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Abstract

The numerical solution of the population balance equation is frequently achieved by means of discretization,

i.e., by the method of classes. An important concern of discrete formulations is the preservation of a chosen

set of moments of the distribution, e.g. numbers and mass, while remaining flexible on the grid applied. As

for the physical modeling of the breakup rate, two approaches exist. One type states the breakup rate of a

mother particle and requires a function that describes the distribution of daughter particles. The other type

gives the breakup rate between a mother and a daughter particle directly, usually under the assumption of

binary breakage. The lack of an explicitly stated daughter size distribution function has implications on the

formulation of the discrete equations, because existing formulations contain integrals over the daughter size

distribution function. To the knowledge of the authors, no efficient formulations for this type of models exist.

In the present work, a discrete formulation of the breakup terms due to binary breakage is proposed, which

allows a direct implementation of both kinds of models and an efficient solution of the population balance

equation, making it favorable for the coupling to computational fluid dynamics codes.

Keywords: Binary Breakup, Computational Fluid Dynamics, Incorporated Daughter Size Distribution,

Method of Classes, Population Balance Equation

1. Introduction1

The concept of population balance was first introduced by Hulburt & Katz (1964) and Randolph (1964)2

for the description of the dynamic behavior of particulate systems. Over the past five decades, population3

balance modeling found ever-increasing application in the field of chemical and pharmaceutical engineering. An4

extensive review was recently published by Ramkrishna & Singh (2014).5

Meanwhile, integrating the solution of the population balance equation (PBE) into computational fluid6

dynamics (CFD) software is becoming a popular and promising way of taking into account polydispersity7

without spatially resolving all elements of the dispersed phase and their interactions. Thereby, local size changes8

may be considered, which affect the interfacial area density as well as the flow structure. Among other reasons,9

this information is required to predict heat- and mass transfer rates or the transition from the homogeneous10

to the heterogeneous regime in bubble columns. Numerous examples of such coupled methods can be found in11

the literature. For example, Cheung et al. (2013) and Liao et al. (2015) predicted the bubble size distribution12
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in pipe flows. Chen et al. (2005) and Bannari et al. (2008) simulated gas-liquid bubble columns. Li et al.13

(2013) and Sen et al. (2014) did numerical investigations on a fluidized-bed spray granulation process. Bellot14

et al. (2014) dealt with the complex behavior in gas-stirred ladles. Metzger (2016) studied the fast precipitation15

crystallization process.16

A well accepted formulation of the PBE including aggregation and breakup as well as nucleation and growth17

is presented in Ramkrishna (1985, 2000) and Jakobsen (2008). Since the focus of this work lies on the breakup18

terms, we state the volume-based PBE as19

∂n(v)

∂t
=

∞∫
v

n(v′)Ωt(v
′)β(v, v′)dv′

︸ ︷︷ ︸
B(v)

−n(v)Ωt(v)︸ ︷︷ ︸
D(v)

, (1)

where n(v) represents the number density of particles with volume v. The source and sink terms B(v) and D(v)20

on the right hand side represent the birth rate of particles with volume v due to breakup of larger particles with21

volume v′ and their death rate due to breakup into smaller particles, respectively. The function Ωt(v
′) involved22

in the sources terms is typically referred to as a breakup kernel. It describes the total breakup rate of a mother23

particle of volume v′. The so-called daughter size distribution function β(v, v′) represents the probability that24

a daughter particle with volume v is generated by breakage of a mother particle with volume v′. Normal and25

beta distribution functions are often adopted for this purpose (Coulaloglou & Tavlarides, 1977; Lee et al., 1987;26

Martinez-Bazan et al., 1999; Laakkonen et al., 2006). Since no mass can be created or destroyed during the27

breakup of a particle, it must satisfy28

v′∫
0

vβ(v, v′)dv = v′ . (2)

Additionally, the following constraints must be fulfilled for binary breakage29

v′∫
0

β(v, v′)dv = 2 , (3a)

30

β(v, v′) = β(v′ − v, v′) . (3b)

These constraints express that only two daughter particles are generated per breakage event and that the31

β function is mirror-symmetrical with respect to v = 0.5v′. On the basis of Eq. 2 and Eq. 3a, the global32

conservation of particle numbers and mass is satisfied during binary breakage processes33

∞∫
0

B(v)dv

/ ∞∫
0

D(v)dv = 2 , (4a)

34
∞∫
0

vB(v)dv

/ ∞∫
0

vD(v)dv = 1 . (4b)

35

Analytical solutions of the PBE are limited to very few and simple forms of kernels (McCoy & Madras,36

2003; Singh, 2014; Pinar, 2015). A detailed discussion about numerical approaches is given by Bayraktar37

(2014). Stochastic methods (Meimaroglou & Kiparissides, 2007; Goodson & Kraft, 2004; Kruis et al., 2012)38
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Figure 1: Discretization over the internal coordinate with representative sizes xi and size group boundaries vi

like Monte-Carlo simulations are comparatively slow but very exact. They are often used for the purpose39

of validating other methods. The method of moments (Wick et al., 2017; Madadi-Kandjani & A., 2015) is40

efficient, especially its quadrature-based version. Based on the rational that only averaged information about a41

distribution is relevant, a few low order moments need to be tracked. For example, if the PBE is written as a42

transport equation for the diameter-based number density function, then the Sauter mean diameter d32 can be43

determined by dividing the third by the second moment of the distribution. Since this is a relevant parameter44

for interfacial mass, energy and momentum exchange models in Euler-Euler simulations, it would be enough45

to solve for the zeroth to third moments. It is also possible to reconstruct the number density function from46

the moments as done by Yuan et al. (2012). The method of classes, also called discrete or sectional methods47

(Batterham et al., 1981; Hounslow et al., 1988; Kumar & Ramkrishna, 1996b) is an attractive and widely48

used alternative to the aforementioned approaches. It finds itself in between regarding the computational cost.49

Furthermore, its inherent information about the number density function is an appealing feature. The particle50

size is a fundamental property of any particulate system and it influences a variety of other properties, e.g., the51

settling and deposition of inhaled particles in the respiratory tract (Thomas, 2013). The method of classes is a52

popular method for coupling the PBE solution to a CFD simulation and also the focus of the current work.53

Here, the class method with fixed pivots proposed by Kumar & Ramkrishna (1996a) is used. The continuous54

PBE (Eq. 1) is integrated over a size range [vi, vi+1], which gives the total number of particles (or number55

concentration per control volume) Ni in this interval or class56

Ni =

vi+1∫
vi

n(v)dv . (5)

The terms on the right-hand side of Eq. eq:PBE are closed by utilizing the mean value theorem on the breakup57

rate. The integrals are expressed as sums over sub-intervals as defined by the discretization. The population of58

particles is assumed to be concentrated at representative sizes xi, giving a source-term coupled set of differential59

equations for the number of particles in each interval60

∂Ni
∂t

=

M∑
j=i

NjΩt(xj)

vi+1∫
vi

β(v, xj)dv

︸ ︷︷ ︸
B(xi)

−NiΩt(xi)︸ ︷︷ ︸
D(xi)

. (6)

A possible discretization over the internal coordinate is sketched in Fig. 1. Each class is given by its two61

boundary values vi and vi+1, which may be positioned in the middle of two adjacent representative values, i.e.,62

vi = (xi−1 + xi)/2. The interval width of class i is ∆vi = vi+1 − vi. For more details the reader is referred to63

Kumar & Ramkrishna (1996a).64

As shown in Fig. 2, the daughter particles generated by breakup may have sizes different from the repre-65

sentative values of the classes. For example, if a particle with the representative volume xj breaks up into one66
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Figure 2: Breakup of a particle of volume xj to a particle of volume xk and its counterpart of volume xj − xk falling into the

interval [xi, xi+1]

daughter particle with the representative volume xk, its counterpart with volume v = xj−xk often falls between67

two classes, e.g. between classes i and i + 1. If the resultant particles with a volume unequal to any pivot are68

assigned to the nearest class without adjustment, the mass and numbers would not be conserved in individual69

events (Bove, 2005). To guarantee mass and number conservation, i.e., internal consistency of the equations70

(Kumar & Ramkrishna, 1996a), both daughter particles have to be taken into account properly for each breakup71

event and the daughter size distribution function β(v, xj) in Eq. 6 should not simply be approximated by the72

mean value theorem, i.e., β(v, xj) = β(xi, xj). Therefore, the birth term requires further mathematical manip-73

ulation. The focus of the present work is a discrete formulation which works well for all breakup kernel types.74

The formulation is efficient for application in CFD and ensures both mass and number conservation. The paper75

is structured as follows: in Sect. 2 we discuss some limitations in existing formulations. An alternative discrete76

formulation is presented in Sect. 3 and its validation in Sect. 4. Finally, Sect. 5 concludes the paper.77

2. Previous work78

For the framework of breakup modeling, two different approaches are commonly used. Many breakup models79

such as those of Coulaloglou & Tavlarides (1977), Lee et al. (1987), Tsouris & Tavlarides (1994) and Martinez-80

Bazan et al. (1999) use the classical framework given in Eq. 1, i.e., they employ a total breakup rate Ωt(v
′) and81

a separate continuous function for the daughter size distribution β(v, v′). Other breakup models such as Luo &82

Svendsen (1996), Lehr et al. (2002), Wang et al. (2003), Zhao & Ge (2007), Liao et al. (2011) and Xing et al.83

(2015) introduce kernels with an incorporated binary daughter size distribution, thereby providing the partial84

breakup rate Ωp(v, v
′) directly. It is mirror-symmetrical about v = v′/2 and defined by the product of the total85

breakup rate and the daughter size distribution86

Ωp(v, v
′) = Ωt(v

′)β(v, v′) . (7)

As discussed in Sect. 1 for β, an approximation of Ωp using the mean value theorem will also lead to incon-87

sistency. When a partial breakup model is used in combination with a discrete formulation that is based on88

a total breakup rate and a continuous daughter size distribution function, the total breakup rate needs to be89

calculated for each representative value90

Ωt(v
′) =

1

2

v′∫
0

Ωp(v, v
′)dv . (8)
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In a CFD simulation where the breakup rate depends on flow field parameters, the above integration would91

need to be carried out for each control volume (Wang & Wang, 2007; Bannari et al., 2008), thereby increasing92

the computational cost.93

In the course of developing a discrete formulation that guarantees the conservation of mass and finally also94

numbers, many techniques were proposed, frequently with a pure focus on coalescence. Considering particles95

consisting exclusively of xi = 2i−1 monomers, Vanni (2000) extended the work of Batterham et al. (1981) for96

pure coalescence to the case of breakup. It was shown to be poor in capturing the shape of the number density97

function due to the very coarse grid. In addition, the formulation fails in preserving the total particle number,98

in spite of being mass conservative, as stated by Kumar & Ramkrishna (1996a).99

An approximate method proposed by Marchal (1988) has no restriction on the choice of the representative100

values and boundaries. However, it has a restriction on the distribution of daughter particles. Their formulation101

is only applicable in cases where the size of the two daughters is precisely known (Vanni, 2000).102

Hill et al. (1995) and Vanni (1999) tried to remove the inconsistency error by introducing correction factors103

in the birth and death terms. Hill et al. (1995) determined these factors by evaluating the budget of the zeroth104

and first moment, aiming at a correct prediction of numbers and total mass. The method was tested for a total105

breakup rate with a power law form against theoretical and empirical daughter particle size distributions. It106

was shown that in all cases mass is conserved, but the total number of particles is not correct in most cases.107

The approximation method proposed by Vanni (1999) differs from that by Hill et al. (1995) only in the108

choice of the second constraint for the determination of the correction factors. Instead of a correct prediction of109

the total number of particles, they evaluated the net rate at which particles disappeared from each class from110

the uncorrected PBE. The corrected death term was set equal to this rate.111

For pure coalescence Gelbard & Tambour (1980) derived a general conservation equation for the quantity q112

q = αvγn(v), (9)

where α and γ are constants, by applying the mean value theorem on the number density n(v) instead of the113

breakup rate. In this way, the preservation of the γ th moment is satisfied automatically, but not those of the114

moments with order different from γ. The approach was extended by Vanni (2000) to breakup events.115

Keeping in mind, that the discrete formulation should exhibit number and mass conservation for any given116

discretization over the internal coordinate, a very general and established framework was proposed by Kumar117

& Ramkrishna (1996a). A benchmark study of several formulations for cases where coalescence and breakup118

occur simultaneously was conducted by Vanni (2000). He concluded that the method of Kumar & Ramkrishna119

(1996a) is favorable with respect to accuracy, efficiency and robustness. Therefore, it is used as a reference120

in the present work. If a particle breaks into particles with sizes other than the representative ones given by121

the discretization, this method allocates fractions between the two nearest neighbors. The fractions can be122

calculated in a way that guarantees the preservation of two chosen moments of the distribution, e.g. numbers123

and mass. For the latter, the discrete birth and death terms representing breakup are expressed as124

B(xi) =

M∑
j=i

ηjiNjΩt(xj) ,
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125

D(xi) = NiΩt(xi) .

The coefficient126

ηji =

xi+1∫
xi

xi+1 − v

xi+1 − xi
β(v, xj)dv +

xi∫
xi−1

v − xi−1
xi − xi−1

β(v, xj)dv (10)

The first and second term reduce to zero for i = j and i = 1. Like all other methods discussed above it is based127

on the classical framework and efficient if analytical expressions for the daughter size distribution are available,128

or if its integration over v is manageable at low computational cost. If a partial breakup rate model is used, the129

framework cannot be directly and readily applied anymore. As discussed at the beginning of this section, Ωt130

and β need to be obtained using Eq. 7 and 8, which affects the performance of a CFD simulation. Hagesaether131

et al. (2002) introduced a formulation for partial breakup kernels stating132

B(xi) =

M∑
j=i+1,i6=M

NjΩ
′
p(xi, xj)

+

i∑
j=1,i6=M

χi+1,jNi+1Ω′p(xj , xi+1)

+

i−1∑
j=1,i6=1

(1 − χi+1,j)NiΩ
′
p(xj , xi) ,

D(xi) =

i−1∑
j=1

NiΩ
′
p(xj , xi) ,

where χi,j = 21+j−i. However, this formulation is restricted to xi+1/xi = 2.133

In the next section an efficient discrete formulation for binary breakage is given. It avoids the numerical134

integration of Eq. 8 and allows a direct use of partial as well as total binary breakup rate models. Furthermore135

it is flexible in terms of discretization over the internal coordinate while preserving both mass and numbers by136

fulfilling the conditions given by the Eqs. 2, 3 and 4.137

3. An alternative discrete formulation138

As discussed in Sect. 1, a binary breakage event may lead to the formation of particles with volumes different139

from the representative values if the mother and one daughter particle are positioned at a representative value.140

In this case, the mean value theorem should not be applied on β or Ωp for these secondary particles to avoid141

inconsistency. In the new discrete formulation, these particles are accounted for through their complementary142

partners (xk in Fig. 2), which may coincide with a representative volume. For that purpose, before the143

discretization of Eq. 1 the birth by breakup term B(v) is rewritten to144

B(v) =

∞∫
v

n(v′)Ωt(v
′)β(v, v′)θ(v ≤ v′/2)dv′ (11)

+

∞∫
v

n(v′)

v′∫
0

Ωt(v
′)β(v′′, v′)δ(v′′ − (v′ − v))θ(v′′ ≤ v′/2)dv′′dv′ .
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The formulation in Eq. 11 exploits the symmetry relation for β given in Eq. 3b, by classifying the daughter145

particles into two groups, i.e., one smaller than half of the respective mother particle size and the other one146

larger than it. This is achieved through the step function147

θ(x) =

0 if x is false ,

1 if x is true .

The integration over all possible mother particles v′ remains as given in Eq. 1. The first term represents the148

breakage of v′ into v for all daughter particles that are smaller than v′/2. The second term introduces an149

additional inner integral over the range of complementary daughter particles v′′. For a given mother particle150

size v′, the secondary daughter particle with size v′ − v′′ may contribute to the change of n(v), as determined151

by the delta function δ(v′′ − (v′ − v)). v′′ is also set to be smaller than v′/2 in order for the second term to152

be active. Inversely this means, that the secondary daughter particle v′ − v′′ has a size greater than v′/2. The153

advantage of the reformulation becomes clear by deriving the discrete version. For that purpose, Eq. 11 is154

integrated over a size range [vi, vi+1], giving155

vi+1∫
vi

B(v) =

vi+1∫
vi

∞∫
v

n(v′)Ωt(v
′)β(v, v′)θ(v ≤ v′/2)dv′dv

+

vi+1∫
vi

∞∫
v

n(v′)

v′∫
0

Ωt(v
′)β(v′′, v′)δ(v′′ − (v′ − v))θ(v′′ ≤ v′/2)dv′′dv′dv .

The integrals are expressed as sums over sub-intervals. The total breakup rate, Ωt(v
′) and the daughter size156

distribution functions, β(v, v′) and β(v′′, v′), are now approximated by the mean value theorem. Furthermore,157

the integral over the number density n(v) is substituted by Ni using Eq. 5, yielding158

B (xi) =

M∑
j=i

NjΩt(xj)β(xi, xj)

vi+1∫
vi

θ(v ≤ xj/2)dv (12)

+

M∑
j=i

j∑
k=1

NjΩt(xj)β(xk, xj)

vi+1∫
vi

δ(xk − (xj − v))dv

vk+1∫
vk

θ(v′′ ≤ xj/2)dv′′ .

A further elimination of the remaining integrals gives159

B (xi) =

M∑
j=i

Nj

[
Ωt(xj)β(xi, xj)∆vi(j) +

j∑
k=1

Ωt(xj)β(xk, xj)Yijk∆vk(j)
]
. (13)

Possible inconsistencies introduced by the mean value theorem may be compensated by an appropriate dis-160

cretization of the Dirac function (Engquist et al., 2005). The discrete δ function for class i, referred to as161

regularized weight function Yijk, determines the fraction that is assigned to class i if a secondary daughter162

particle with size xj − xk falls into the neighborhood of xi. For the exact conservation of mass and numbers, it163

is given by164

Yijk =



(xj − xk) − xi−1
xi − xi−1

if xi−1 ≤ xj − xk < xi ,

xi+1 − (xj − xk)

xi+1 − xi
if xi ≤ xj − xk < xi+1 ,

0 else .

(14)

7



Note that it is possible to achieve the preservation of any two chosen moments by adapting the function Yijk.165

For more details the reader is referred to Kumar & Ramkrishna (1996a).166

The integrals over the step functions in Eq. 12 result in167

∆vi(j) =


vi+1 − vi if vi+1 ≤ xj/2 ,

xj/2 − vi if vi < xj/2 < vi+1 ,

0 if vi ≥ xj/2 .

The β function in Eq. 13 is now stated in discrete form. Combining with Eq. 7 and Eq. 8, the discrete form of168

the partial breakup rate states169

Ωp(xi, xj) = Ωt(xj)β(xi, xj) , (15)

and that of the total breakup rate170

Ωt(xi) =

i∑
j=1

Ωp(xj , xi)∆vi(j) . (16)

As a result, the discrete formulation of the birth term in Eq. 13 is transformed into171

B (xi) =

M∑
j=i

Nj

[
Ωp(xi, xj)∆vi(j) (17)

+

M∑
k=1

Ωp(xk, xj)Yijk∆vk(j)
]
,

and the death by breakup term in Eq. 6, D(xi), is rewritten as172

D (xi) = Ni

i∑
j=1

Ωp(xj , xi)∆vj(i) . (18)

The formulation is therefore generally applicable for both frameworks of breakup modeling for the case of binary173

breakage. The implementation of models with an incorporated daughter size distribution is direct and efficient,174

since it avoids the integration in Eq. 8.175

4. Numerical results176

Following the case presented by Kumar & Ramkrishna (1996a), we assume pure breakage processes starting177

from a monodisperse initial condition178

n(v, t0) =

0.05 if v = 1 m3 ,

0 otherwise .

The numerical results are obtained for geometric grids, i.e., the class boundaries are calculated by vi+1 = svi179

with s > 1. All results are compared with a reference solution obtained with the formulation of Kumar &180

Ramkrishna (1996a), denoted as ”Reference” in subsequent figures. For each test case, the number density181

function182

n(xi, t) =
Ni(t)

vi+1 − vi
,

8



Case Breakup rate Daughter size distribution

1 Ωt(v
′) = v′2 β(v, v′) = 2/v′

2 Ωt(v
′) = v′2 β(v, v′) =

12

v

( v
v′

)(
1 − v

v′

)
3 Ωt(v

′) = 0.4
ε1/3

(1 + αg)v′2/9
exp

[
−0.08

σ(1 + αg)
2

ρlε2/3v′5/9

]
β(v, v′) =

4.8

v′
exp

[
−4.5

(
2v − v′

v′

)2
]

4 Ωp(v, v
′) = C1

1 − αg
v′

( ε

d′2

)1/3 1∫
ξmin

(1 + ξ)
2

ξ11/3
exp

[
− 12cfσ

C2ρlε2/3d′5/3ξ11/3

]
dξ

with C1 = 0.923, C2 = 2.0, cf =
(
v
v′

)2/3
+
(
1 − v

v′

)2/3 − 1, ξ = λ/d′, ξmin = 11.4η

Table 1: Test cases for validation

the time development of the total particle number183

M0(t) =

M∑
i=1

x0iNi(t) ,

and the Sauter mean diameter184

d32(t) =

M∑
i=1

d3iNi(t)

M∑
i=1

d2iNi(t)

are presented.185

The test cases, each applying a different breakup model, are summarized in Tab. 1. The first case, case186

1, uses a power-law kernel in combination with a uniform daughter size distribution. An analytical solution is187

given by Ziff & McGrady (1985). The daughter size distribution for the second test case, case 2, assumes a188

beta distribution, as used by Lee et al. (1987). The third case, case 3, employs the model from Coulaloglou189

& Tavlarides (1977), which assumes an exponential function for the total breakup frequency and a normal190

function for the daughter size distribution. For case 1, 2 and 3, total breakup models with a separate daughter191

size distribution function are applied. These cases aim at a validation of the new formulation against an192

analytical solution and reference solutions based on the formulation of Kumar & Ramkrishna (1996a). It is193

expected that both formulations deliver a similar performance. In contrast to the first three cases, the last case,194

case 4, shows the benefits of the new formulation for partial breakup models with an incorporated daughter size195

distribution. The well-accepted model from Luo & Svendsen (1996) is applied for that purpose. As discussed196

in previous sections, the use of the new formulation in Eq. 13 has convincing advantages in this situation, since197

the model provides the partial breakup rate Ωp(vi, vj) directly. On the other hand, if the reference formulation198

is applied, an additional numerical integration is required when solving Eq. 8 in order to obtain the daughter199

size distribution β(vi, vj). This increases the computational cost. The parameters used for the test cases are200

αg = 0.05, ρl = 997 kg m−3, ρg = 1.0 kg m−3, σ = 0.072 N m−1, ε = 0.001 m2 s−3, and µl = 0.0008899 Pa s−1.201

Case 1. Figure 3a and 3b show a comparison between the numerical and the analytical particle number density202

n(v). Note that for the class representing the smallest particle size, the lower boundary v1 is set to the value203

9
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Figure 3: Results for Case 1
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of the representative size x1. It is obvious that the predictions for the power law kernel in combination with204

a uniform daughter size distribution are in good agreement with the analytical solution even for the coarse205

grid. However, a discretization error exits in both sets of numerical results for s = 3 in the large particle206

size range, where the initial number density gradient as well as the class width are large (see Fig. 3a). The207

transient variation of M0 is shown in Fig. 3c. A slight over-prediction exists, if a coarse grid (s = 3) is applied.208

The discretization error vanishes as expected, if the resolution is increased by decreasing the value of s. The209

numerical and the analytical results are in a good agreement at s = 1.5 and the total particle number obtained210

by the new and the reference formulation are identical for both values of s. The Sauter mean diameter d32 is211

a key parameter for CFD simulations of particulate or bubbly flows, since it is used for many correlations for212

the interfacial transfer of momentum, heat and mass. Its transient variation is shown in Fig. 3d. In a pure213

breakage process, the mean size of particles decreases continuously. The effect of grid resolution is found to be214

negligible in this case. The predictions for both fine and coarse grids coincide with the analytical results and215

the reference solution.216

Case 2. Unlike for the above uniform daughter size distribution, the probability of equal-sized breakage is the217

highest in the beta distribution given for this case. Figure 4a and 4b show a comparison between the predictions218

for the particle number density obtained by the reference and the new formulation. An analytical solution is219

not available for this case. It is found that the results deviate from each other toward the small particle size end220

for the coarse grid (s = 3), as shown in Fig. 4a. In addition, a grid-dependency of the results obtained by using221

the reference formulation is observed, while the new formulation behaves similar at both resolutions. The over-222

prediction of particle number on coarse grids by the reference formulation is discussed in Kumar & Ramkrishna223

(1996b) and Bayraktar (2014). With the refinement of the grid, the predictions of both formulations coincide224

with each other, see Fig. 4b. The corresponding predictions for the total number of particles as well as Sauter225

mean diameter for Case 2 are shown in Fig. 4c and Fig. 4d, respectively. Satisfying agreement is achieved for226

the Sauter mean diameter, which is mainly governed by the particles in the large size range. Nevertheless, the227

over-prediction of the total particle number by the Kumar & Ramkrishna (1996a) formulation at s = 3 due to228

the over-prediction of the birth rate of small particles is shown here as well.229

Case 3. In case 3 the breakup model from the work of Coulaloglou & Tavlarides (1977) is adopted. In contrast230

to case 1 and 2, the breakup frequency is higher, which results in the effect that the majority of particles231

is concentrated at the smaller particle size end after a relatively short time period. The parameters used to232

determine the breakup rate are given at the beginning of Sect. 4. The number density function is plotted233

in Fig. 5a and 5b. The deviation between the two sets of results for the coarse grid is evident here as well.234

Yet they converge to one another for the finer grid. Figure 5c shows that in the first 30 s, the total particle235

number predicted by the reference and the new formulation are in quantitative agreement. With increasing time,236

however, the results diverge from each other for the coarse grid, and the new formulation predicts higher values237

than the reference formulation of Kumar & Ramkrishna (1996a). This deviation is caused by the treatment at238

the lower bound of the first class. Since v1 is set to x1, the birth rate of particles in the range [0, x1] due to239
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breakup of larger particles is not considered. The omitted parts,240

x1∫
0

NjΩt(xj)β(v, xj)dv

for the reference formulation, and241

NjΩt(xj)β(x1, xj)∆v1(j)

for the new one, are identical for constant β as in case 1 and of comparable magnitude for sufficiently large242

mother particle sizes xj as in case 2. However, the difference becomes larger as the size of the breaking particles243

becomes smaller. The deviation depends on the features of the β function and the value of ∆v0(j), and is244

responsible for the discrepancy between the methods. It should be mentioned though, that for a system with245

simultaneous coalescence and breakage, the discretization over the internal coordinate should ensure, that the246

number of particles in the first as well as the last size class remains zero. If this is the case, the above differences247

will be reduced. Furthermore, it is worth noting that limiting v1 to x1 is a necessity for the reference formulation,248

but not for the new formulation, which satisfies the overall balance between birth and death either way, provided249

that the death rate is calculated by Eq. 18. The temporal evolution of d32 is illustrated in Fig. 5d. In this250

case, the prediction by the new formulation also agrees well with the reference formulation if a sufficiently fine251

discretization is applied.252

Case 4. The last case shows the behavior of the new and the reference formulation for partial breakup models253

like the model of Luo & Svendsen (1996). The predicted particle number density functions are shown in254

Fig. 6a and 6b, respectively. The two formulations deliver almost identical results for both grids. Figure255

6c shows the evolution of total particle number. It is shown that the prediction using the new formulation256

almost coincides with the reference solution. According to the Luo & Svendsen (1996) model, the daughter size257

distribution should obey a U-shape function, which gives the highest probability for unequal-sized breakage. A258

steep gradient appears in the birth rate of daughter particles with sizes approaching zero or the mother particle259

size, respectively. Because of that, a large number of nodes is required for the numerical integration of Eq. 8260

in these regions. Otherwise, the birth rate may be under-predicted. The temporal evolution of Sauter mean261

diameter in the first 50 s is depicted in Fig. 6d, with very similar predictions as well. In a word, comparable262

results are obtained with both formulations. However, the implementation of partial breakup models in the263

new formulation given by Eq. 17 and 18 is direct and efficient without any numerical integrations.264

5. Conclusions265

A discrete formulation of the PBE for binary breakage is presented. It is shown to be applicable for266

both frameworks of breakup modeling, i.e., total and partial breakup kernels with a separate or incorporated267

function for the daughter size distribution. Its validity is tested for various cases with different breakup models268

and daughter size distributions, using an analytical solution as well as reference solutions based on the work of269

Kumar & Ramkrishna (1996a). Two geometric grids are applied and the results for particle number density,270

total number and Sauter mean diameter predicted by the new and the reference formulation coincide for the finer271
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grid. Both formulations ensure the preservation of numbers and mass. The preservation of other moments may272

be achieved by adapting the weight function Yijk (Eq. 14) accordingly, as presented by Kumar & Ramkrishna273

(1996a). Furthermore, the formulation is flexible on the discritization and applicable for a constant or increasing274

class width, i.e., uniform and geometric grids with section spacing factors s ≥ 1. The advantage of the new275

formulation is the possibility to directly implement partial breakup models (Luo & Svendsen, 1996; Liao et al.,276

2015), which provide the breakup rate between a mother and a daughter particle directly. It avoids the extraction277

of the daughter size distribution by means of numerical integration, which introduces considerable numerical278

cost and is required for the reference formulation, making it more suitable for the coupling with CFD.279

Nomenclature

B birth rate m−3 m−3 s−1

D death rate m−3 m−3 s−1

d bubble diameter m

M moment of number density distri-

bution

m−3

n number density m−3 m−3

N number concentration m−3

s section spacing factor −

v, x particle volume, representative

volume

m−3

Greek letters

α void fraction of particles −

β size distribution probability of daugh-

ter particles

m−3

∆v class width m−3

δ Dirac delta function −

ε turbulent dissipation rate m2 s−3

η Kolmogorov length scale m

µ liquid dynamic viscosity Pa s

ρ density kg m−3

σ surface tension coefficient N m

Ωp partial breakup rate s−1 m−3

Ωt total breakup rate s−1
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Subscripts

g gas

i, j, k indexes of size classes

l liquid

p partial

t total

0 zeroth moment
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