneous symmetry breaking between a left-handed
and a right-handed TT mode which are, in principle, equally likely [4, 5].

While the magnetic Prandtl number Pm = pgov of fusion plasmas is typically
close to unity, there are other relevant problems that are characterized by much
smaller values. This applies, in particular, to liquid metal batteries [6-8] whose
upscalability might be limited by the kink-type Tayler instability (TTI) [3]. Using a
quasi-stationary code [9] on the basis of the OpenFOAM library we have recently
shown [10] that the saturation mechanism of the TI changes completely for low
Pm: here, the quadratic combination of the m = 1 velocity perturbations produces
m = 0 and m = 2 velocity components which suppress the further growth of the
TI.

Another interesting effect that was observed in [10] is the occurrence of helicity
oscillations in the saturated state. While those oscillations are not very interesting
for liquid metal batteries, they could be highly relevant for stellar dynamo models
of the Tayler-Spruit type [11]. The poloidal-to-toroidal field transformation for this
type of nonlinear dynamo is easily provided by the usual Q-effect due to differential
rotation, but the toroidal-to-poloidal field transformation requires some a-effect
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to be produced by the TI. If this a-effect has a tendency to intrinsic oscillations,
this could give a chance for weak external forces (such as exerted by planets) to
synchronize the entire dynamo.

This paper summarizes the corresponding ideas as outlined in [10] and [12],
and adds a new aspect related to the question of whether this type of synchron-
ized dynamo might provide the correct orientation of the butterfly diagram for
sunspots.

1. Helicity waves in the saturated state of the Tayler instability. For
the sake of concreteness, we study the features of the TI in a cylinder of the height-
to-diameter ratio H/(2R) = 1.25, which is passed through by an axial current. We
choose Pm = 107% and a Hartmann number Ha = B, R(c/pr)'/? = 100 which is
already significantly higher than the critical Hartmann number Hac,iy =21.09 for
the infinitely long cylinder [13].

Fig. 1 illustrates the occurrence of helicity oscillations in the saturated regime
of the TI. Panel (a) shows the logarithms of the Reynolds number for the total flow
and its individual azimuthal modes m =0, 1, 2. The initial exponential increase
of the dominant m =1 mode is later accompanied by the steeper increase of the
nonlinearily produced m =0 and m =2 modes. Saturation sets in shortly before
t, =0.1 (the time is normalized to the viscous time scale) when the energy of the
m =0 and m =2 modes becomes comparable to that of the dominant m =1 mode.
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Fig. 1. Evolution of various quantities for a developing TI at Pm = 107% and
Ha =100. (a) The Reynolds number of the total flow and of the first azimuthal modes
individually. The exponential increase (note the log-scale of the ordinate axis) is followed
by a saturated state with a nearly constant Reynolds number. (b) Normalized a-effect,
showing a spontaneous symmetry breaking in the kinematic growth phase of the TI,
and a clear oscillation in the saturated phase. (¢) Normalized (-effect, showing a rather
constant value in the saturated regime. (d) Normalized helicity, and four snapshots of
the velocity field in the saturation regime. Note the slightly changing tilts of the two
vortices which produce the oscillation of the helicity and «. After [10].
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What is interesting is the behavior of the a-effect in panel (b), which produces an
azimuthal current and, therefore, an axial magnetic field. In the saturated regime
(for t,, > 0.1), this spontaneous symmetry breaking gives way to a pronounced
oscillatory behaviour. In contrast to the oscillation of o and the related helicity,
the S-effect (c) is rather constant in the saturation regime.

An illustration of the helicity oscillation is provided in Fig. 1d which shows
the velocity field of the TT at 4 particular instants. While the two main TI vortices,
which are typical for the chosen aspect ratio, point essentially in the same direction,
we can observe some slight change of their tilt which produces the oscillation of
the helicity and o.

2. Synchronized helicity oscillations and the solar dynamo cycle.
The observed helicity oscillation seems to be a generic feature of the saturated
TI for large enough Ha at low Pm (note that Bonanno and Guarnieri [14] could
not find helicity oscillations in a simplified model which corresponds to Pm = 1).
We ask now for its possible implications for Tayler-Spruit type stellar dynamos.
Specifically, we will introduce some m = 2 viscosity perturbation of the base state
which serves as a surrogate for the tidal torque of planets on the stellar tachocline.
The background of our consideration is the claimed relation of the ~ 11 years
period of the dominant tidal forces of the Venus-Earth—Jupiter system with the
~ 22 years of the solar cycle [15-21].

Although these tidal forces are usually considered as much too weak to in-
fluence the solar dynamo, one should also keep in mind the large gravitational
acceleration at the tachocline that amounts to 540m/s? [22]. This translates the
apparently tiny tidal heights of the order of 1 mm [23] to equivalent velocities of
v = (2gh)"/? ~ 1m/s. Such velocities, when allowed to coherently develop in the
quiet regions of the tachocline (and not being overwhelmed by the highly fluctu-
ating velocities prevailing in the convection zone) might indeed be relevant for the
dynamo.
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Fig. 2. Resonance between an m =2 viscosity oscillation according to Eq. (1) and the
oscillation of a.. (a) Amplitude of the « oscillation versus T, /To. (b) Ratio Tx/To versus
T, /Ty, showing a clear 1:1 resonance. After [12].
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Without any perturbation, when choosing Ha =80, the TI would lead to a
weak helicity oscillation with a certain period T;. We impose on this state an
m =2 oscillation of the viscosity v in the form

v(r,d,t) = wvo{l + A[l +0.5r%/R?sin(2¢)(1 + cos(27t/T,))]} (1)

which includes a constant term 15(1 + A) and an additional term with an m =2
azimuthal dependence that is oscillating with a period 7,,. For the intensity of
the viscosity wave, we select now three specific values A =1/32, 1/16, 1/8. The
resulting amplitude of the oscillation of o (and the helicity) is shown in Fig. 2a, its
period Ty in Fig. 2b. Obviously, we obtain a strong 1 : 1 resonance of the oscillation
amplitude at T, = Tp.

What are the possible consequences of this synchronization of « for a complete
Tayler-Spruit dynamo? To answer this question, we consider the simple zero-
dimensional equation system

da(t) _
D= a(b(t) ~ 7 a(t) )
d(t) B

which describes the transformation of poloidal field a to toroidal field b via some
Q-effect, and the back-transformation of toroidal to poloidal field via the TI-based
a-effect. The free decay time of the respective modes is denoted by 7. Note that
similarly simple equation systems have been widely used to understand various
dynamo features [24]. Hereby, «(t) is parametrized according to

c pb°(t)

alt) = ¥ 90200 + TE (D) sin (27t /T)) (4)

which represents, in its first part, some constant term which is only quenched by
the magnetic field energy b2, plus a time-dependent part with the tidal period
T,, the prefactor of which is chosen such as to emulate the resonance condition
T, =T seen in Fig. 2.

The resulting dynamo behaviour is quite interesting. Fig. 3a shows approx-
imately half a period of a dynamo cycle for the particular choice ¢ = 0.8, g = 1,
p =38, h =10, 2 = 10. We observe a clear sign change of the magnetic field,
and amazing “spiky” features of « close to the turning point of @ and b. The
capitals A...E mark various instants with specific features to be explained in the
following: initially, at A, « is strongly quenched by the large value of b, whereas
its oscillatory part is negligible since b is so strong that we are far away from res-
onance. While b decreases, it reaches a level at which the TI helicity oscillation
becomes resonant with the viscosity oscillation. This happens at B when b ~ 0.56,
which actually corresponds to the maximum of the pre-factor b2/(1 + 10b*) of the
oscillatory term in Eq. (4). At this point « becomes strongly negative. Shortly
after, at C, b drops to zero, so that the quenching of the constant term of alpha
disappears and « acquires the unquenched value ¢ (here ~ 0.8). Later, at D, b
passes again through the resonant point b ~ —0.56 for the helicity oscillation so
that the oscillatory part contributes again its large, but now positive, value to a.
Finally, at E, b increases quite smoothly until it reaches a maximum amplitude,
where « is strongly quenched and rather constant.

In Fig. 3b we compare an appropriately scaled and time-shifted segment of
our a(t) with the available time series of the 20 nHz filtered north and south
polar field data. An amazing coincidence exists between the additional peaks of
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the north and the south polar field in Fig. 30 and the corresponding spikes of
our a (indicated by the three black arrows). Another point, seen in Fig. 3a, is
related to the vigorous, “spiky” variations of « close to the reversal point of a and
b. It is tempting to relate this behaviour to the short-term sign changes of the
current-helicity, as observed recently [25].

3. And the butterfly diagram? For decades, mean-field theory had
served as the standard model of the solar dynamo, providing a natural explanation
for the periodicity and the equator-ward sunspot propagation of the solar cycle [26].
However, this model suffered a blow when helioseismology mapped the differential
rotation in the solar interior [27]. In particular, the positive radial shear in a +30°
strip around the equator results in a serious problem with the Parker-Yoshimura
sign rule that requires a«d2/0r < 0 in the northern hemisphere for the correct
equator-ward propagation of sunspots [28; 29].

A possible solution of this dilemma was found in the Babcock-Leighton mech-
anism [30, 31], which interprets the generation of poloidal field by the stronger
diffusive cancellation of the leading sunspots (closer to the equator) compared
with that of the trailing spots (farther from the equator). This leads to a spatially
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Fig. 3. Evolution of the equation system (2-4) with tidal forcing of 11.07 years. (a)
Parameter choice ¢ =0.8, ¢ =1, p =8, h =10, Q =10. (b) Comparison of the north
and south polar magnetic field and the parameter a computed for ¢ =0.8, p =8, h =10,
Q) =50, g =1, appropriately scaled and shifted in time. The field data are the 20nHz
filtered data from Wilcox Solar Observatory (courtesy of J.T. Hoeksema). After [12].
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separated, or flux-transport, type of dynamo [32], which also provides the correct
butterfly diagram when it is combined with an appropriate meridional circulation.

Coming back to our synchronization model, we might ask what direction of
the butterfly diagram it would provide. For this purpose, we consider the following
slight extension of the equation system (2)—(4):

dal(t) - 1

1 W) e ) 6
120 a0)r0) + ba(1) — 7 as(0) )
P an(t) — () — 3, ) ™
20— s0as(t) — 7 0alr). (8)

Here, the amplitudes a; and as represent the first and the second possible meri-
dional harmonics of the poloidal field, whereas by and by stand for the first two
harmonics of the toroidal field. Although this equation system is motivated by
the system given by Nefedov and Sokoloff [33], we keep its pre-factors a bit more
generic since we actually do not know the exact meridional dependence of the first
two relevant (poloidal and toroidal) eigenmodes.

While in the original paper [33] the free decay rates of the individual modes
were derived as Ta_ll =1, Ta_21 =9, Tb_ll =4, and 7'b_21 = 16 (and the factor kK = 3),
we choose here 7',1_11 =1, 7'a_21 = 3.2, Tb_ll =1, and Tb_zl =32, k=1

The resulting butterfly diagram is shown in Fig. 4, when further choosing
c=08,9g=1,p =38 h =10, Q =100, and Ty =11.07 yr. Surprisingly, our
synchronization model produces the correct orientation of the butterfly diagram
even when the product of ¢ (the constant part of ) with Q is positive! However,
given the many parameters that enter the equation system (5)—(8), together with
the complex expression for «, more parameter studies are necessary in order to
check the robustness of this behaviour.
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Fig. 4. Butterfly diagram resulting from the equation system (5)—(8) when choosing
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4. Conclusions. While the traditional explanation of the Hale cycle of the
solar magnetic field relies on intrinsic features of the solar dynamo, such as the
magnetic diffusivity, the amplitudes of Q, o and the meridional flow [34], we have
focused on a mechanism that could allow for synchronizing the solar dynamo with
planetary tides.

Motivated by the spontaneous occurrence of helicity oscillations in the sat-
urated state of the TT as observed in [10], we studied a simplified model for the
resonant excitation of those oscillations by a viscosity oscillation with an m =2
azimuthal dependence that serves as dummy for a tidal forcing. The helicity and
« oscillations, thought to be excited by the 11.07 years periodic tide produced by
the Venus—Earth—Jupiter system, served as a “clock” for the 22.14 years dynamo
cycle of a reduced, zero-dimensional a-2 dynamo model. Actually, similar reson-
ance phenomena have been discussed in connection with the swing excitation of
galactic dynamos [35] and with the von-Kdrmén-sodium dynamo experiment [36].
However, it is a key feature of the mechanism discussed here that it requires only
weak external perturbations to trigger the helicity oscillations which just reshuffle
the energy between left- and right-handed TT modes. That way the tiny planetary
forces might indeed get a chance to synchronize the solar dynamo. By slightly
extending the model of [12] we have also shown that our model may lead to the
correct orientation of the butterfly diagram.

An obvious next step is related to the question of whether longer periodicities
of the solar dynamo, such as the 87-year Gleissberg cycle, the 210-year Suess-de-
Vries cycle, and the 2300-year Hallstatt cycle [37-42], could also be explained in
the framework of the synchronization model. The solution of this problem might
have tremendous consequences, in particular, if any of the disputed mechanisms
for connecting solar activity and terrestrial climate [43-46] could be validated.
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