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Abstract

In this work, optical pump — near-infrared probe and near-infrared pump — mid-infrared
probe spectroscopy are used for the investigation of pressure-induced insulator-to-
metal transitions in transition metal oxide compounds. The materials under study
are a-FesOgs, also known as hematite, and VOs. Both materials undergo pressure-
induced metallization. However, the physical mechanisms of this phase transition are
very different for these systems and have not been fully understood up to now. Using
ultrafast pump-probe spectroscopy we obtain an insight into the evolution of the band
structure and electron dynamics across the insulator-to-metal transition.

In the case of VO3, our near-infrared pump — mid-infrared probe experiments re-
veal a non-vanishing pumping threshold for photo-induced metallization even at our
highest pressures around 20 GPa. This demonstrates the existence of localized charge
carriers and the corresponding persistence of a band gap. Besides the threshold beha-
viour for photo-induced metallization, the carrier relaxation time scale, and the linear
reflectivity and transmissivity have been studied under pressure increase. An anomaly
in the threshold behaviour as well as the linear reflectivity and transmissivity at a crit-
ical pressure around 7 GPa indicates band gap filling under pressure. This is further
supported by results obtained under decompression, where the changes of the linear re-
flectivity turned out to be almost fully reversible. The observations on VO are highly
reproducible and can be explained in terms of a pressure-induced bandwidth-driven
insulator-to-metal transition.

FeoO3 has been studied via optical pump — near-infrared probe spectroscopy up to
pressures of 60 GPa. In the pressure range up to 40 GPa, the changes of the response
can be explained by photo-induced absorption and bleaching. The pressure-dependent
study of the relaxation dynamics allows to identify cooling of the electron system as
origin of the picosecond relaxation process. A sharp anomaly found in the response
of FeaO3 at 40 GPa indicates a strong rearrangement of the electronic band structure
which could be explained by an insulator-to-metal phase transition induced by pumping.

The successful demonstration of pump-probe experiments in diamond anvil cells using
pulses from optical to mid-infrared wavelengths and reaching pressures of several tens of
GPa is a good basis for further experimental high-pressure studies. Our results obtained
on VO3 and FeoO3 can serve as a benchmark for the development of advanced material

models.






Kurzfassung

In der vorliegenden Arbeit wird der druckinduzierte Isolator-Metall-Phaseniibergang in
den Ubergangsmetalloxiden a-FeyO3 (Himatit) und VOy mittels ultraschneller Anrege-
Abfrage-Spektroskopie (engl. pump-probe spectroscopy) untersucht. Himatit wird dazu
im sichtbaren Spektralbereich angeregt und im nahen Infrarot (NIR) abgefragt, bei
VO2 wurde zur Anregung NIR und zur Abfrage mittleres Infrarot (MIR) verwendet.
Beide Materialien werden bei hinreichend hohem Druck metallisch, wobei die jeweils
dem Isolator—Metall-Phaseniibergang zugrundeliegenden Mechanismen verschieden und
noch nicht vollstdndig verstanden sind. Dies motiviert den Einsatz von ultraschneller
Anrege-Abfrage-Spektroskopie, die einen Einblick in die Anderung der Bandstruktur
und der Ladungstrigerdynamik withrend des Isolator-Metall-Ubergangs gewéhrt.

Beim Uberschreiten eines Schwellenwertes der Anregung wird VO, photoinduziert
metallisch. In unseren NIR-MIR Anrege-Abfrage-Experimenten zeigt sich, dass der
Schwellenwert auch bei den hoéchsten Driicken dieser Messreihe (ca. 20 GPa) nicht
verschwindet. Dies weist auf die Existenz lokalisierter Ladungstriager hin und damit
verbunden auf das Fortbestehen der Bandliicke. Neben dem Schwellenwert fiir pho-
toinduzierte Metallisierung wurden auch die Druckabhiangigkeiten der Relaxationsdy-
namik der Ladungstriger sowie des linearen Reflexions- und Transmissionsvermdgens
untersucht. Eine Anomalie im druckabhéngigen Verlauf des Anrege-Schwellenwertes so-
wie des linearen Reflexions- und Transmissionsvermogens bei einem kritischen Druck
von ca. 7 GPa deutet darauf hin, dass durch das Anlegen von Druck Zusténde inner-
halb der Bandliicke induziert werden. Diese Interpretation wird auch durch wihrend
der Dekompression gewonnene Messdaten unterstiitzt. Die druckinduzierte Anderung
des linearen Reflexionsvermogens erwies sich als nahezu vollstandig reversibel. Unse-
re Beobachtungen an VO sind reproduzierbar und lassen sich als druckinduzierter,
Bandbreiten-getriebener Isolator-Metall-Ubergang nachvollziehen.

FeoO3 wurde mittels Anrege-Abfrage-Spektroskopie bei Driicken bis zu 60 GPa un-
tersucht. Anderungen im Druckbereich bis 40 GPa kénnen als Wechselspiel eines photo-
induzierten Absorptionsbandes und der photoinduzierten Unterdriickung eines anderen
Absorptionskanals erkldrt werden. Die druckabhéngige Untersuchung der Relaxations-

dynamik ermoglicht es, der Relaxation auf der Zeitskala weniger Pikosekunden Kiih-
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lungsdynamik als Ursache zuzuordnen. Eine scharfe Anomalie im qualitativen Verlauf
des Anrege-Abfrage-Signals von FesO3 bei einem Druck von 40 GPa weist auf deut-
liche Anderungen in der elektronischen Bandstruktur hin, welche als Signatur eines
photoinduzierten Isolator-Metall Phaseniibergangs interpretiert werden konnen.

Die erfolgreiche Demonstration von Anrege-Abfrage-Experimenten in Diamantstem-
peldruckzellen mit Laserimpulsen vom sichtbaren Spektralbereich bis hin zum mittleren
Infrarot und bei Driicken von 20 GPa bis zu 60 GPa liefert die solide Basis fiir weiterge-
hende Hochdruck-Experimente. Die an VO5 und FeyO3 erzielten Ergebnisse sind eine
gute Grundlage fiir die Weiterentwicklung der theoretischen Beschreibung solcher Ma-

terialsysteme.
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1 Introduction

An efficient way to advance the understanding of a material is to characterize it under
different conditions, which is often done by varying the temperature or an external
magnetic or electric field. Application of pressure allows the tuning of material prop-
erties as well. At pressures of several GPa, the volume of solid matter and with it the
interatomic distances typically decrease on the scale of percent. As a consequence, pres-
sure not only affects lattice properties like phonons, but also the electronic structure
[1]. For example, in GaAs application of 1 GPa (=10kbar) leads to an increase of the
direct band gap from 1.43eV (at ambient conditions) to 1.54€eV and at a pressure of
4.2 GPa a crossover from the direct to an indirect band gap occurs [2, 3].

There are manifold motivations for the usage of high pressure. Among them is the
exploration of phase diagrams including the discovery of new phases and compounds as
well as the test of theoretical models. With such information, a better understanding
of material properties and their microscopic mechanisms can be gained, which in turn
helps to improve models. Moreover, high-pressure experiments help to design new
materials. One example is the discovery of YBayCu3zO7, the first superconductor with
T above the boiling temperature of liquid nitrogen [4]. After it had been observed that
the Tt of LaBaCuO grows with pressure, the substitution of La with the smaller cation
Y was then the successful attempt to replace the effect of external pressure with the
introduction of chemical pressure [5-7]. Yet a main driving force for the development
of high-pressure technique are geosciences. In order to understand processes in the
inner earth like convection or the origin of the earth’s magnetic field, it is desirable
to know about the state of matter under comparable high pressure and temperature
conditions. The production of artificial diamonds under high pressure and temperature
[8] was an early milestone for the commercial use of high-pressure technology. A quite
recent highlight was the achievement of superconductivity in the sulfur hydride system
at temperatures up to 203 K, which could only be stabilized by high pressure around
155 GPa [9]. The sulfur hydride system is also an example for a material that is metallic
only under pressure [9].

From a simplistic point of view, application of pressure leads to a broadening of the

valence and conduction bands of a material and thus may increase conductivity or even



2 1 Introduction

lead to an insulator-to-metal transition [1]. However, experiments on elemental alkali
metals have demonstrated that, at sufficiently high compression, interaction with inner
electrons can actually induce a metal-to-insulator transition. Sodium, for example,
becomes insulating around 200 GPa which corresponds to a reduction of the volume by
about 80 %, a factor of 5 [10].

Here we will study insulator-to-metal transitions (IMT) of transition metal oxides.
As is typical for materials with partially filled d-shell (or f-shell), they are quite sensitive
to pressure [11]. The narrow confinement of the d- and f-shell orbitals leads to strong
interaction of electrons in these orbitals; therefore, small changes of external parameters
like temperature, doping or pressure will have strong impact on such a correlated elec-
tron system [11]. The transition metal ions are surrounded by several oxygen ligands
and — besides the overlap of orbitals — pressure can affect the coordination, the crystal
field splitting, and the spin state, for example [12]. The materials are highly interesting
for technological purposes, and it is desirable to get more insight into the underlying
physics.

The materials under study are vanadium dioxide (VO2) and hematite (FeaO3), both
archetypical strongly correlated electron materials. There are many works on the
temperature-induced IMT in VOs, but only a limited number of pressure-dependent
studies. In contrast, FeoO3 as material of high interest for geoscience has been studied
extensively under high pressure — however, there the focus is clearly on the structural
transformations. We combine nonlinear pump-probe spectroscopy with high-pressure
technique in order to obtain insight into the pressure-induced changes of the electron
system.

There are two general concepts for the generation of high pressure: On the one side
pressure cells for the application of static pressure [13], on the other side shock-waves
for dynamic compression [14]. Each method has its limitations. Thus, by the shock-
wave approach higher pressures can be obtained (several TPa instead of several hundred
GPa up to 1 TPa), but it allows only experiments at elevated temperatures [15, 16],
which for example would not be suitable to study VOs, since there the IMT appears
just above room temperature.

As we are interested in the carrier dynamics starting from pressurized, static states,
all experimental high-pressure data shown in this work have been obtained using pres-
sure cells, more precisely diamond anvil cells (DAC). The available pressure range
depends strongly on the individual construction of a DAC. In addition, the pressure
apparatus sets contraints to the experimental methods that can be used for the analysis
of matter under pressure. For example, surface sensitive methods like photoemission

spectroscopy cannot be applied, since the sample is encapsulated in the pressure cell.



As a word of caution, it has to be mentioned that pressure cannot be applied as cleanly
as the other thermodynamic variables like temperature or magnetic field, since always
a pressure transmitting medium is needed, which in the best case exerts nearly hydro-
static pressure [4]. However, in comparison to doping, pressure affects a sample much
more homogeneously.

Ultrafast time-resolved spectroscopy offers unique possibilities to study non-equilib-
rium dynamics of elementary excitations. This includes time scales of relaxation or
switching to other phases, as well as the coupling to the lattice, for example. Until
now, optical or infrared (IR) pump-probe studies under high pressure [17, 18] are rare,
and in these studies only pressures of a few GPa have been used. Concerning insulator-
to-metal transitions, mid-infrared (MIR) radiation is a perfect probe for free charge
carriers due to its low photon energy [19]. However, the small available sample volume
in DACs, required in order to be able to obtain high pressures, sets a limit, since the
larger the wavelength, the larger is the achievable minimum spot size.

To the best of our knowledge, we demonstrate here for the first time near-infrared
(NIR) pump — MIR probe experiments in a DAC. This approach enables us to disen-
tangle different kinds of phase transitions and study the dynamics of insulator-to-metal
transitions unavailable in temperature-dependent studies. Our high-pressure experi-
ments not only aim to figure out the nature of the high-pressure state, they also will
allow to draw conclusions on the ground state of a material, the state at ambient con-
ditions. Finally, we present optical pump — NIR probe experiments at pressures up to
60 GPa.

In chapter 2 we will give a brief overview about the fundamental physics of metal—
insulator transitions, where the focus will be on different mechanisms for Mott trans-
itions. The basics of static pressure generation are explained in chapter 3, which sum-
marizes the experimental techniques used in this study. Besides detailed information
on our pressure cell, there also our different set-ups for ultrafast spectroscopy are in-
troduced. In chapter 4, results obtained on the strongly correlated electron system of
vanadium dioxide are presented [20]. While this work was done in the pressure range
up to about 20 GPa, for the study of Fe;Og3 presented in chapter 5 pressures up to
60 GPa have been applied. The summary of chapter 6 is followed by a short appendix

on special experimental aspects and the bibliography.






2 Fundamentals |I: metal — insulator

transitions

Understanding the electronic properties of materials is a central challenge for solid
state physics. As fascinating it may be how slight changes of parameters can cause
drastic changes of the conductance, as challenging can it be to describe and model such
behaviour. In this chapter we will present a rough overview about mechanisms leading
to insulating behaviour; more detailed information can be found in literature [12]. For
clarity, we separate different effects that can cause a transition between metallic and
insulating regimes, however, we have to stress that in real materials some of these can

appear in combination.

2.1 Band insulators, Peierls transition

In band theory, non-interacting electrons in a periodic lattice potential, as it is present
in crystals, can occupy states in allowed energy bands that are separated by forbidden
states, giving rise to energy gaps. According to the Pauli principle, each allowed state
can be occupied by two electrons with opposite spin. The system tends to minimize
its energy and at zero temperature the allowed states are occupied up to the so-called
Fermi energy Er. Electrons can only be itinerant when the Fermi energy is within an
energy band. If the highest occupied energy band is completely filled, a material is
insulating.

In this simple view, shifting of bands in energy or tuning of their bandwidth could
drive transitions between metallic and insulating behaviour. Changes of the crystal
lattice can affect the electronic band structure and cause such transitions. Let us
consider a linear chain of atoms with periodicity a as shown in blue in Fig. 2.1(a). The
black dots are only a guide for the eye to demonstrate the periodicity. In Fig. 2.1(b)
the corresponding electron dispersion relation F(k) is schematically shown. For a half
filled band, i. e. a Fermi wave vector kg = 5, the sample system behaves as a metal.
Now we assume a periodic lattice distortion (PLD), where the atoms pair along the

chain as depicted by the red balls in Fig. 2.1(a). This pairing leads to a doubling of
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C

DOS DOS

Figure 2.1: Model of a linear chain of atoms. (a) real space lattices for a chain with
equidistant atoms (blue) and for a chain with a periodic distortion (red).
The black dots are a guide for the eye to demonstrate the periodicities of
a and 2a. (b) Corresponding electron dispersion relations E(k) for the two
chains shown in (a). The doubling of the lattice parameter leads to a halving
of the Brillouin zone and opening of a band gap (see dashed red curve at
kr). The grey area symbolizes how the energy of the electron system is
decreased due to the periodic lattice distortion. (c) Schematic density of
states (DOS) on the horizontal axis as function of the energy E for the two
one-dimensional electron dispersions of (b). Shaded areas in (c¢) correspond
to occupied states.

the real space lattice constant and consequently to a decrease of the Brillouin zone by
50 % and a changed band structure. In the special case of the originally half filled band,
this results in a completely filled valence band as demonstrated in Fig. 2.1(c). While
the PLD costs energy, since the potential energy of the atoms increases, the opening
of a band gap leads to a decrease of the energy of the electron system. The latter is
sketched in Fig. 2.1(b) with the grey and red filled areas. For each wave vector the
energy of the electrons is reduced, in our example by AFy at kg; the total energy of the
electron system ff,fg E(k)dk decreases by the area shaded in grey. It is this decrease
of energy of the electron system that enables the PLD [21]. The effect is connected to
charge density waves (CDW) [22]. The metal-to-insulator transition accompanied with
a PLD is called Peierls transition after Rudolf Peierls who discovered the instability

of a 1D chain [23]. In reality 1D materials are unstable, however, there exist quasi-1D
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materials [21]. CDWs also appear in higher-dimension materials, but can have different
origin and do not necessarily induce insulating behaviour [21, 22].

Sometimes, materials are expected to be metallic according to band theory, but in
reality they behave as insulators. In the next two sections, underlying mechanisms for

such behaviour will be discussed.

2.2 Mott-Hubbard transition

In so-called Mott insulators, electronic correlations cause the opening of an energy gap
such that the valence band is completely filled. A first insight into this mechanism can
be obtained from the Hubbard model [24], the simplest model to describe interacting

electrons on a lattice:

H=-— Z tz‘jcjacj‘g + Uannu, (2.1)
%

(ij),o

with (ij) for the sum over pairs of neighbouring sites and with cZT»O, and c;, as creation
and annihilation operators for electrons at site ¢ and with spin . The electron density
at site ¢ with spin o can be obtained as n;, = cjacw. The matrix element ¢;; describes
the hopping of electrons with spin ¢ between the sites ¢ and j; it is proportional to the
probability of electron tunnelling between these two sites. While the first term on the
right hand side of equation (2.1) describes the gain of kinetic energy of itinerant charge
carriers, the second term involves the Coulomb interaction between charge carriers at
the same site. In order to bring a second electron to the same site, the on-site Coulomb
repulsion energy U has to be invested.

The hopping charge carriers form energy bands with bandwidth W (of non-interacting
charge carriers) proportional to the hopping energy ¢ [12]. For U > W a band gap
Egop =~ U — W appears. It separates the so-called lower (LHB) and upper (UHB)
Hubbard bands. A remarkable difference of the Hubbard subbands in contrast to classical
bands is that the distribution of their number of states depends on the occupation of
the lower Hubbard band. Removing an electron from the LHB decreases the number
of states of the UHB by one and increases the number of free states in the LHB by two
[12]. If the number of carriers equals the number of sites, the electrons will be localized
and the system is insulating for U > W since the LHB is completely filled. In order
to be able to move, an electron has to be excited into the UHB. Such an insulating
phase is called Mott insulator. The same term is also used in a more generalized way

for the classification of materials, where it describes a system that can be tuned to
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U
1
Mott

insulator

metal metal

= filling-controlled IMT

bandwidth-controlled IMT

» filling

N[ |

Figure 2.2: Metal-insulator phase diagram based on the Hubbard model. The hori-
zontal axis corresponds to the filling of the Hubbard bands, the vertical
axis is the ratio of the intersite Coulomb repulsion U and the hopping en-
ergy t. Adapted from [26]

an insulating state caused by electronic correlations. The name goes back to Nevill
Mott, who together with Rudolph Peierls recognized in 1937 [25] that electrostatic
interactions are essential in order to explain the insulating behaviour. A Mott transition
(also named as Mott-Hubbard transition) refers to a transition between a metallic and
a Mott insulating phase.

In Fig. 2.2, a schematic metal-insulator phase diagram based on the Hubbard model
is shown. The horizontal axis corresponds to the filling of the Hubbard bands. On the
vertical axis, the strength of the Coulomb repulsion in units of the hopping energy (pro-
portional to the bandwidth W) U/t is plotted; the vertical axis crosses the horizontal
axis at half filling, i. e. with filled LHB and empty UHB. Only above a critical ratio
U/t, the system can be in the insulating phase. In order to drive an insulator-to-metal
transition, the ratio U/t has to be lowered sufficiently and/or the filling has to be de-
tuned from half-filling. These two ways, marked by the blue and red arrows in Fig. 2.2,
are typically referred to as bandwidth-controlled IMT and filling-controlled IMT [26].
Chemical doping can be used to modify the filling. In order to tune the filling without
changing the chemical composition of a material, for example photodoping can be used.
With a sufficient number of photoexcited charge carriers, the correlations can be over-
come and the system is switched into a metallic phase. The ratio U/t can be tuned by
application of pressure. In general, under pressure the overlap of orbitals is improved as
their distance is reduced. This leads to an increased hopping probability and therefore
an increased bandwidth W, while typically the Coulomb repulsion energy U is almost

pressure-independent. Thus, such kind of IMT is termed bandwidth-controlled.



2.2 Mott-Hubbard transition

U/t

Figure 2.3: (a), (c), (e) and (g) show the evolution of the density of states (DOS) as it is

obtained by dynamical mean field theory (DMFT) for the Hubbard model.

On the right side the corresponding conductivity spectrum is sketched in
The electronic correlation charaterized by
the ratio U/t increases from the plots in the top to the plots in the bottom.
Arrows help to estimate energy differences by linking it to the Coulomb
repulsion U and the bandwidth of the Hubbard bands W. Adapted from
[11, 12, 28]

Until now we have described the metallic phase and the splitting into two Hubbard
bands leading to localization as the two limiting cases of a Mott-Hubbard transition.
The treatment of the Hubbard model with dynamical mean field theory (DMFT) reveals
that the density of states (DOS) does not just split into two bands during the Mott
transition, but it evolves via a three-peak structure [11, 12, 27]. In Fig. 2.3 the DOS
and the corresponding optical response are shown from top to bottom for an increasing
electron correlation characterized by the ratio U/t. In the case of independent electrons,
the DOS is concentrated at one band with the Fermi level in the center, see Fig. 2.3(a),
where the grey area symbolizes occupied states. This metallic phase is characterized

by a strong Drude response as shown in Fig. 2.3(b) where the optical conductivity o is

plotted.
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When moderate correlations are switched on, spectral weight of the DOS peak
centered at the Fermi level is transferred into two satellite peaks that are separated
by the Coulomb repulsion energy. The central peak in the DOS is called quasiparticle
peak (QP) as it accounts for the free charge carriers that give rise to the Drude re-
sponse, see Figs. 2.3(c) and 2.3(d). The satellites can be understood as Hubbard bands
broadened by the QP. Optical transitions from the lower to the upper Hubbard band
and from the lower Hubbard band to the QP or from the QP to the upper Hubbard
band lead to broad features around U and U/2 in the conductivity spectrum. With
increasing electronic correlation, the width of the QP reduces for the benefit of the
satellite peaks, which are less broadened. Consequently, this spectral weight transfer
leads to narrowed peaks in the conductivity spectrum as depicted in Figs. 2.3(e) and
2.3(f). Thus, the width of the peak around U/2 will roughly equal the bandwidth W
of a satellite peak. While the intensity of the Drude peak and the peak around U/2
is weakend with increasing electronic correlation, the peak centered around U will get
stronger. Considering the weaker broadening of the peaks, there might occur a small
gap in the spectra between the Drude peak and the peak around U/2. However, the
contrast between gap and band would be low due to the weakened weight of the neigh-
bouring bands. Finally, in case of sufficiently strong electronic correlations the QP
disappears and the DOS is split into a completely occupied lower Hubbard band and
an empty upper Hubbard band, which is demonstrated in Fig. 2.3(g). The Hubbard
bands with bandwidth W are separated by a gap of Eg,, = U —W. Optical transitions
are only possible in the spectral range from U — W up to U + W, see Fig. 2.3(h).

The system is insulating only in the situation of Fig. 2.3(g). The three-peaked DOS
of 2.3(e) charaterizes a strongly correlated metal. The persistence of the optical band
centered around U at the Mott-Hubbard transition is a fundamental difference to the
classical IMT which directly switches from the situation depicted in Figs. 2.3(g) and
2.3(h) to that of Figs. 2.3(a) and 2.3(b). The comparison of Figs. 2.3(e) and 2.3(f)
with Figs. 2.3(a) and 2.3(b) demonstrates that the Mott-IMT occurs at the onset of the
increase of the dc-conductivity. However, a dc-measurement does not allow to determine
whether metallization is just the consequence of an improved overlap of two bands or
if a three-peaked DOS occurs. With linear spectroscopy it is difficult if not impossible
to resolve different contributions to the conductivity spectrum expected from a three-
peaked DOS [28, 29]. In the course of this work, we demonstrate that with the help of
nonlinear spectroscopy it is possible to identify such a scenario.

For a better understanding, in the plots of Fig. 2.3, the energy scale is always the
same. The sketched Mott-transition is mainly driven by the increase of the Coulomb

interaction U which grows from the plot at the top to the plot in the bottom. The
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Figure 2.4: Comparison of (a) high-spin (HS) and (b) low-spin (LS) orbital occupation
for d® configuration.

same transition can analogously be achieved by just modifying the hopping ¢ and with
this the bandwidth W.

Usually, application of pressure is considered to affect electronic correlations by in-
creasing the hopping ¢. Now we will consider a scenario where pressure has strong
impact on the effective value of the Coulomb repulsion Ueg. It is defined by the energy
cost for moving an electron from one ion to another one, which in case of a transition

metal compound can be calculated considering the d-shell by
Uett = Efinal — Einitial = 2E(d") — E(d"™ ') — B(d"™). (2.2)

This energy depends for example on the spin state of the transition metal compounds.
To illustrate this, we assume the case of a transition metal ion with 5 electrons in the
d-shell which is surrounded by an octahedral ligand field. The latter causes a crystal
field splitting where the three to, orbitals are lowered in energy and the two e, orbitals
are upshifted. Depending on the strength of the crystal field splitting A¢¢, which is
the energy difference between the to, and the e, orbitals, the spin state will be high-
spin (HS) or low-spin (LS) as illustrated in Figs. 2.4(a) and 2.4(b). Each pair of spins
oriented in parallel reduces the total energy by the Hund’s coupling energy Jy. In
the HS state the electron system of the d-shell of one transition metal ion stores the
energy Fus(d®) = 2A¢ — 10Jg, when we set the reference level (E = 0) to the tag
levels neglecting any shift of these levels induced by Hund’s interaction. With the same
basis, the energy of the LS state is Frg(d®) = —4.Jy, where the three spin-up electrons
contribute —3.Jy, and the two spin-down electrons contribute —1.Jy (see Fig. 2.4(b)).
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From the energy difference Fyg(d®) — Eps(d®) it can be derived that the energy in the
HS state is lower than that of the LS state if the crystal field splitting A < 3Jg. Since
the application of pressure leads to an increased crystal field splitting, it is possible to

induce a HS-LS transition by pressure.

Such spin transition can have a dramatic effect on the effective Coulomb interaction.
With the same energy scale used in Fig. 2.4 we determine now Ueg according to equa-
tion (2.2) with n = 5. From the energy difference of the final and initial state we obtain
for the initial HS(d°) configuration

U (d®) = U — Agt + 41, (2.3)
and for the initial LS(d®) configuration

UR(d®) =U — Jy. (2.4)

In Fig. 2.5(a) the transition of an electron from one HS(d%) transition metal ion to
a different one is shown. On the right hand side the final state with one HS(d*) and
one HS(d®) ion is sketched. The electron marked in blue has an additional energy of
U, since it is the second electron in the orbital. In principle it has to be considered
to reside in a different band that is upshifted relative to the skteched to4 levels by U.
Analogous to the HS case of Fig. 2.5(a), in Fig. 2.5(b) the transition of an electron is

shown for a material in low-spin configuration.

Comparing equations (2.3) and (2.4) and taking into account the condition for the
HS-LS transition (A = 3Jy), such a spin transition is accompanied by a drop of
the effective Coulomb repulsion Ugg in the order of 2Jy. This can lead to a so-called
interaction-controlled IMT, which is another mechanism for a Mott transition that is
independent from the filling-controlled or bandwidth-controlled IMT.

It has to be emphasized that the conditions for the spin-transition vary with the
filling of the d-shell, and that the change of the effective Coulomb repulsion U.g depends
also on the magnetic ordering [12]. In literature much more can be found about Mott
systems, for example different classification schemes that help to understand similarities
[12]. However, this is beyond the scope of this introduction, where we concentrated on
the explanation of the Mott insulating phase and sketched the variety of Mott transition

mechanisms.
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Figure 2.5: Lowest energy d-d intersite excitation for (a) a high-spin (HS) and (b) a
low-spin (LS) state of a d® valence shell. On the left hand side the two
transition metal ions are shown before the transition, on the right hand side
the situation after intersite charge transfer is shown. The energy terms refer
to the sum of the electronic energies of the two involved transition metal
ions.

2.3 Anderson insulators

The formation of insulating phases is not limited to the case of the opening of a band
gap. As was shown by Anderson, random lattices can cause the localization of electrons
[30]. In the limit of sufficient disorder, the electron wave functions become localized if

the DOS is below a certain level [31]. Thus, no metallic conductivity will be possible.

For a better understanding of the mechanism, which is termed Anderson localization,
we consider to approach the insulating phase starting from the metallic phase of a
sample system with periodic lattice potential. In Fig. 2.6(a) an exemplary conduction
band for this situation is shown, where the occupied states are hatched. When disorder
is switched on and each site has random potential, at energies with sufficiently low
DOS, charge carriers become localized on a scale larger than a lattice constant and
transport is impossible [12, 31, 32]. Such mobility gaps appear at the band edges or
even inside the band at energies where the DOS is too low. This is illustrated by the
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states with
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Figure 2.6: Schematic explanation of Anderson insulators. Conduction band (a) before
and (b) after introduction of disorder. The hatched region symbolizes occu-
pied states. In (a) the sample is metallic. (b) At energies with sufficiently
small density of states (DOS) the mobility of charge carriers vanishes (blue
areas). When the Fermi edge (red line) lies within an energy region with
zero mobility, the material will be insulating. Adapted from [12].

regions coloured blue in Fig. 2.6(b). With increasing disorder more carriers become
localized. When a mobility edge, a boundary between regions with finite mobility and
zero mobility, crosses the Fermi energy (red line in Fig. 2.6(b)), an electronic phase
transition appears [12]. The system will be insulating when the Fermi energy lies in a
region with zero mobility. For example, an IMT can then be induced by changing the
number of electrons, such that the Fermi energy is shifted across a mobility edge to a
level with sufficiently high DOS.

Since in the scope of this thesis we will study Mott systems, here we refer to literature
[31] for further information on Anderson insulators, where also the mixture of different

mechanisms that may lead to insulating behaviour is discussed.



3 Fundamentals Il: Experimental
techniques

In this chapter, the main experimental instruments and methods are introduced. The
focus is on our specific realizations, while detailed explanations of the general concepts
can be found in literature [33-39]. In section 3.1 the high-pressure technique used in
our experiments is described. The main measurements presented in this thesis were
performed with table-top laser systems which are introduced in section 3.2. The set-
up for time-resolved spectroscopy on samples under pressure is fully compatible with
MIR pulses provided from the free-electron laser FELBE at HZDR. In section 3.3, the
adaption to the large scale facility is demonstrated with exemplary measurements on
GaAs. Besides the time-resolved measurements, standard Raman spectroscopy was

used to characterize pressure-induced structural changes.

3.1 High-pressure spectroscopy with diamond anvil cells

Diamond anvil cells (DAC) are the work horse for spectroscopy on pressurized samples.
They use the concept of concentrating a force on a small area in order to achieve high
pressures. A typical unit of high pressure is 1 GPa = 10kbar, which is ten thousand
times the atmospheric pressure. For comparison, around 410 km beneath the sea level
the pressure is about 14 GPa and the maximum pressure in the core of the earth is
around 365 GPa [37, 38].

Diamond as material of the anvils is perfect for high-pressure applications as it is the
hardest known material. In addition, its broad transmission spectrum makes diamond
interesting for spectroscopic set-ups, as it allows spectroscopic access through the anvils
to a sample mounted in a DAC. In our case we used so-called type Ila diamonds. With
less than 1ppm nitrogen and no other notable dopants, they offer minimum absorp-
tion and high transmission from ultraviolet (UV) to far-infrared. However, between
2.6 um and 6.2 pm [40] there is a weak absorption band due to multi-phonon absorp-
tion. The indirect band gap of 5.47€eV leads to an inter-band absorption edge around
the wavelength of 230 nm [40, 41].



16 3 Fundamentals II: Experimental techniques

Figure 3.1: Schematic cross-sectional view of a diamond anvil cell: Diamond anvils D
(light blue) with sample S (black) in contact with the culet plane C (green)
of one diamond; preindented gasket G (grey) with gasket hole H (brown)
which is filled with pressure transmitting medium M (light red) surrounding
sample S and ruby crystal R (purple) which serves as pressure sensor.

Figure 3.1 shows the central part of a standard diamond anvil cell. There are two
opposing diamond anvils (D in Fig. 3.1) that are pushed together thus exerting pressure
to a pressure transmitting medium and the sample (M and S in Fig. 3.1) situated
between the flat tips of the diamonds, the so-called culets (C in Fig. 3.1). The smaller
the culets, the higher the maximum available pressure. In order not to put uniaxial,
but isotropic pressure to the sample, it is mounted in the hole of a preindented gasket
(G and H in Fig. 3.1) and surrounded by a suitable pressure transmitting medium (M
in Fig. 3.1). Depending on the selected method of pressure determination, a pressure
sensor (R in Fig. 3.1) has to be added in the gasket hole when filling the DAC.

For our measurements, two different types of DAC have been used: A commercial
plate DAC from Almaz-easylab and a BX90 piston-cylinder cell (for ultra high pressures)
[13] provided from our cooperation partner at the Bayerisches Geoinstitut, Bayreuth.
In both cells, pressure is applied by tightening some screws. The main difference is
that in our DAC the distance of the diamond anvils is changed by bending two plates,
while in the BX90 this happens by pressing a piston into a cylinder. The used BX90
had a culet diameter of 250 pm and allowed to reach pressures up to about 65 GPa, the
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Figure 3.2: Schematic section view of our Almax plate DAC (Almaz-Easylab). The
central dashed line marks the 3-fold symmetry axis. Diamond anvil (blue)
mounted to a seat S (dark grey); three set screws D (green) for alignment
of the plate (light grey) distance and three set screws L (brown) for lateral
positioning of the lower seat; three pressure screws P (orange); gasket holder
H (red) with gasket G (black).

maximum pressure of our plate DAC with a culet diameter of 450 pm is around 25 GPa.
While for the latter steel gaskets have been used, the BX90 was operated with rhenium
gaskets in order to achieve ultra high pressures. Both cells use Boehler diamonds [42],
i. e. diamonds that are mounted in seats via their side plane, which for this purpose
has a conical shape. In comparison to the classical design, this brings the advantage of
a much higher field of view. The opening angles are beyond 80°, making such set-ups
attractive for X-ray measurements and spectroscopy.

For further details on the BX90 we refer to literature [13] and concentrate now on
our plate DAC as schematically shown in Fig. 3.2. Each diamond is mounted in a seat
(S in Fig. 3.2) located in the center of a circular plate of about 5cm diameter and
several millimeters thickness. The seats for the anvils are made from tungsten carbide
which among others brings the advantage of a high mechanical stability. A couple of
set screws (D and L in Fig. 3.2) allow to align the culets in parallel and for perfect
lateral overlap. By simultaneous tightening of all three pressure screws (P in Fig. 3.2),
it is guaranteed that the alignment of the DAC is not lost during the pressure cycle.
The alignment can be tested by closing the empty cell (without gasket) and monitoring
the interference pattern between the culets.

The gasket is mounted on a gasket holder (G and H in Fig. 3.2) which can be clamped

on the seat of the diamond at the lower plate. We used stainless steel disks of 250 pm
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thickness for the production of gaskets. After preindentation down to a thickness of
50 um, holes of about 180 pm have been drilled using a spark eroder. These dimensions
of the sample chamber demonstrate that only tiny samples can be studied under high
pressures in the DAC. When pressure is applied, the metal of the gasket tends to flow
aside of the pressurized area leading to an increase of the gasket hole diameter. If the
hole reaches the edge of the culets this would result in an uncontrolled pressure release,
typically destroying the load as well as the two anvils. Thus, the gasket flow has to be
controlled and careful preparation of the DAC is crucial. In fact, the alignment of the
DAC and the preparation of the gasket have strong influence on the maximum pressure
that can be reached [43].

Another important point is the selection of an appropriate pressure transmitting
medium. In the ideal case, the goal is to keep hydrostatic pressure conditions [44].
However, in reality at a certain pressure the medium solidifies, and differential and
shear stresses appear [44]. This is an inevitable issue for high-pressure experiments.
From that follows the strategy to approximate the goal by choosing a pressure trans-
mitting medium which has minimal non-hydrostaticity. This is called quasi-hydrostatic
conditions.

For the majority of our experiments it was necessary to measure the directed reflection
from the sample surface. In this situation the sample has to be fixed in the gasket hole.
This can be ensured by the use of a solid pressure transmitting medium, in our case finely
ground powder of Csl or KCI. In order to avoid interference effects in spectroscopic
experiments, the sample was mounted with a large contact area to one of the diamonds.
This can be achieved by adding the sample either in the first or in the last step of the
filling process.

With respect to minimizing pressure anisotropy, the best pressure transmitting media
are noble gases. Even after solidification they show a high degree of hydrostaticity due to
very weak van-der-Waals bonding. For the experiments with the highest pressures, 7. e.
with the BX90 pressure cell, such a filling was provided by our cooperation partner at
the Bayerisches Geoinstitut. They have a special apparatus allowing to close the DAC
in a high-pressure neon atmosphere. In comparison to filling the cell with liquefied
gases this method has the advantage to reduce the risk of flushing samples out of the
DAC. With a starting pressure beyond 4.8 GPa (solidification pressure of neon at room
temperature) the sample position could be fixed.

In contrast to the aforementioned reflection measurements, for Raman measurements
no direct contact between sample and diamond is needed, as in the measurement spon-
taneous emission into all directions is captured. This allowed to use a mixture of

methanol:ethanol as pressure medium, with the advantage of lower pressure anisotropy
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Figure 3.3: Ruby fluorescence spectra captured with the QE65000 spectrometer at dif-
ferent pressures. In the inset, the pressure determined according to [45] is
shown as function of the fitted R; emission line positions.

compared to Csl or KCl. There is another important aspect for the selection of the
pressure transmitting medium. It should not affect the spectroscopic measurement, i. e.
should have high transmission and no absorption in the relevant spectral range.

The pressure in the DAC was determined via the pressure-dependent shift of the
ruby fluorescence R-lines which is roughly 1nm per 3 GPa [45]. We used small ruby
crystals of around 10-20 pm diameter as pressure-sensor and excited them by means
of a diode pumped solid state laser at 532nm or with a laser diode at 445nm. The
latter is essential above 30 GPa, as the absorption bands of ruby get short-wave under
pressure. The fluorescence spectra have been captured with a QE65000 spectrometer
(Ocean Optics) with a resolution of about 0.16 nm, see Fig. 3.3. The device was cooled
via a Peltier module for improved signal-to-noise ratio and calibrated with a neon
calibration lamp (Pen-Ray line source from LOT-QuantumDesign). Lorentz-Gauss fits
were used to determine the position of the R; emission line of ruby. From that the
pressure was calculated according to Mao et al. [45]. The statistical error of the pressure
determination is lower than 0.2 GPa. However, there are sources for systematic errors.
Heating of the ruby pressure sensor slightly red-shifts the R-lines. For that reason
only a few mW of laser power were sent into the DAC for the pressure determination.
Pressure inhomogeneity originating from the imperfection of the pressure transmitting
medium in the gasket hole is the most relevant systematic error. Tests with several
ruby chips at different positions showed that in case of Csl as pressure transmitting

medium this uncertainty can be about 1 GPa at a maximum pressure of 10 GPa and
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up to 25 % at pressures in the order of 20 GPa. For analysis the pressure at the sample
was always estimated via the ruby sensor with maximum pressure.

The accuracy of the pressure measurement was also tested by comparison with Raman
measurements of the diamond anvils. In a DAC under pressure, the stress in the anvils
increases from their base to their culet, leading to a Raman signal with a sharp edge
at high frequencies [46, 47]. From the position of this edge, the maximum pressure can
be estimated. The difference between the pressure thus determined and that obtained

by ruby fluorescence was in the order of one percent.

3.2 Pump-probe spectroscopy

The application of pressure (using DACs) allows for tuning of the bandwidth W of a
strongly correlated electron system. Moreover, long-time measurements become pos-
sible, since the pressure in the cell is quite stable. However, the pressure equipment
sets constraints for applicable measurement techniques. For example, surface sensi-
tive methods like photoemission experiments are not compatible with DACs. Standard
techniques to study the electronic structure of samples under pressure are linear spec-
troscopy, X-ray absorption spectroscopy or conductance measurements. Since we are
interested in ultrafast dynamics, we need a method sensitive on time scales faster than
that of electronic devices. This is possible via pump-probe spectroscopy.

Pump-probe spectroscopy is a common method for the study of ultrafast relaxation
dynamics. First, the sample is photoexcited by a strong pump laser pulse and after an
adjustable delay time it is probed with a weak laser pulse for pump-induced changes.
This measurement is repeated for a series of different delay times thus giving insight
into the temporal evolution of the system. In order to have independent results for each
pump cycle, the time interval between two pump pulses has to be much larger than
the observed relaxation time scales. Averaging the measured signal over several pump-
probe cycles for each delay time increases the signal-to-noise ratio and makes possible
a time resolution that depends only on the duration of the pump and probe pulses, but
is not limited by the electronic measurement devices. The pump-induced change of the
probe intensity after reflection from or transmission through the photoexcited sample is
termed pump-probe signal. Figure 3.4 schematically shows a pump-probe measurement
in a DAC.

There are a number of challenges when implementing pump-probe measurements in a
DAC. The limited space available for the sample makes it necessary to focus tightly on a
very small area in the cell. This in turn increases the need for high mechanical stability

and alignment strategies with high reproducibility of the DAC positioning. Neglecting
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Figure 3.4: Schematic view of a pump-probe experiment in a diamond anvil cell (DAC).
The sketches of the laser pulses are intensity profiles. At a variable delay
time after pumping (blue), the photoexcited sample (black) is probed (red)
for pump-induced changes in reflection (red dotted) and transmission (red
dashed).

possible reflections at side facets of the diamonds, there are still several interfaces in
the stack (at boundaries between diamond, sample, pressure transmitting medium,
diamond) of a DAC that could cause reflections. Therefore it has to be considered at
the alignment of the set-up and data interpretation, whether a measurement is affected
by back-reflection from such an interface. This holds especially for reflection from the
culet plane (green in Fig. 3.4) of the rear diamond and the backside of the sample as
they are approximately in the focal plane. We will come back to such points at the
analysis of our measurements. In general, it is helpful to focus the probe tighter than
the pump beam, since thus a region of a more homogeneous excitation is probed. For
the small sample area available in a DAC this means on the one hand to focus the
probe as tight as possible. On the other hand, the size of the pump spot has to be
small enough to achieve a sufficient pump fluence on the sample, and in order to avoid
artifacts, it should be smaller than the sample area.

Our set-up is built in a modular way, offering high flexibilty for two-colour pump-
probe experiments, where the pump and probe photon energies differ. The two-colour
approach brings technical advantages like the absence of interference between pump
and probe pulses and a simplifed filtering of the probe signal from a linear pump
background. Hence, the main point of the two-colour pump-probe concept is to have

different interaction mechanisms of pump and probe with the sample. For example,
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a low probe photon energy (not allowing inter-band transitions) is suitable for the

detection of pump-induced free charge carriers.

Experiments have been performed with the set-up in configuration for near infrared
pump — mid-infrared probe experiments, as shown in Fig. 3.5. The table-top set-up is
based on a commercial laser system (Coherent). It uses a femtosecond Ti:Sa oscillator
(Coherent Micra) providing pulses of several nJ at a repetition frequency of 78 MHz. By
means of chirped pulse amplification with a regenerative amplifier (Coherent RegA) the
pulse energy is increased by more than three orders of magnitude while the repetition
rate is lowered to 250 kHz. The compressor of the amplifier can be used to chirp its
output in order to compensate for the dispersion of optical elements in the set-up, and
thus to set the shortest pulse duration at the sample. A portion of the RegA output is
always sent to an autocorrelator giving information on the pulse duration. Due to gain
narrowing at amplification and spectral clipping in the stretcher and compressor, the
pulses have a minimum intensity autocorrelation width of 50-60 fs. After the amplifier, a
4-axis beam stabilization kit (TEM pAligna) with two motorized mirrors in a distance
of roughly 1m has been installed. It ensures that the laser radiation is always on
exactly the same optical path compensating slow drifts in pointing and position that

might appear e. g. through temperature changes or spectral tuning of the laser system.

The stabilized output of the RegA is split into two beams as shown in Fig. 3.5. One
half is used for the pump branch, the other half for the generation of probe pulses via
nonlinear frequency conversion by means of a commercial collinear optical parametric
amplifier (OPA) and a difference frequency generator (both Coherent). The amplified
pulses are appropriate to drive a cascade of nonlinear processes. First, in the OPA,
with a small part of the incident power a white spectrum is generated via self phase
modulation in a sapphire crystal. A selected part (signal) of this broad spectrum is
amplified via optical parametric amplification with a beta-barium borate (BBO) crystal.
Because of energy conservation, at the same time idler photons are generated at the

expense of the fundamental IR light,
thR = ﬁwsignal + hwidler- (31)

The signal and idler spectrum can be tuned by rotation of the BBO, as this changes
the frequency where phase matching is fulfilled. In the next step, the probe frequency
is produced by difference frequency generation (DFG) of signal and idler in a AgGaS,

crystal. This again is a three-wave mixing process. Due to energy conservation we have

Iwpra = Mwprobe = Awsignal — Nwidler- (3.2)
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Figure 3.5: Schematic table-top set-up for near-infrared pump — mid-infrared probe
experiments in reflection geometry.

In order to obtain a specific desired probe (central) wavelength Aprobe, the OPA and
DFG first have to be prealigned with the help of some apertures to obtain a DFG signal
at 4um. Then, OPA and DFG are tuned and optimized in stages. As there was no
spectrometer available for the MIR, we estimated the probe central wavelength by the

measured maximum of the signal spectrum. Combining equations (3.1) and (3.2) gives

hwprobe = 2hwsignal_thR Aaad (33)
— 9 AIR/\probe (34)

Asignal .
siena )\IR + Aprobe

From this follows that for an intended probe wavelength of Apope = 10 um a signal
spectrum centered at Agignal = 1.48 pm is needed, as the Ti:Sa pulses have a central

wavelength of A\jg = 800 nm. The correspondig idler wavelength is Ajqier = 1.74 pm.
For higher conversion efficiency, OPA and DFG have a two-pass geometry. With



24 3 Fundamentals II: Experimental techniques

incident 50 % (0.75 W) of the RegA output power it is possible to generate 1.5 mW
probe power at a wavelength of A = 10 pm and repetition rate of 250 kHz. In principle,
the table-top set-up would allow to generate probe pulses centered at a probe wavelength
from 1 pm (no DFG needed) up to 12 pm.

Due to the small sample dimensions, it is crucial to be able to tightly focus the long-
wave probe pulses onto the sample. For this purpose, a focusing element with short
focal length and a large probe mode diameter at the location of this focusing element
are beneficial. The latter was achieved by a slight decollimation of the probe beam
after the DFG crystal. The beam was then focused using a parabolic mirror with only
2" focal length and 2" diameter. Under observation with a PyroCam, the decollimation
was aligned for a proper beam diameter and Gaussian beam profile. The spot diameter
in focus was determined by the knife edge method. For a Gaussian beam profile with
cylindric symmetry the 1/e? intensity width matches the difference between the position
where 16 % and the position where 84 % are blocked by the linear edge. Here we used
a gold edge evaporated onto a GaAs wafer and moved it with an zyz-stage into the
beam path. The width was determined in two directions orthogonal to the beam path.
The 16 % and 84 % values were calculated according to the difference of the reflected
intensity at the gold side and the GaAs side. At a probe wavelength of 10 pm a diameter
(FWHM) of 40 pm was achieved in the focus.

The parabolic mirror was also used to collect the reflected probe, see Fig. 3.5. Incident
and outgoing probe beam do not overlap so that the latter can easily be picked up
and focused on a mercury cadmium telluride (MCT) detector. Overall, the completely
reflective optics for the MIR-probe has the advantage of minimum losses and dispersion.

The other part of the amplified Ti:Sa pulses, serving as pump, is focused by a lens
and sent through a hole in the parabolic mirror onto the sample. A Thorlabs CMOS
camera with 3.6 pm pixel size (square) has been used to determine the spot size in the
focal plane. Any pump light scattered into the probe path is filtered by means of a Si-
filter in front of the MCT detector. The pump-probe signal is measured with a lock-in
amplifier (Stanford SR830 or Signal Recovery 7265) taking the modulation frequency
of a chopper wheel in the pump beam as reference. In addition, the total intensity of
the probe is measured. The pump-probe signal can then be referenced to the linear
signal (signal for blocked pump beam and chopped probe) giving the relative change
of reflection and transmission. In addition, a variable filter in the pump path allows to
measure the fluence-dependence of the pump-probe signal.

A 400 mm motorized delay stage (Newport) in the pump branch allows to tune the
relative delay time between pump and probe. When aligned accurately, it enables a

scan range of 2.5ns without any changes in the pointing of the beam. Only the spot
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Figure 3.6: Schematic optical pump — NIR probe set-up in reflection geometry

size varies slightly because of finite divergence. The minimum step size of the delay
stage is 2.5 pm, which corresponds to a time step of less than 20 fs. Thus, it is the pulse

duration that limits the temporal resolution of pump-probe scans.

Besides the NIR pump — MIR probe set-up described above, also a set-up with optical
pump — NIR probe configuration as shown in Fig. 3.6 has been assembled. The main
differences are that now the amplified Ti:Sa pulses serve as source of the probe, 7. e.
filters are needed to make the probe weaker than the pump, and that the photon energy
of the pump is doubled via second harmonic generation (SHG). This frequency doubling
is obtained using a BBO crystal. The SHG module assembled in the course of this work
is mainly constructed with reflective optics. Residual fundamental NIR light is filtered
away in two stages. The overall SHG conversion efficiency is above 25%. In order to
keep the optical path short, the delay stage is again inserted in the branch without
nonlinear frequency modification, which is the probe branch in this case. Moreover,
a lens optimized for 400 nm light was installed in front of the parabolic mirror. The

probe reflected from the sample and recollected by the parabolic mirror was focused by
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a lens on a Si photodiode, where any scattered pump light contributions are removed
with a low-pass filter.

Both set-ups (Fig. 3.5 and 3.6) can be easily adapted or extended for transmission
measurements. In such case, the transmitted probe has to be collimated behind the
DAC, separated from remaining pump light and focused to a second detector.

For optimum signal quality, it is essential that pump and probe are focused to the
same spot on the sample. Another issue is that the DAC has to be removed from the
set-up for each tuning of the pressure. The needed accuracy and high reproducibility
can be achieved with the help of two alignment lasers of the same colour that are
focused by the parabolic mirror and cross precisely at the position of the probe focus.
One of these alignment lasers was collinear to the probe beam path, so that it also
serves as a guide for the eye. This is useful in particular for the MIR pulses of the DFG
set-up, as they are too weak to be detected with viewer cards. The second alignment
laser is first aligned parallel to the probe beam and later (if necessary) slightly adapted
such that the two beams cross at the probe focal spot. In a next step, the focus of the
pump is aligned to this crossing point. This can easily be done with the aforementioned
CMOS camera. In case of the MIR probe, the knife edge method is used to mark the
probe focal plane. The coincidence of the alignment laser crossing point with the probe
focus is then evaluated by observing scattered light of the alignment laser spots on
the gold side with a video microscope. It should be emphasized that only the crossing
point of the alignment lasers is proper for this. Spectral aberrations hinder the reliable
determination of the common focal position by observation of a crossing point of the
pump and probe beams. The described strategy enabled reproducible positioning of the
DAC with a focal accuracy better than 30 pm. This is an order of magnitude smaller
than the Rayleigh length even for the very tightly focused MIR pulses. Therefore
the minimum beam diameter is always a good approximation for the spot size on the
sample.

The pump fluence was estimated assuming that the full power is homogenously in-
cident on a circular area with the FWHM diameter. Thus, in the center the fluence is
underestimated, and at the edge overestimated. In the relevant spectral range, the re-
fractive index of diamond is around 2.4 and pressure-induced changes are smaller than
0.02 for pressures below 40 GPa [48]. Thus, the refractive index of diamond is typically
between the refractive index of the sample under study and that of the surrounding
air. Therefore, in comparison to reference samples outside a DAC, a higher part of the
pump fluence will enter a sample mounted in the DAC. Since there are not always data
available for the change of refractive indexes under pressure, in the following all pump

fluence values refer to the intensity measured outside the DAC.
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The small spot size in the focus make the pump-probe experiments sensitive to spatial
drifts. In order to stabilize the spatial overlap, the PID parameters of the cooling system
for the Ti:Sa system have been optimized, as well as the air flow of the air conditioning
system. In the actual set-up, this was essential in order to overcome modulations
on a time scale of a few minutes in the pointing of the laser beams. Despite the
installation of a beam stabilization kit, slight drifts of the spots still can appear. A
possible reason could be small relaxation effects at mirror holders defining the beam
path after the stabilization kit, as they all work with tension springs. This observation
also demonstrates that is beneficial to minimize the total optical path. For measurement
series extending over longer times it is advisable to readjust the pointing of the pump

in regular intervals in order to ensure perfect spatial overlap with the probe.

3.3 Adaption for the use with the free electron laser at HZDR

As mentioned above, the developed set-up is compatible with the free electron laser
(FEL) FELBE at HZDR. The FEL runs at 13MHz and can be tuned from 4 up to
250 pm. In comparison to the DFG it offers lower photon energies at much higher pulse
energies (at least 2 orders of magnitude), while the spectrum is much narrower and thus
the pulse duration defining the temporal resolution of the large scale facility FELBE is
not in the order of several ten femtoseconds, but on the level of a picosecond.

Proof of principle NIR pump — MIR probe measurements on GaAs have been per-
formed with the FEL providing MIR probe pulses. The corresponding set-up is sketched
in Fig. 3.7. There are more changes than replacing the OPA and DFG modules (Fig. 3.5)
with the FEL. Essential for the ultimate time resolution of the two-colour pump-probe
experiments is that the sources of pump and probe pulses are synchronized and have
a minimum relative timing jitter. The active stabilization is achieved by a piezo-con-
trolled detuning of the cavity length of the Ti:Sa laser oscillator such that our table-top
laser runs at the same frequency as the master oscillator (see Fig. 3.7) that feeds the
FEL with electron bunches. Remarkably, despite the fact that the different systems are
separated by several tens of meters, the timing jitter between Ti:Sa and FEL signals is
below one picosecond.

In order to find temporal overlap, pump and probe have been captured with a fast
detector connected to a sampling scope (bandwidth 20 GHz corresponding to 50 ps
temporal resolution). Then the relative phase of the Ti:Sa oscillator was properly
adjusted by short-term cavity detuning and fine aligned by tuning the propagation
duration (cable length) of the synchronization signal. Finally, it is necessary to do a
pump-probe measurement and scan the delay stage in order to find temporal overlap

of pump and probe.
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Figure 3.7: Schematic near-infrared pump — mid-infrared probe set-up applying a table-
top Ti:Sa laser system in the pump branch which is synchronized to the free
electron laser FELBE that delivers MIR probe pulses.

Another change in comparison to the experiment with the OPA and DFG modules is
the use of a time-domain filtering technique in order to extract the pump-probe signal.
The boxcar method implemented in cooperation with Markus Hahnel allows to directly
calculate the pump-induced change as difference of the amplitude of a pump-affected
probe pulse and of a probe pulse that arrives at the sample after its relaxation, see
Fig. 3.8.

For the same measurement duration, this time-domain filtering technique delivers
much better signal-to-noise performance than lock-in measurements (see Fig. 3.9),
where due to the mismatch of the repetition rates of pump (250kHz) and probe
(13 MHz) the pump-probe signal is significantly weakened since the pump-induced am-
plitude is averaged over 26 probe pulses.
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Figure 3.8: Exemplary signal of the MCT detector in Fig. 3.7 captured with a sampling
scope in AC-coupling. Every 4 us, a pump pulse arrives at the GaAs sample
leading to the elevated reflection of a probe pulse. Between two pump
pulses, 51 probe pulses are detected.

The test measurements on GaAs samples shown in Fig. 3.9 are obtained under spe-
cial test conditions using a probe wavelength of Apohe = 30 pm and an IR-microscope
(Bruker IRscope II) equipped with a Schwarzschild objective. The measurements on
a GaAs reference sample and a GaAs sample mounted inside the DAC show an initial
increase of reflectivity and after some time a negative signal. This corresponds to the
transition of the plasma frequency from above to below the probe frequency. The re-
markable difference in the minimum normalized signal amplitude is due to the different
refractive indices of air and diamond.

The test measurements were done using a scope card by GaGe with a maximum
internal bandwidth of 50 MHz for data acquisition. The device was triggered at the
pump frequency. In principle, then the pump-probe event should always appear at the
same sample. However, it turned out that the triggering of the card had a jitter of 4
samples. This was overcome by not only capturing the signal of the MCT detector,
but also measuring the trigger signal with the second channel of the scope card (see
Fig. 3.7). Both channels are triggered at the same time, thus it is possible to correct
the time axis of the channel with the MCT detector signal according to the position of
the trigger peak in the other channel.

Instead of using the highest sampling rate of 50 Msamples/s, it is advisable to use
an external clock synchronized with the probe pulses (see Fig. 3.7). In our case this

reduced the noise level remarkably by a factor of 20 due to the suppression of beating
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Figure 3.9:
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Normalized near-infrared pump — mid-infrared probe results on GaAs
(a) outside the DAC and (b) on a different GaAs sample mounted in a
DAC. The black pump-probe traces have been obtained via time-domain
filtering, the red traces are measured with lock-in technique.

effects. However, it is crucial to tune the phase of the external clock such that the

maximum signal of the probe pulses is captured.



4 Pressure-induced band gap filling in VO,
observed by pump-probe spectroscopy

Vanadium dioxide (VOg) is a strongly correlated electron material that shows an
insulator-to-metal transition (IMT) at about 68°C from an insulating low-temperature
to a metallic high-temperature phase. The transition temperature close to room tem-
perature and the fact that it can be tuned by chemical doping, make VO, attractive for
many applications [49-51]. In addition, there is a genuine scientific interest to under-
stand the physical mechanisms behind the IMT, which has led to many investigations
both experimental and theoretical, over several decades.

In section 4.1, an overview about material properties of VOs and prior results is given.
Our samples are characterized in section 4.2. In the following section 4.3, our findings on
VOs obtained with the new method of NIR pump — MIR probe spectroscopy combined
with pressure application are presented. In section 4.4, we will summarize what we
directly learn from our measurements and check for plausibility. We will combine these
pieces of the puzzle to a uniform scenario in section 4.5 and discuss its relation to
literature and our results. A summary of the main results and their interpretation is

given in section 4.6.

4.1 Introduction and motivation

4.1.1 Structural phases of VO,

The IMT in VOy was first observed by Morin [52] in 1959. It is accompanied by a
structural phase transition (SPT) from a monoclinic M1 to a tetragonal R phase of
the rutile-type structure, when going from the insulating to the metallic state with
increasing temperature [53]. Besides these main phases, a number of polymorphic
variants of VOg has been reported in literature. An overview is given by Galy [54].
Among these phases are the defect- or doping-induced monoclinic M2 and triclinic T
phases, the pressure-induced structural phases M1’, X, O, M1” and the metastable
phases VO2(A) and VO3(B). Unfortunately, the nomenclature in literature is not fully

consistent, for example, the triclinic T phase is sometimes labelled as M3. In this
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aM1

Figure 4.1: The two main structural phases R and M1 of VO3. The red atoms corres-
pond to V, the grey to O. The edges of the oxygen octahedra are marked
with grey lines. The solid blue lines represent the unit cell of the structure,
the dashed black lines represent the unit cell of the other structural variant.
(a) Tetragonal rutile-type structure R with chains of V atoms along the cg
axis, shown in red. (b) Monoclinic M1 structure with V-V dimers, shown
in red. The axes are related by ay;; = 2cg and cy; = ag — cg [56].

subsection we will describe the two main structural phases in detail and give an overview

about the other modifications.

The structure of the metallic rutile-type R phase (space group P4s/mnm) [55] is
sketched in Fig. 4.1(a). The vanadium atoms (red) are placed on a body-centered
tetragonal lattice. Each vanadium atom is surrounded by an octahedron of oxygen
atoms (grey). These octahedra are stacked along the cy axis to form edge-sharing
chains, with their aequatorial four oxygen atoms in one plane. The chains at the cell
edge are shifted by cg/2 relative to those at the center of the unit cell. For the two
chains, the apical oxygen atoms point in the [110] and [110] directions, respectively, and
connect neighbouring chains by corner-sharing perpendicular to the cg axis. Thus, the
rutile-type phase of VOy can be considered as a combination of two sets of vanadium
chains along the cgr axis, shifted by cg/2.

In the insulating monoclinic M1 structure (space group P2;/c), the vanadium atoms
are grouped to dimers along the cg axis, see Fig. 4.1(b) [56]. This leads to a doubling
of the cell in comparison to the rutile-type R phase. In addition, the dimers of the
monoclinic M1 structure are slightly tilted by about 5° relative to the orientation of
the cg axis [57]. In the standard definition of the cell parameters, ay;; corresponds to

2cg. The reorientation of the vanadium atoms leads to a zig-zag shape of the vanadium
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chains and a corresponding twisting of the octahedra. The phase transition from M1
to R is of first order. At the critical temperature T, the volume expands by 0.044 %
[58], the monoclinic M1 cell has a higher density than the rutile-type R cell.

Under pressure, an isostructural transition from M1 to M1’ at a critical pressure
pe = 12 GPa has been found by Mitrano et al. [59], who named the isostructural mono-
clinic phase Mx, but in the meantime M1’ has become the standard designation. The
compressibility becomes more anisotropic in the structural phase M1’ [59-61]. While
the compressibility along the b axis increases, the lattice parameter cyr1/ remains almost
constant under further compression [59, 60]. Pair distribution function analysis demon-
strates that the V-V dimers survive and the oxygen octahedra become more symmetric
under pressure [57]. Theoretical calculations predict that the M1’ phase might coexist
with another monoclinic phase called M1”, which should be characterized by reduced
dimerization and zigzagging [62]. According to the calculations, the difference of lattice
parameters between M1’ and the proposed M1” phase is approximately negligible up
to 20 GPa and grows remarkably under further compression, such that the M1” phase
develops slightly towards the rutile-type R phase (at 40 GPa the zigzag-displacement
of M1” is expected to be 40 % smaller than for M1’). The available experimental data
does not allow to draw conclusions about this theory, in particular since the mentioned
pair distribution function analysis [57] did not cover the relevant pressure range beyond
22 GPa.

However, at room temperature, above a pressure of 34 GPa Bai etal. observed the
coexistence of the structural phase M1’ with another monoclinic, baddeleyite-like struc-
tural phase X, and between 43 GPa and 55 GPa VO, fully develops into this X phase
[61]. These results are essentially confirmed by Zhang et al., but they report a broader
pressure range from 26 GPa to 59 GPa for the coexistence of the M1’ and X phases
[63]. Li etal. observed a coexistence of M1’ and another high-pressure phase between
37 and 51 GPa [60]. Since the observed lattice parameters of this high-pressure phase
were different from those of X, they called the phase beyond 51 GPa not X but Mx [60].
Bai etal. also studied pressure-induced phase transitions at a temperature T' = 383 K
[61]. At a pressure of 14 GPa, they observed a transition from the rutile-type R to
a CaCly-type orthorhombic phase which they named O [61]. Beyond 38 GPa they re-
port coexistence of the O and X phases and above 53 GPa a pure X phase [61]. Chen
et al. have determined phase boundaries in the pressure-temperature phase diagram by
means of Raman studies [64].

In Fig. 4.2 we show a schematic phase diagram wich summarizes the current know-
ledge about high-pressure structural phases in the pressure range up to 60 GPa and from

room temperature to beyond the critical temperature [59-61, 63, 64]. Only the bound-
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Figure 4.2: Schematic pressure-temperature phase diagram of VOs structures, adapted
from [64] using especially the data of [61]. Shaded areas symbolize uncer-
tainties of the phase boundaries and the regimes of coexistence with the X
phase.

aries of the M1 and M1’ have been studied systematically [64]. The shaded transition
zones symbolize uncertainties of the transition pressures and temperatures. According
to Zhang et al. [63], the regimes of coexistence with the X phase extends over a larger

pressure range.

According to Bai etal., in the X phase the vanadium chains and their Peierls dis-
tortion disappear and metallization is established, as the vanadium ions become 7-fold
coordinated [61]. In a recent publication, a successive increase of the coordination
number of the vanadium atoms is reported for the pressure range from 30 GPa to
beyond 200 GPa [65]. There, it is suggested that the X phase may be monoclinic or
orthorhombic. This demonstrates that further experimental work is needed to fully

determine the high-pressure structures.

A further monoclinic phase named M2 and an intermediate triclinic phase T (sep-
arating M1 and M2, sometimes named M3) can be stabilized at ambient pressure via
substitutional doping or through defect states [54, 66-68]. Phase stabilization of these
insulating phases can also be achieved by tensile strain [69-73]. In M2 one of the two
vanadium chains has unpaired zigzag form and the other chain consists of untwisted
V-V dimers [66, 67]. Mitrano etal. observed via XRD that M2 and T induced by
Cr-doping (in the order of several permille up to percent) develop into the M1 phase
when pressure of a few GPa is applied [59]. In addition, Baldini et al. report that the
pressure-induced M1’ phase is different from the structural phases M2 and T [57].
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In literature, there is also work on the so-called VO2(A) and VO2(B) phases. These
are metastable phases obtained via hydrothermal synthesis or decomposition of VoOs5
in reducing atmosphere [74]. VO2(A) and VO3(B) become amorphous under pressure

[75, 76]. We expect that these phases play no role in our experiments.

4.1.2 Electronic properties of VO,

The electronic band structure of the conducting rutile-type R phase can be derived
from molecular orbital theory as demonstrated by Goodenough [53]: The vanadium
atoms give 4 electrons to oxygen atoms and keep only one electron. In the octahedral
ligand field, the d-orbitals of the V4t atoms split into molecular orbitals of Ey and Ty
symmetry, the latter with lower energy [53]. Since the octahedra have shared edges
only along the cg direction and are thus slightly deformed, the states of Ty symmetry
are further split [53]. The orbital oriented along cg has A, symmetry and is lowered
in energy due to overlap of the vanadium orbitals. These orbitals form a band called d|,
because of their orientation along the vanadium and octahedra chains. The two other
former t24 orbitals have E; symmetry and become eg bands. In the metallic rutile-type
R phase the djj band overlaps with the e bands [53] and the conductivity shows no
anisotropy [77]. A schematic band structure [53, 78] of the conducting rutile-type R
phase of VOg is shown in Fig. 4.3(a).

In the insulating monoclinic M1 phase, the eg band is lifted up in energy due to the
tilting of the dimers [79], see Fig. 4.3(b). Moreover, the dimerization leads to a splitting
of the d|| band into bonding and antibonding bands similar to the band splitting known
from the 1D chain Peierls transition (see section 2.1). Besides these two effects, the
Peierls splitting and the shift of the e band, electronic correlations contribute to the
opening of a band gap, which is in total about £, = 0.6eV [80] close to Tt [53, 81, 82].

The metallic rutile-type R phase and the insulating monoclinic M1 phase have been
studied by several photoemission spectroscopy (PES) and X-ray absorption spectro-
scopy (XAS) experiments [78, 79, 83-91]. In addition, there are numerous studies on
the electronic and optical properties of the insulating M1 and conducting R phases in
equilibrium [80, 92-97]. For high quality samples, resistivity changes around 4 orders
of magnitude have been reported [98, 99].

The observation of a coupled structural phase transition (SPT) and insulator-to-
metal transition (IMT) raises the fundamental question about the mechanism driving
the phase transition. From early times it has been discussed whether the insulating
phase originates from a Peierls instability or from electronic correlations [53, 100-102].

A lot of effort was spent on the theoretical description of Mott-Hubbard systems and
the archetypical material VOo [12, 26, 28, 53, 82, 103-113]. The discussion lead to an
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Figure 4.3: Schematic band structure of VOg in (a) the metallic R and (b) the insulating
M1 phase, adapted from Aetukuri etal. [78]. Occupied states are marked
by coloured filling. The dashed lines correspond to the Fermi energy Er.

understanding of the insulating phase of VO2 as Mott-Peierls insulator. However, con-
tradicting scenarios for the transition mechanism are reported. For example, Biermann
et al. describe a correlation-assisted Peierls transition [82], while Weber et al. report on
a Peierls-assisted orbitally selective Mott transition [108]. There are also models able to
predict both Mott- as well as Peierls-like behaviour, see for example Néjera etal. [111].
Many recent publications are based on density functional theory (DFT) with cluster
dynamical mean-field theory, which was introduced by Biermann et al. [82], but other
approaches have been demonstrated as well, for example parameter-free GW calcula-
tions by Gatti etal. [112].

Experimental activities have concentrated on a disentangling of the SPT and IMT.
Gray etal. combine XAS, PES, X-ray diffraction (XRD) and observe that at a tem-
perature Tior < TivT a purely electronic phase transition occurs, when the Coulomb
correlations within the dimers soften [79]. This agrees with results obtained via PES,
electron microscopy and electron diffraction measurements by Laverock et al. [90]. In a
quite recent paper, Lee et al. [114] report the stabilization of a monoclinic metallic phase
of VO3 in a bilayer heterostructure of VOy_5/VO3. By combined XRD and IR trans-
mission measurements, Nag et al. observe that the hysteresis of the structural transition
is wider than the hysteresis of the IR transmission, and conclude that less energy is
needed for the completion of the IMT than for the completion of the SPT [115]. Qazil-
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bash et al. demonstrated by scattering scanning near-field infrared microscopy that the
sample switches inhomogeneously by nucleation and growth, i. e. they observed phase
coexistence of metallic and insulating regions [116]. Besides such attempts to stabilize
and identify an intermediate phase between insulating M1 and conducting R, ultrafast
methods have been developed and applied to VO3 in order to track the time-dependent
evolution of IMT and SPT and identify transient states.

4.1.3 The ultrafast insulator-to-metal transition in VO,

The photo-induced phase transition to a non-equilibrium metallic phase of VOg on
a femtosecond time scale first reported by Becker etal. [117] has attracted a lot of
attention. Typically, for the ultrafast IMT the electron system of the insulating M1
phase is photoexcited by an optical or NIR pump laser with photon energies larger than
the band gap. The electron system has been probed by means of optical, NIR and MIR
spectroscopy, as well as THz time-domain spectroscopy [19, 118-125], angle-resolved
light scattering technique [125], scattering-type near-field scanning optical microscopy
methods [70, 71], ultrafast X-ray and extreme ultraviolet absorption [91, 126, 127],
as well as through time-resolved PES [89]. The evolution of the lattice was studied
indirectly by means of coherent phonons [18, 19, 125, 128, 129] and directly via ultrafast
X-ray diffraction [118, 119], and in particular ultrafast electron diffraction (UED) [130,
131]. An unconventional kind of ultrafast IMT was demonstrated in terms of a THz
field-induced tunnelling breakdown of the insulating state [132-134].

When the system is pumped above a critical threshold fluence ®y,, switching to a
transient metallic state can be photo-induced [118, 120, 121]. Via time-resolved PES,
Wegkamp etal. demonstrated that the photo-induced band structure renormalization
appears immediately with the pumping on an ultrafast time scale of several tens of
femtoseconds [89]. This is much faster than the structural dynamics, which exhibits
three different time scales as reported by Baum etal. [130]. First, the dimers stretch
with a characteristic time constant 71 = 300fs [130]. This time scale might be even
shorter, as the 300 fs match the time resolution of their UED set-up [130]. However,
the tilting of the former dimers disappears only on a picosecond time scale (12 = 9 ps)
and then the lattice relaxes to the rutile-type R cell dimensions on a time scale of
several hundred picoseconds [130]. Such different time scales have also been reported
by Lysenko et al. [125], who used ultrafast angle-resolved light scattering technique and
could resolve the role of anisotropic internal misfit strain in the ultrafast SPT dynamics
of thin film samples. In conclusion, at the ultrafast IMT, a transient metallic phase

evolves and the SPT is driven by the photoexcited electron system [89].
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There are several interesting observations about the temperature and fluence de-
pendence of the ultrafast IMT. Pashkin etal. found for the temperature range from
250K to 330K that after photoexcitation with &y, the energy deposition in the ex-
cited surface layer equals the thermodynamic energy difference of the R and M1 phase
[120]. From the observed threshold fluences at room temperature ®,, a V-V dimer
excitation density in the order of 10 % can be estimated [120], which agrees with [130].
Cocker etal. captured a -1 phase diagram for 10K < 7" < 330K and report four
different pump regimes [121]. Depending on the sample temperature and the pump
fluence, by photoexcitation an insulating, an intermediate metallic, a regime with nuc-
leation and growth of the metallic state, or a saturation region, where the full sample
is switched to a metallic state can be reached [121]. According to Cocker etal., the
intermediate metallic regime is not accessible at room temperature [121]. Hilton et al.
report enhanced photosusceptibility when the sample temperature is approaching 7,
from the insulating phase and a significant drop of the pump-probe signal amplitude

for temperatures above T [122].

4.1.4 Electronic properties of VO, under pressure

The behaviour of VO3 under pressure is a quite new research field. Before 2007, very
few studies of VOg under pressure have been published [29]. These were concerned
with the pressure dependence of the critical temperature 7. for the transition from M1
to R [94, 95] and the pressure-temperature phase diagram of chromium doped VO,
[66]. However, pressure is an interesting tool for decoupling the SPT and IMT in VOs.
The aforementioned structural studies have demonstrated that at room temperature
the lattice symmetry of VO3 stays monoclinic, however, with a variety of polymorphic
phases. MIR spectroscopy [29, 60, 63, 135], XAS [136], and transport measurements
[61, 64, 137] have been used to study the electric properties of these phases and to
search for metallization.

Arcangeletti etal. concluded from their MIR reflection and transmission measure-
ments, which they used for the calculations of the optical conductivity o(w), that
metallization starts at 10 GPa via band gap filling [29]. A similar behaviour is re-
ported for Cr-doped VOq [135]. Marini et al. did X-ray absorption near-edge structure
(XANES) measurements up to 15 GPa and observed a small spectral weight transfer
under pressure in comparison to the thermal transition, but conclude pressure-induced
metallization [136].

In contrast to these reports are conclusions based on dc-resistivity measurements.

Bai etal. observe a monotonous decrease of resistivity with increasing pressure until
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the X-phase is reached and conclude that metallization occurs in the X-phase [61].
Results by Chen et al. confirm this interpretation [64]. They conclude from temperature-
dependent transport measurements above room temperature that VOs is insulating in
the M1’ phase and behaves like a semiconductor. In contrast to Bai et al., they observe
a plateau in their pressure-dependent resistivity between 10 and 20 GPa. X. Zhang et al.
observe a resistivity hysteresis for compression and decompression in the pressure range
up to 20 GPa [137]. Taking into account additional temperature dependent resistivity
data for 90K < T < 270 K, they relate the corresponding critical pressure of 10.4 GPa
with a semiconductor-to-semiconductor transformation [137].

H. Zhang etal. [63] and Li etal. [60] report saturation of the reflection signal at
pressures above 43 GPa and 37 GPa, respectively. The latter interpret this as occurrence
of pressure-induced metallization in the M1’ phase that can be attributed to electron-
electron correlations [60]. However, according to H. Zhang etal. this does not hold
for all samples, but some of their own samples become metallic in the X phase, thus
indicating that the IMT is caused by the SPT [63].

Such discrepancies as discussed above and reported e. g. by H. Zhang et al. [63] illus-
trate the inconsistent description of the electronic properties of VOo under pressure.
This calls for the application of other, innovative techniques to obtain more insight
into the nature of the pressure-induced IMT. Especially the pressure range below the
appearance of the metallic X phase should be studied for signatures of a bandwidth-
driven Mott-Hubbard transition. The experimental challenge is to probe free charge
carriers and correlated electrons simultaneously while the samples are kept within a
DAC. This challenge can be met with our NIR pump — MIR probe set-up. To the best
of our knowledge, we provide here the first data obtained with such a combination of
NIR-pump — MIR-probe and pressure technique. Our results are of high interest for
testing of novel theoretic results [111].

At this position we acknowledge the pioneering work of Hsieh et al. who used optical
pump — IR probe technology for a study of coherent phonons on pressurized VOq [18].
They report the signature of a monoclinic transient metallic phase. Their approach
could be useful in order to check the lattice after an ultrafast IMT. On the other hand,
with a probe photon energy well above the band gap of VOs, their experiment is not
suitable for the detection of free charge carriers. In contrast, our set-up brings the
advantages of minimized heat introduction and a probe photon energy far below the
expected band gap, thus being highly sensitive to free charge carriers.

To conclude, here we follow the hints that the pressure-induced IMT in VO2 appears
to be decoupled from the SPT. Pressure-induced changes in the equilibrium phase

could have strong impact on the ultrafast response. Therefore we will examine, how
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the dynamics and the threshold of the ultrafast IMT evolve under pressure. Finally, the
study of the pump-probe response enables us to make conclusions about the non-excited

state of VO2 under high pressure.

4.2 Sample characterization

4.2.1 Sample preparation

Our experiments were performed on single crystals of VOo provided by the group of
Lynn A. Boatner, Oak Ridge National Laboratory [138]. The crystals have been grown
via thermal decomposition of V205 under a continuous flow of Ar gas [138]. After
120 h processing time, plate-like crystals of a few hundred microns thickness and several
square millimeters area were obtained [138]. The ay; = 2cg axis lies in the plane of
the plate-like crystallites. In the monoclinic M1 phase, the crystals show twin domains
[138]. For high-pressure experiments, the VO crystals were polished to a thickness
in the order of 10-30 pm, then of each piece several samples were cut with dimensions
suitable for the DAC.

4.2.2 Raman study under pressure

The pressure-induced isostructural phase transition from M1 to M1’ at room temper-
ature was observed by Raman spectroscopy. A thin VO, sample of less than 15 pm
thickness and lateral dimensions between 20-30 pm has been used. The sample was
excited at a wavelength of 532nm and unpolarized Raman spectra were measured by
means of a Jobin-Yvon LabRAM HR 800 (Horiba) spectrometer equipped with a cryo-
genically cooled silicon CCD camera.

Typical spectra obtained at pressures of 5.5 and 16.9 GPa are shown in Figs. 4.4(a)
and 4.4(b) together with the pressure-induced shift of the Raman lines, see Fig. 4.4(c).
The results are in excellent agreement with literature [29, 60, 61, 63, 64]. The phonons
harden under pressure, 7. e. their frequencies increase, and for some modes there appears
a kink at a pressure around 12 GPa, which is related to the isostructural transition from
M1 to M1’ [61].

4.2.3 Temperature-driven insulator—-metal transition

The thermal phase transition was observed by tracking the temperature-dependent lin-
ear reflection signal Ry, at A = 10pum from a VO, crystal mounted in an evacuated

cryostat. The attribute linear (or subscript lin) with respect to reflection and transmis-
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Figure 4.4: Raman spectra obtained at (a) 5.5 GPa and (b) 16.9 GPa. The pressure
dependence of the modes marked with coloured arrows in (a) and (b) is
shown in (c). The errors are smaller than the size of the symbols.

sion means in the following that we refer to a signal not affected by any pump light. In
order to ensure a good thermal coupling between the sample and the cold finger of the
cryostat, the crystal had been placed directly with its backside on a Cu mount. Below
T, the measurement might be affected by this mount, as VO3 in the insulating phase is
transparent at A = 10 pm and the Cu support might contribute to the reflected signal
intensity.

The obtained data shown in Fig. 4.5 are normalized to the initial reflection signal. In
perfect agreement with literature, there is a distinct step in reflection at 338 K, marking

the critical temperature 7T,. The transition to a metallic phase is further supported by
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Figure 4.5: Hysteresis of the reflection signal at A = 10 pm obtained from a VOs crystal
mounted on a Cu sample holder. The data are normalized to the starting
value observed under heating from 290 K.

the saturation of the reflection signal at temperatures above 338 K. The small width
in the order of 3K of the hysteresis associated with the first order phase transition
demonstrates the high homogeneity and quality of the VO, crystal. The observed
growth of the reflected signal intensity under heating below Tt is possibly related to

interference effects within the sample.

4.3 Ultrafast pump-probe results

4.3.1 Data acquisition

For the ultrafast measurements, the NIR pump — MIR probe set-up described in sec-
tion 3.2 was used. With the Ti:Sa pump photons Eyymp = 1.55¢V, electrons can
be excited above the band gap FEgap(0GPa) = 0.6eV by single photon absorption.
In order to be particularly sensitive to free charge carriers, the probe photon energy
has to be much smaller than the band gap energy. The probe wavelength was set to
Aprobe = 10 um, which corresponds to a photon energy Epohe =~ 0.12€V.

For an estimate of the band gap we analyze the temperature dependent resistiv-
ity traces of Chen etal. measured on single-domain nanobeams in quasi four-probe
geometry [139]. Approximating the data with an Arrhenius law for the resistance
p(T) = poe%, it can be concluded from the slope that the band gap is larger than
0.6 eV in the pressure range up to 20 GPa. This approximation is much more reliable
than the band gap estimates of Bai etal. [61] and H. Zhang etal. [63]. The former

use an Arrhenius law to fit pressure-dependent changes of the resistivity, although the
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formula describes only the temperature dependence [61]; the latter estimate the band
gap energy from the vanishing transmission of a thick sample, which due to absorption
at intra-gap states [29] will underestimate the real gap [63]. In summary, according to

our estimate the band gap energy is well above the photon energy of our probe.

There are two reasons, not to choose a larger probe wavelength than 10 pm. First, we
are interested in the electronic answer of the system. For this purpose the probe photon
energy should be above 85 meV, since below this value features of phonon resonances
can be observed [19, 97]. Here, we have to take into account phonon hardening under
pressure, which shifts the highest phonon mode to about 93meV at 30 GPa [60, 61].
Second, we have to consider the limited sample area and the achievable spot size in
focus. In order to avoid artefacts, the probe spot should be smaller than the sample.
Overall, the selected probe wavelength Aprope = 10pm is a good compromise for all

these requirements.

The pump-probe experiment was performed in reflection geometry for each pressure p
with a series of different pump fluences ®. The pump-induced change in reflection
AR)ockin (P, p, t) as function of the delay time ¢ was measured by lock-in technique with
chopped pump. In order to obtain the relative pump-induced change of the reflection
signal, AR(®,p,t) has to be referenced to the linear reflection signal Rj,(p). At each
pressure, the linear reflection signal Riin scope(p) was determined by an oscilloscope.
This signal is scaled by a calibration factor correcting for the ratio of the probe signals
measured by lock-in technique and by the scope, Rcal linscope/Recal lin,lockin, Which was
taken at one pressure, when the chopper was placed in the probe beam. Thus, it was
not necessary to move the chopper from the pump to the probe beam at each pressure,
but only once for the calibration measurement. The relative pump-induced change of
the reflection signal is

AR(®,p,t)  ARiockin(®,p,t) — ARofset,lockin(P,P)  Real lin,scope

— : , 4.1
Rlin (P ) Rlin,scope (P) Rcal,lin,lockin ( )

where A marks pump-induced signal changes. ARjockin(®, p, t) is corrected for a small
thermal offset ARofset lockin (P, p) observed at high fluences ®. This offset originates
from a multi-pulse heating effect in the intervals when the chopper is not blocking the
beam. It was determined by averaging data points of the plateau at negative delay

time.
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4.3.2 Temperature-dependent pump-probe measurements

The pressure-dependent pump-probe experiments were performed at room temperature.
Before concentrating on these measurement series, we present pump-probe results for a
reference sample mounted in a cryostat as described in section 4.2.3. For this experiment
the offset-correction is important, as the surface of the sample in the evacuated cryostat

can easily heat up under pump fluence.

In Fig. 4.6(a) the fundamental difference of the pump-probe signal from the insulating
M1 and the metallic rutile-type R phase is shown. Schematic band diagrams of these
two phases are shown in Figs. 4.6(b) and 4.6(c). There the distribution of a finite
density of states (DOS) is given on horizontal energy axes and the DOS coloured grey
refers to filled states. At 290K, 4. e. below T, the sample is insulating with a band gap
Egap(0GPa) = 0.6 V. Ti:Sa pump photons Epump = 1.55€V excite electrons from the
dj| band to the ey band as marked with a red arrow in the schematic band diagram
of Fig. 4.6(b). Thus, pumping produces additional free charge carriers and therefore
the reflection rises. The absorption length of VO3 at a wavelength of 800 nm is about
100nm [130]. This means that we photoexcite only a thin layer at the surface of the
sample. However, the probe which cannot excite beyond the band gap is sensitive for
much deeper parts of the sample. Consequently, the pump-induced reflectivity increase

is only in the order of percent.

Starting from the metallic rutile-type R phase, i. e. above T, we observe a slight
pump-induced reduction of the reflected signal (see red trace in Fig. 4.6(a)). At 360K
the band gap has collapsed as sketched in Fig. 4.6(c). The impact of pumping is limited,
since a much higher number of free charge carriers is present than are excited by pump
photons. Furthermore, it is not possible to photoexcite charge carriers with the Ti:Sa
pump photons Fyump = 1.55€eV from completely filled bands to unoccupied states, as
the energy between conduction and valence band is about 2.5eV [92]. Thus, our pump
cannot increase the number of free charge carriers. However, it can excite electrons in
the valence band which causes a heating of the electron system. As typical for a metal,
a temperature increase leads to reduced conductivity and therefore we observe a small
negative pump-probe amplitude in reflection. All these results agree with literature
[120].

It will be interesting to check, whether the pump-probe amplitude disappears when
pressure is applied on a sample at room temperature in a way similar to the temperature-
induced phase transition. Such a behaviour can be expected for a hypothetical pressure-

induced band gap closure similar to the thermal IMT.
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Figure 4.6: (a) Pump-probe signals at a fluence of 11mJ/cm?. The blue trace was
captured at a base temperature of 290 K < T¢, the red trace at 360 K > T¢.
Corresponding schematic band diagrams are shown in (b) for the insulating
(T < Tt) and (c) for the metallic (T > T, phase). The red arrows symbolize
how the pump photons excite the charge carriers.

4.3.3 Pressure- and fluence-dependent pump-probe measurements

Figure 4.7(a) displays pump-probe traces corrected according to equation (4.1) obtained
from VOg at a pressure of 2.1 GPa. On the horizontal axis, the delay time between the
probe and pump pulses is shown, where a positive time means that the probe arrives
after the pump. The colour coding describes different pump fluences. All traces show
a quasi-instantaneous increase of reflectivity that is only limited by the durations of
the pump and probe pulses. The onset is followed by a fast relaxation on a sub-
picosecond time scale. At low fluence (blue), this relaxation dominates the pump-probe
signal which then vanishes after about 1ps indicating that all photoexcited charge
carriers have returned to localized states. Above a certain fluence level, a persistent
change of reflectivity is observed (green trace), becoming more prominent and eventually

dominating (orange and red traces) when the fluence is further increased.
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Figure 4.7: Pump-probe signals corrected according to equation (4.1) for different
pump fluences ® at room temperature and quasi-hydrostatic pressure of
(a) 2.1 GPa and (b) 11.3 GPa. Time-averaged pump-probe signals for delay
times between 0.8 and 1.2 ps (highlighted as grey area in (a) and (b)) versus
pump fluence for (c) 2.1 GPa and (d) 11.3 GPa. Black squares represent ex-
perimental data, the blue lines show fits using equation (4.4). The crossing
point of the asymptotes of the fit (dashed lines) defines the treshold fluence
®,. Details of the threshold fitting are explained in section 4.4.1.

All these observations agree with prior results reported on similar NIR pump — MIR
probe experiments carried out at ambient pressure [19, 121]. The photoexcitation
increases the number of free charge carriers, thus leading to an increased reflection of
the probe beam. Above a threshold fluence ®,(p,T'), a critical density of free charge
carriers is photoexcited that screen Coulomb interaction and thus induce the collapse of
the energy gap and the switching to a metastable metallic state [19, 89]. The continued
slow growth of the pump-probe amplitude at the highest fluences shown in Fig. 4.7(a)
corresponds to thermal switching of further parts of the sample [121]. This can be due
to growing in lateral direction, when only a part of the probed area was excited beyond
the critical carrier density, but besides, it always can come from deeper volumes of the

sample as we excite only a thin surface layer, but probe much deeper in the sample.
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Remarkably, at elevated pressure we observe a pump-induced persistent change in
the reflection signal already at very low fluences, see the blue traces in Fig. 4.7(b).
However, there is still a non-vanishing threshold fluence ®;;,, above which the long-
lived pump-probe response drastically increases. For a detailed analysis, we average
the pump-probe signal of each trace in the time-frame 0.8 ps < ¢ < 1.2 ps. The position
of this delay time interval is a compromise between completion of the fast relaxation
process and low impact of the slowly rising thermal signal.

We plot the obtained AR%;)@’M
Fig. 4.7(c) corresponds to Fig. 4.7(a), and Fig. 4.7(d) to Fig. 4.7(b), respectively. A

threshold behaviour can be clearly seen for both exemplary pressures. In addition, a

as function of the pump fluence & for each pressure.

fundamental difference in the low-fluence regime becomes obvious. A non-vanishing
pump-probe signal exists around 1 ps only at the elevated pressure. Therefore, in con-
trast to literature reporting measurements at ambient pressure conditions [19, 120, 121],
we define the threshold fluence @y, (p) by the crossing point (marked by a red arrow) of
asymptotes (dashed grey lines) for the high-fluence and low-fluence regime, as shown
in Figs. 4.7(c) and 4.7(d).

4.4 Analysis and interpretation

4.4.1 Threshold fluence fitting

In order to determine the threshold fluence ®y,(p) we describe the fluence dependence
of the pump-probe signal averaged around 1ps for each applied pressure p using a

phenomenological bi-asymptotic fitting function

ARmean(?P)

— 51 _ s2®
R —cln(ae1 +(1—a)e™ ), (4.2)

with four independent positive fit parameters ¢, a, s;1 and so. This definition forces the
fit to pass through the origin, which is a proper condition since we have performed an
offset correction. In the limit of very large or very small pump fluences, equation (4.2)
is dominated by one of the exponential terms and the fitting function becomes nearly
linear. The crossing point of these two asymptotes defining @y}, can be derived from

the equality of both exponential terms:

1 a
Py, = 1 . 4.3
o 82—81n<1—a> (43)

In order to achieve stable operation of the numerical fitting procedure we rewrite

equation (4.2) using equation (4.3) and replace the parameter a that exponentially
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approaches 1 for &, — oo by the threshold fluence ®yy:

ARmean(®) et e + (1 - 653%> 6(81+83)®] 7 (4.4)

R

=cln 1+ e53%n 1 + e%3%th

where s3 = s9 — s1. Thus, the parameters obtained by fitting are ®y, ¢, s1, 3.

The analysis of pump-probe traces at different pump fluences and various pressures
revealed two key parameters that exhibit anomalous pressure behaviour, the threshold
fluence @y, and the slope of the low-fluence asymptote m; = ¢sy. In Fig. 4.8 the pressure
dependence of these two parameters is shown together with the linear transmissivity and
reflectivity. Black symbols correspond to the first measurement series, where a focus
difference with pump smaller than the probe spot — in contrast to the other measurement
series with pump larger than the probe spot — was corrected at the calibration, which
only affects the mq values. The transmissivity was corrected for a scattered background
signal and as well as the reflectivity referenced to the incident probe power. In Fig. 4.8

both, transmissivity and reflectivity, are normalized to their values at lowest pressure.

Starting from ambient pressure, the threshold fluence ®;;, monotonically increases
up to a critical pressure p. around 7 GPa, see Fig. 4.8(a). A higher threshold fluence
means that more charge carriers have to be photoinjected in order to achieve sufficient
screening of Coulomb interactions, and thus to induce a metastable metallic phase. The
increase of @), with pressure is consistent with the reported growth of T, under pressure
[64, 94] and the corresponding estimated increase of the latent heat of the IMT [64].

Around the critical pressure p. we observe an anomalous drop of the threshold fluence
®,;, within a pressure interval of a few GPa. Remarkably, the drop of the threshold
fluence coincides with the vanishing of the transmissivity (Fig. 4.8(c)), the onset of an
increased reflectivity (Fig. 4.8(d)) and of a finite slope m; of the low-fluence asymptote
(Fig. 4.8(b)). These results have been obtained with high reproducibility. Different
colours in Fig. 4.8 correspond to three different DAC fillings and pressure runs. For
the three different loadings of the DAC we observe very similar trends. In Fig. 4.8 the
background shade from grey to yellow highlights the change of behaviour at the critical

pressure pe.

With further pressure increase, the threshold fluence slightly decreases, while the
reflectivity grows with further pressure increase. The slope m; decreases until it almost
vanishes. It is remarkable that the threshold does not disappear in the studied pressure
range (up to 23 GPa). This gives evidence that it is always possible to increase the
number of free charge carriers beyond a critical density by photoexcitation over the

band gap, and thus to induce a transition to a metallic phase. The persistence of the
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Figure 4.8: Pressure dependence of (a) threshold fluence @y}, and (b) slope m; of the low-
fluence asymptote obtained from the fit using equation (4.4). (c¢) Normalized
linear transmissivity and (d) reflectivity of VO in the DAC as function of
pressure. Different colours and symbols correspond to separate experiments
performed on three different VO3 crystals.

threshold agrees with the report of H. Zhang et al. [63], who observe that the band gap
energy is reduced under pressure, but does not close in the pressure range studied in
the present work.

The observed trends in the linear reflectivity and transmissivity are comparable to
literature [29, 60, 63]. Identical to the results by Arcangeletti et al. [29], the reflectivity
is stable up to pressures of several GPa and then starts to grow. The more pronounced

decrease in our transmission data is related to the larger thickness of our sample.
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A non-vanishing parameter m; means that it is possible to non-cooperatively (there
is no critical density) excite charge carriers to a long-lived metastable state. In or-
der to obtain better insight into its origin, we have to consider further experimental

observations presented in the following sections.

4.4.2 Pre-edge pump-probe signal

The vanishing of the transmission is also visible in the pump-probe data measured in
reflection geometry. As long as there is a finite transparency of the sample, reflection
at its backside can contribute to the total reflectivity of the sample. The pump-probe
experiment allows to test whether such a contribution exists.

At pressures below p. we observe a negative pump-probe amplitude for small negative
delay times around 0.5 ps, see Fig. 4.9. Simultaneous to the linear transmissivity (see
Fig. 4.8(c)), the negative pump-probe amplitude decreases with increasing pressure
and disappears above p.. The negative delay time means that the probe arrives on the
sample before the pump. In such a situation, a finite part of the probe intensity will
enter the sample and a fraction of this will be reflected at the backside of the sample.
However, this back reflected probe light is at least partially suppressed when it returns
to the then photoexcited surface of the sample. This pump-induced suppression is the
origin of the negative pump-probe signal and with increasing pump fluence the latter
gets more pronounced.

This interpretation is supported by the estimate of the propagation duration #,.p of
the probe light in the sample

2dsampleMsample (4.5)

torop =
prop c ’

where we assume that the probe is incident approximately perpendicular to the sample
surface. The factor 2 accounts for the way forward and backward and c is the speed
of light. For a sample thickness in the order of dsample = 25 pm and a refractive index
Nsample around 3.2 [97] we estimate a propagation duration of 0.5ps. This perfectly
agrees with the interval at negative delay times, where a negative pump-probe signal

appears.

4.4.3 Pump-probe signal as a function of pressure

In Fig. 4.7 we have presented the pump-probe amplitude as a function of the fluence
at a fixed pressure. However, it is also instructive to discuss the pump-probe signal as

a function of increasing pressure at a fixed fluence, see Fig. 4.10, which is a measure
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Figure 4.9: (a) Comparison of the normalized pump-probe signal for pressures below
and above p.. (b) Zoom to the signals at small negative delay times. Below
pe (blue trace), a negative pump-probe amplitude is observed, at pressures
above p this feature disappears (red trace). The inset in (b) schematically
demonstrates the origin of the negative pump probe signal at negative delay
time. The beam diameters are much larger than the arrows in the sketch.

of the photosusceptibility. In order to be able to compare at exactly the same pump
fluence, we use the fit parameters obtained through equation (4.4) to interpolate the
measured values and calculate the pump-probe signal. It is even possible to slightly
extrapolate the fitted fluence range. Most appropriate is the discussion at a fluence
above the initial threshold, but below the maximum threshold fluence. Here we have
choosen a fluence of 20mJ/cm?, which means that at a few pressures with low threshold
we had to extrapolate slightly beyond the fitted fluence range.

We first observe a drop of the pump-probe signal when p. is approached, which
is a consequence of the threshold &y, increasing with pressure. Vice versa, at the
critical pressure, the drop of ®), leads to a drastic increase of the pump-probe signal.
With the same amount of photo-induced carriers, a much larger part of the sample
can be switched. The switching of a larger part of the sample is also the reason for
the growth of the pump-probe signal at a fixed pressure when the fluence is further

increased after passing the threshold. Remarkable at the traces shown in Fig. 4.10 is
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Figure 4.10: Pump-probe signal as function of increasing pressure at a constant pump
fluence of 20mJ/cm?. The signal amplitude was calculated using the fit
parameters obtained from equation (4.4). The colour coding corresponds
to the three different samples presented in Fig. 4.8.

the significant decrease of the pump-probe signal from 10 GPa to 20 GPa. Following
the argumentation around p, one would expect that the slightly decreasing threshold
causes a small increase of the pump-probe amplitude, however, the opposite behaviour
is observed. The lowered signal amplitude is not an artefact of extrapolated fitting
curves, it also can be clearly observed at lower fluences (not shown).

The reduction of the pump-probe signal above 10 GPa appears to come along with the
observed onset of the growth in reflectivity. At an increased level of linear reflectivity,
the relative change induced by photoexcitation decreases. While the free charge carriers
provided by pumping only have small effect on the linear reflectivity, they still play a
major role for the switching to another phase which has slightly higher reflectivity. This
observation calls for estimates of the plasma frequency and the critical density of charge

carriers needed to drive the IMT. We will come back to this point in section 4.4.5.

4.4.4 Decompression behaviour

We also wanted to test the reversibility of the pressure-induced effects in VOs. Since
it is known that electronic properties of correlated oxides might not fully recover after
decompression [140, 141], we performed measurements only at a few selected pressures
under pressure release to see the trend. In Fig. 4.11 we present data obtained on

decompression and compare with the results under increasing pressure of Fig. 4.8.
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Figure 4.11: Decompression results for the threshold fluence ®, the slope m; of the
low-fluence asymptote, and the linear reflectivity Ry,. For comparison,
the results obtained under compression are plotted as well. The colour
code is the same as in Fig. 4.8. The data points obtained on pressure
release are marked with pentagons and connected by dashed lines.

The linear reflectivity returns on a hysteresis-like path down to its original value at
lowest pressure, which agrees with literature [60]. In contrast, we did not observe any
recovery of the transmission. This was concluded from the absence of a negative pump-
probe signal at negative delay times (see section 4.4.2) and is therefore not shown in
Fig. 4.11.

The threshold ®.}, recovers at least partially under decompression, but we do not
observe an anomaly around p.. Remarkably, the slope m; did not return to small val-
ues under decompression, but rose instead. The latter could be related to a different
pressure treatment. In the measurement series marked in red in Fig. 4.11(b), between
the measurements close to 4 GPa and at 1 GPa the pressure had been fully released,
i. e. pressure was again applied to collect data at 1 GPa. Such a behaviour cannot just

be explained by structural phase mixing under decompression as reported in literature
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[60]. It would appear that m; stores the history of the sample, growing with each
compression. This could also be the origin of the higher m; values for the first mea-
surement series (black symbols in Fig. 4.11), since during the compression series after
taking the measurement at 8 GPa the pressure was reduced to 4 GPa in order to check
for a transmission signal (see Fig. 4.8(c)). A possible explanation for the behaviour of
my could be that it is related to the introduction of defect states as will be discussed
later (see section 4.5).

The observed decrease of m; when pressure is increased beyond 12 GPa does not
contradict this interpretation. This decrease of m; is reminiscent of the dramatic re-
duction of the pump-probe signal (see Fig. 4.10) in the same pressure range hinting to

a possibly similar origin of these effects.

4.4.5 Estimates of carrier and excitation densities

Assuming homogeneous excitation along the absorption length, the density of charge

carriers excited by the pump ne pump can be calculated as

) Apump

b
absorption ( Apump ) he

(4.6)

Te,pump = d

where h is the Planck constant. With an absorption length dapsorption = 100 nm at our
pump wavelength A = 800nm [130], the density of photo-induced free charge carriers
in the excited surface layer of the sample is approximately ne pump = 4.0 - 10%'em ™3 for

2

the typical threshold pump fluence of ® = 10mJ cm™. Taking into account that we

lose about 20 % pump intensity (see next section) due to reflection at the two interfaces
of the diamond anvil, this value reduces to ne pump = 3.2 - 10%'em 3.

For comparison, the density of vanadium dimers that equals half the number of
electrons that can be photoexcited by our pump is ny_v = 1.7 - 1022cm ™2 (calculated

2 we excite

with the structural data of [56]). Thus, at a pump fluence & = 10mJcm™
about 10% of the vanadium atoms. This is in the order of the reported threshold
excitation density of 10 % of the V-V dimers [120, 130].

Now we estimate which carrier density n. is needed to make the plasma frequency wy,
equal to our probe signal frequency at Aprope = 10pm. The plasma frequency is related

to the density of charge carriers n. and their effective mass m = Mm, according to

Ne€?

(4.7)

Wy = —_—
P EocfoMeM’

with e for the elementary charge, €y as permittivity of free space and e, as dielectric

constant in the high frequency limit Re{e(w — o0)}. M scales the charge carrier
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mass m in units of the electron mass me. For M = 1 and eo = 10 [97] we obtain
Nprobe,plasma = 1.1 - 10%%cm ™3 from equation (4.7) as electron density that corresponds
to a plasma frequency equalling our probe signal frequency. This is more than an
order of magnitude below the observed densities of charge carriers excited by the pump
Ne,pump Needed to drive the ultrafast IMT and corresponds to less than 0.4 % of the
electrons of the djj band. These estimates are quite rough, since the electrons in a
band might have a larger mass, such that more carriers are needed to achieve the
same plasma frequency. However, as the critical carrier excitation density nepump is
distinctly larger than nprobe plasma, free charge carriers could play an important role in

the pressure-induced increase of the linear reflectivity.

4.4.6 Discussion of the linear reflectivity behaviour

This section concerns the observed pressure-induced changes in linear reflectivity, see
Fig. 4.8(d) or Fig. 4.11(c). Free charge carriers may not be the sole contributors to the
observed pressure-induced changes in the linear reflectivity, however, the estimates in
the previous section show that their impact possibly dominates. For better insight we
simulate here the linear reflectivity as function of the density of free charge carriers.
Considering absorption at free charge carriers in the Drude model, the frequency

dependence of the dielectric constant is given by

w2
e(w,wp) = €00 (1 - ?) ) (4.8)

w2 + jwwe

where w. = 27“ is a scattering rate. Assuming normal incidence and that the pressure-

induced changes of the refractive index of the diamond anvils are negligible (see sec-

tion 3.2), the reflectivity of our sample at the frequency w is given by

p ndlamond
Rsample b,w . (49)
p + Ndijamond

Inserting equations (4.7) and (4.8) into equation (4.9) allows us to estimate the linear
reflectivity of our sample at the probe frequency as function of the pressure-dependent
charge carrier density 7.

We have to point out that the linear reflection signal was measured by blocking the
pump. With this we lose the restriction that we are only sensitive to the volume of spa-
tial overlap of pump and probe at the sample’s surface. It is likely that we also capture

probe light reflected from the upper diamond surface. Taking this into consideration, we
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would understand Ry, (p) as a sum of a pressure-independent linear reflectivity Rgiamond
of the diamond and the pressure-dependent intrinsic linear reflectivity Rgample Of the
sample,

Riin(p) = Rdiamond + Rsample(P)- (4.10)

This means that the relative change of the intrinsic linear reflectivity of the sample
Rgample(p) can be much higher than the observed relative change of Ry, (p) as shown in
Fig. 4.8(d) or Fig. 4.11(c).

Obviously, an additional term like Rgjamond is also present in prior work. With
Ndiamond = 2.4 [48], at ambient conditions the reflectivity of VO mounted in a DAC
should be about Rgymple = 2% for perpendicular incidence, however, the values re-
ported in literature are in the order of 5-9% [29, 60, 63]. Owing to the very low
reflectivity Rgample, other contributions are dominant despite the fact that people did
special calibrations in order to minimize the deviation from Rgmple-

In the worst case, in our experiment there would be an additional term Rgijamond =

2
‘M of about 17%. This would correspond to an underestimation of the

14+ndiamond
pressure-induced changes of Rgample by a factor of 10. However, in our case we ex-

pect a smaller error than this. As the upper diamond surface is not in the focus, its
reflection will not be collimated and we lose a part of the intensity on the way to the
MCT detector.

Combining equations (4.7) to (4.10), we calculate the linear reflectivity Ry, (p) as
function of the pressure-dependent density of free charge carriers n, assuming M =1
and assuming the scattering rate to be w. = 27 - 90 THz [142]. In Fig. 4.12 we show
the results for Rgiamond = 17 % (blue trace) and considering literature [29, 60, 63] for
Rgiamond = 5 % (red trace).

The onset of the measured linear reflectivity (see Fig. 4.8(d)) agrees qualitatively well
to the shape of the simulated traces with its gradual increase starting at the plasma
frequency, if we assume that the carrier density grows with increasing pressure. The
simulation confirms that it is possible to obtain a doubling of the linear reflection Ry,
as observed in the experiment (see Fig. 4.8(d)). The carrier density needed for such
a doubling is still well below the the densities of charge carriers excited by the pump
Ne,pump Needed to drive the ultrafast IMT (see section 4.4.5).

However, it is hard to draw further conclusions from the simulation, especially on the
pump-probe signal amplitude. Pumping with the typical pump fluence of 10 mJ cm—2
increases the free charge carrier density at the surface of the sample in the order of
10%! cm 3. Considering such a jump along the carrier density axis in Fig. 4.12 and the

corresponding jump in reflectivity, it is not possible to explain the distinct decrease of
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Figure 4.12: Simulated normalized linear reflectivity Ry, for our probe at Apobe =
10 pm (wprobe = 27 - 30 THz) as function of the density of free charge carri-
ers. The simulation is based on equations (4.7) to (4.10), the normalization
is relative to the linear reflectivity value at lowest carrier density (where
the plasma frequency is much smaller than our probe frequency). The blue
trace corresponds to Rgiamond = 17 %, the red trace to Rgiamond = 5 %.

the pump-probe amplitude at our highest pressures. This might be a consequence of
an unrealistically high scattering rate w, which was taken from the metallic rutile-type
phase. Possibly, for the equilibrium phase and the transient phase two different curves
have to be considered. In conclusion, we cannot completely explain the pump-probe
signal based on this simplified model. Nevertheless, it is not excluded that a more
realistic model could explain the significant decrease of the pump-probe signal at our
highest pressures.

Now we consider the impact of the difference between the observed (Ryy,) and the
intrinsic (Rsample) linear reflection of the sample on the relative pump-probe signal
(AR/R) and derived key parameters. The replacement of Rj,(p) in equation (4.1) by
the more realistic Rsample(p) would lead to a higher calculated relative pump-probe am-
plitude. As Rgample(p) grows with pressure, the correction of the calculated pump-probe
signal would be smaller for higher pressures. Thus, the decrease of the pump-probe sig-
nal with increasing pressure beyond p. would be more pronounced (see Fig. 4.10). This
would reduce the m; slope, however, the threshold values ®;, would not be affected at
all, as the fitted data points would all be scaled with the same correction factor. Over-

all, the observed anomaly at p. (see Fig. 4.8) persists independent of the replacement
of Ry, (p) by Rsample (p)
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Finally, we consider two special aspects about the pressure-induced linear reflection,
on the one hand the saturation behaviour, on the other hand the role of thermal carrier

activation.

In literature, saturation of the linear reflection is reported for pressures above 37—
43 GPa [60, 63]. Therefore, it is surprising that we observe a constant linear reflection
already for pressures above 16 GPa in one of the measurement series (black trace in
Fig. 4.11(c)). In principle, such saturation could be expected when the scattering rate
w. is sufficiently low and the carrier density high enough to drive the plasma frequency
beyond the frequency of the probe signal, or when a all carriers of the d-shell form a
metallic conduction band. Both scenarios are not likely to apply to our measurements,
since the pump-probe signal did not disappear with increasing pressure. Obviously,
pumping creates additional charge carriers giving rise to an increased reflectivity. Since
for a different measurement series (blue trace in Fig. 4.11(c)) no saturation of the linear
reflectivity is observed, the saturation behaviour of the black trace might be related to
the fact that in the first measurement series (black trace) the pressure was not increased

monotonously, but released from 8 GPa to 4 GPa during the compression cycle.

The observed pressure-induced increase in reflection cannot be explained by thermal
activation over the band gap, as shown below. The density of thermally activated

charge carriers Ninhermal can be estimated by the mass action law for semiconductors

E

kT B By
B ¢ TT = \/N,Nj, ¢ T, (4.11)

3
2
Nthermal = 2 (27Th2> (m:m;kz)

1w

where m and m;, represent the effective masses and N, and N}, the densities of electrons
and holes, respectively. Equation (4.11) is derived by integrating the density of states of
parabolic bands weighted with the Fermi distribution at finite temperatures. Assuming
that all our carriers have the free electron mass me, we obtain an intrinsic carrier
density of N, = 2.5 10" cm™ at a temperature 7' = 300 K. The thermally activa;caed
density of free charge carriers would be even reduced by the Boltzmann factor eiﬁ
in equation (4.11). AS nNthermal < Ne and Ne < Nprobe plasma, it is immediately clear
that even across an arbitrary small band gap the thermal activation cannot provide
sufficient charge carriers to lift the plasma frequency beyond the value corresponding
to our probe frequency at Apope = 10 pm. Therefore one has to assume the presence
of partially filled delocalized electronic states within the energy gap in order to explain

the pressure-induced increase of the mid-infrared reflectivity.
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Figure 4.13: Fitted relaxation time constants for pump-probe traces corresponding to
pump fluences within an interval of 5mJ/cm? below the threshold fluence
as function of pressure. The colour code corresponds to the three different
samples shown in Fig. 4.8.

4.4.7 Relaxation dynamics

In order to study the relaxation dynamics of the fast (electronic) decay in the pump-
probe traces, the pump-probe signal was fitted in the interval of the first picosecond with
a mono-exponential function including an offset. Fig. 4.13 shows the time constants
corresponding to pump fluences within an interval of 5mJ/cm? below the threshold
®in(p) as a function of pressure. There is no clear dependence on the fluence. The
relaxation time constants scatter mainly around 0.15-0.20ps in the whole pressure
range. The slight drop of the time constants at higher pressures may be an artefact
caused by a decreased signal-to-noise ratio, since the pump-probe amplitude gets very

low at high pressures. The observed relaxation time scale matches with prior work [19].

According to Kiibler etal. and Mayer etal., a near-infrared pump photon generates
an exciton locally on a V-V dimer that stays neutral [19, 132]. The fast relaxation is
then due to excitonic self-trapping [132], it can only be connected to relaxation into
the djj band. The observation of a constant relaxation time at excitation levels below
the threshold fluence indicates that the fast decay mechanism neither disappears nor
changes under pressure. That the fast relaxation is independent of pressure while the
slope m1 changes under pressure is a strong hint that different states or decay channels

are involved.
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In comparison to the notable changes of other parameters, the observed pressure-
independent relaxation time constant of the photoexcited charge carriers in VOq is
remarkable. Maybe the dependence is too weak to be detected in our data. For the
quasi-one-dimensional organic system ET-FoTCNQ), a decrease of the relaxation time
under compression was observed and even explained with a theoretical model [17].
There, a constant Coulomb repulsion U was assumed, and an increasing hopping am-
plitude ¢ (proportional to the bandwidth W) and inter-site repulsion energy V from
nearest neighbours under pressure increase was derived [17]. However, these parameters
are about an order of magnitude smaller than in the case of VO2 [82], which might be

the reason why we cannot observe a significant decrease of the relaxation time in VOs.

4.5 Discussion

4.5.1 Band gap filling scenario

Combining our observations, it is possible to draw some conclusions about the band
structure of VOo under pressure. Before presenting a tentative band scheme that can
explain our results, we sum up the main points.

In the whole pressure range the band gap is still open, otherwise a saturation of
the reflection, a vanishing of the threshold and of the pump probe signal, or — as
demonstrated for the metallic rutile-type R phase — a slightly negative pump-probe
signal would be expected. From the relaxation dynamics and its irreversible changes
under decompression we conclude that the slope my of the low-fluence asymptote is
connected with the introduction of new states that do not disappear on pressure release.
The growing reflection with pressure increase could be explained by a rising number of
free charge carriers. The fact that the reflectivity still recovers under decompression
means that the new states that withstand pressure release are no longer occupied or do
not have delocalized character at low pressure. The lowering of the transmissivity at
pressures below p. in combination with the pressure-independent reflectivity indicates
an increased absorption in the sample which again could be a consequence of additional
states.

These observations point towards band gap filling scenarios. In Fig. 4.14 the devel-
opment of a tentative band scheme during compression is shown that could explain our
observations. As in the band schemes of Fig. 4.6, the distribution of the density of
states (DOS) is very roughly sketched on horizontal energy axes and the DOS coloured
grey refers to filled states.
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Figure 4.14: (a) Known band structure of monoclinic M1 phase, (b) and (c) tentative
schematic band diagrams for VOg under compression with weakly localized
states (WLS) and quasiparticle peak (QP). The red arrows correspond to
pump excitation that increases the number of free charge carriers.

First we recall the band structure of the monoclinic M1 phase at ambient conditions
in Fig. 4.14(a), as it has been presented in Figs. 4.3(b) and 4.6(b). For the probe
photons of 0.12eV the sample is transparent, we have high transmission. With our

pump photons of 1.55eV, electrons can be excited from the d|| band to the ej band.

Our suggestion for the band scheme under pressure assumes that above the critical
pressure p > p. spectral weight transfers to a partially filled, narrow band intra-gap
quasiparticle peak (QP) containing delocalized quasiparticle states. A part of this
spectral weight could be transferred to a low-energy satellite which we call weakly
localized states (WLS). Our data do not allow us to decide the relative distribution of the
DOS between the QP and the WLS, since not only the QP, but also WLS with binding
energy smaller than the probe photon energy can contribute to the increase of the mid-
infrared reflectivity. The onset of a finite slope of the low-fluence asymptote m could
be related to pump excitation of carriers from the WLS to free states. While for the
localized states of the lower Hubbard band d|; the photoexcitation to metastable long-
lived states is only possible cooperatively, which requires exceeding a pump threshold,
from the WLS non-cooperative photoexcitation to such states is possible, i. e. without
a threshold. As the QP at its onset is very narrow, the charge carrier mass will be
very high. In such a situation, pumping of free charge carriers out of the QP to states

with lower mass could also lead to increased reflectivity. At further elevated pressures,
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the QP and/or the WLS gain more spectral weight (see Fig. 4.14(c)) leading to the
observed increase of the linear reflectivity (Fig. 4.8(d)). In parallel, the pump-probe
signal AR/R and the slope m; decrease since the photo-induced relative change in the
density of free charge carriers decreases for a given pump fluence. Finally, the QP and
the WLS might merge leading to the vanishing of m;.

Our experiments are consistent with a preservation of the dimerized monoclinic struc-
ture under pressure. Therefore the electronic system is supposed to play a major role
for pressure-induced changes in VOg3. The simplest scenario in this case is a bandwidth-
driven Mott-Hubbard phase transition, see section 2.2. The Hubbard model predicts
that an increasing portion of spectral weight is transferred from the lower and upper
Hubbard bands to a QP at the Fermi level when the effective correlation U/t drops
below a critical value [12, 143]. The Hubbard bands persist and finally merge with
the broad QP in the limit of weak correlations. In our experiment the application of
pressure improves the overlap between the orbitals leading to an increased hopping ¢
and hence to a decreasing effective correlation. The band gap still was present at our
highest pressure, indicating that we just observed the onset and growing of the QP at
pressures above pc.

While the Hubbard model can explain the appearance of the QP, the introduction of
WLS is not covered. One explanation for the appearance of the WLS could be lattice
defects in the VOs crystal. The initially delocalized electrons in the narrow QP have a
high electron mass and therefore could be localized and bound to lattice defects. With
increasing pressure leading to a broadening of the QP, the carrier mass should decrease.
As a consequence the binding energy of the WLS might decrease so much that the states
can be thermally ionized and the WLS merge with the QP. Another explanation for
the WLS may be that they are an intrinsic feature of a more realistic Hubbard model.
However, even recent material specific simulations of VOg only confirm the dominant
role of the Mott mechanism for the IMT, but do not predict intra-gap states [111,
144]. Thus, the defect-related origin of the WLS appears to be more probable. Indeed,
DMFT results by Weber et al. demonstrate that oxygen vacancies can induce localized
intra-gap states in monoclinic VO3 [108].

In addition, defects would remain after decompression, and thus could explain why
m1 does not reduce on pressure release. That m; even grows during decompression
(see Fig. 4.11(b)) can directly be explained by the recovery of the linear reflectivity (see
Fig. 4.11(c)), since at a low level of reflectivity the pump-induced changes become more
pronounced. Considering our tentative band diagram, the decreasing reflectivity under
decompression indicates that the spectral weight in the QP is lowered remarkably. This

also would mean that the increase in reflectivity under compression is mainly due to
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the appearance of free charge carriers in the QP. Finally, defects could also explain why
the transmission does not recover under decompression.

Under conditions when classical methods like photoemission cannot be applied in or-
der to resolve details of the band structure, our pump-probe approach enabled us to get
an indirect insight. The proposed band structure is tentative, the exact energy width of
peaks cannot be evaluated without tuning the spectrum. We will now demonstrate that
our results and the proposed band diagram are consistent with prior results reported

in literature and discuss conditions that might affect our results.

4.5.2 Comparison of the proposed scenario with prior experimental studies

Our linear reflectivity and transmissivity data agree well with literature [29, 60, 63], see
Fig. 4.8, but the observed critical pressure p. =~ 7 GPa is distinctly lower in comparison
to literature. Here we will discuss what can cause differences of p. and what actually
happens at this pressure. Finally, we focus on the band filling scenario and compare
with the results of complementary measurement techniques.

The pressure medium Csl is known to be quasi-hydrostatic and may cause the ob-
servation of critical pressure values lowered by several GPa and by more than 20 %
[140, 141]. Taking the work of Mitrano etal. as a reference, who used helium as pres-
sure transmitting medium which minimizes deviation from hydrostatic conditions, the
critical pressure for the structural transition from M1 to M1’ is around 12 GPa [59].
Therefore it appears possible that our critical pressure describes the same transition,
albeit at lower apparent pressure. Critical pressures p. < 12 GPa reported in literature
[29] might as well follow from the use of a solid pressure transmitting medium as needed
for reflection measurements [35], while on the other hand the pressure needed to reach
the phase transition can also be higher when nanoparticle samples are used [60]. In
conclusion, for our experiment a critical pressure p. < 12 GPa can be expected, and it
is resonable to connect the M1 to M1’ transition with the anomaly observed around
7 GPa.

Although such variations are an intrinsic problem for high-pressure measurements,
which becomes quite obvious when comparing the pressure ranges for the coexistence
regime as reported in the literature review at the introduction of this chapter (sec-
tion 4.1), we shall have a closer look into this. Due to the large dimensions with edge
lengths of about 80—100 pm it is likely that the observed lateral pressure inhomogeneity
in the gasket hole filled with CsI (see section 3.1) will cause pressure gradients in our
samples. In such a situation, our probe spot that typically had a FWHM diameter

of 35 pm (in case of the first measurement series this diameter was 50 pm) would have
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averaged the response of an ensemble of slightly different pressures. This for example
will broaden features like the drop of the fluence threshold ®y;, at the critical pressure
De, see Fig. 4.8.

Another special form of pressure inhomogeneity is uniaxial pressure. Compressive
strain along the cg respectively the app; direction reduces the critical temperature 7
for the transition from the insulating monoclinic M1 to the metallic rutile-type R phase
[69, 73, 145]. A slight uniaxial compression of 2 GPa reduces i, by more than 20 K [69,
73, 145]. This effect is much stronger than the reduction of T, at the boundary of the
M1’ and the O phase, where for a comparable decrease of T, the hydrostatic pressure
has to be increased by 10 GPa [64]. In our case, the cg or ay; crystal axis was oriented
parallel to the culet. The pressure inhomogeneity mentioned might act like uniaxial
compression in the direction of this axis. On the one hand this mechanism may affect
the critical pressure p., on the other hand a reduction of 7T, should lead to a smaller
threshold fluence ®yy,.

This brings us to the discussion of the origin of the threshold drop around the critical
pressure p.. The reduction of the energy barrier between the equilibrium and the
transient photoexcited phase of VOs can be related to structural aspects, as well as an
electronic reconfiguration, as will be discussed below.

At ambient conditions it has been reported that the threshold fluence matches the
thermodynamic energy difference between the insulating monoclinic M1 and the metal-
lic rutile-type R phase [120].

The enthalpies of M1 and M1’ are practically identical at 7' = 0K [64]. From this
point of view, the pressure-induced isostructural transition from M1 to M1’ at the
critical pressure p. is not expected to lead to a drastic change of the threshold for the
ultrafast IMT. However, as can be seen in the schematic phase diagram in Fig. 4.2,
above the critical pressure p. we have to suppose that the ultrafast IMT switches not
to the rutile-type R phase, but to the O phase. According to Chen etal. [64], the
enthalpy of the O phase is slightly smaller than that of the R phase, and always larger
than that of M1 or M1’. The thermodynamic energy difference between the O phase
and the M1’ phase depends on the temperature difference to T¢(p) and the latent heat.
The latter is roughly 10 % smaller than for the M1 to R transition [64]. This and the
decrease of T, under pressure increase for the phase boundary between the M1’ and O
phase [64] could explain a decrease in the threshold.

Besides the structural contributions on the development of the threshold, also the
electron system can play an important role. The spectral weight transfer to the QP
improves the screening of Coulomb interactions. Thus, the appearance of the intra-gap

states and the corresponding depletion of the lower Hubbard band could not only be
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the sign of weaker correlations but also contribute to the reduction of the threshold
fluence ®Pyy,.

The impact of the electron system might be even dominant. For example, Hsieh
etal. reported that photoexcitation can induce a transient monoclinic metallic phase
[18] at room temperature. In such case the threshold would not correspond to a critical
density of phonons, but only to a critical density of electrons [121]. Cocker et al. had
observed such Mott melting, the purely electronic switching to a metallic phase, only for
temperatures below 180 K [121]. Here it is important to note that they performed their
experiments in vacuum. When the sample is mounted in a DAC, the excited surface
will be efficiently cooled by the diamond anvil, and the temperature increase induced
by pumping is lower than when the sample surface is exposed to a vacuum. Thus,
Mott melting might be even observed at an equilibrium temperature above 180 K. As
our pump photons had only half the energy in comparison to the experiments of Hsieh
etal. [18] in our measurements a Mott melting regime could appear more pronounced.

Finally, we emphasize that the proposed band scheme of Fig. 4.14 is compatible with
both, lattice and electronic, mechanisms contributing to the anomaly in the threshold
fluence.

In the following we compare our picture with prior experimental results reported
in literature. Recent dec-resistivity measurements [64, 137] demonstrated a thermally
activated character of the conductivity below T, for pressures up to 20 GPa. This result
is consistent with our proposed band scheme, since the resistivity behaviour only shows
that a band gap exists. In the study of Chen et al. [64], the rising resistivity upon cooling
can be interpreted to follow from a decreasing number of thermally activated charge
carriers. However, free electrons in the QP could also contribute to the conductivity.
With a QP centered at the Fermi level, its occupation would be almost temperature-
independent. This leads to an overall conductivity

Eg

o =ope BT + oqp, (4.12)

with the first term for the thermally activated part and oqp for the temperature-
independent contribution of the quasiparticle peak. The corresponding resistance would

be )
pT) = —————. (413)

oqp + ope? BT
Because of their relatively small number and high effective mass it is possible that the
contribution of the QP to the conductivity is only visible at low temperatures. When

only measuring above room temperature like Chen et al. [64], the resistivity signal might



66 4 Pressure-induced band gap filling in VO observed by pump-probe spectroscopy

(a) T/K (b) T/K
1000 300 200 150 100 333 300 273 250
108
10!
4 -
g 10 =
< S
SN = < 10
109
107!
10~*
10 3 3.2 34 36 3.8 4

1000 / 1
T /%

Figure 4.15: Simulation of the resistivity p as function of the inverse temperature % for
different conductivity contribution from a quasiparticle peak oqp according
to equation (4.13). On the upper horizontal axis, the temperature T' is
shown. The simulations use a uniform o(. Solid traces were obtained with
a band gap energy E; = 0.6 eV, dashed traces with E; = 0.3eV. The black
traces have a oqp = 0, from orange via green and blue to red, oqp rises by
three orders of magnitude. (b) is a magnification of the area shaded grey
in (a).

be dominated by the thermally activated charge carriers and the contribution from the
QP could be overlooked.

We demonstrate this in Fig. 4.15 by plotting the dc-resistivity p as function of %
according to equation (4.13) for several values of oqp and a fixed og. An increase of
op (for example due to optimized contacts of crystal grains) would shift the whole plot
to the right, . e. to lower temperatures. For the solid traces, a band gap energy of
0.6eV has been used and for the dashed 0.3eV. For the black traces oqp = 0, and
therefore they do not saturate at low temperatures. All other traces have a finite oqp.
Actually, the red traces have the same finite oqp, demonstrating that with a lower
band gap energy, it becomes necessary to go to lower temperatures in order to be able
to identify a possible contribution of oqp. The same holds for fixed band gap energy
and a lowered oqp. For example, from the red to the orange trace, oqp decreases by
three orders of magnitude, but only at low temperatures do the traces split, disclosing
different contributions of oqp. At a fixed temperature, oqp has to be sufficiently large
in order to have an impact on the slope of the trace. For a band gap of 0.6eV, the
transition from maximum slope to minimum slope at a constant temperature spans over

two orders of magnitude of oqp, as can be seen in the enlarged view of Fig. 4.15(b).
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According to this simple model, without checking the temperature dependence of the
dc-resistivity at low temperatures, it is impossible to make any substantial conclusions
which of the parameters, Eg, 0¢, or cqp changes under pressure. The observed reduction
in resistivity by one order of magnitude and the slight decrease of the slope of the
temperature-dependent resistivity traces under pressure increase up to 20 GPa in the
room temperature data of Chen etal. [64], could follow from an increase of og and a
decrease of the band gap energy E,. However, it is also possible that there is a finite
oqp that grows with increasing pressure and contributes to the reduction of the dec-
resistivity. If there exists a QP with delocalized electronic states, the low-temperature
resistivity will saturate. Recent high-pressure resistivity data of X. Zhang etal. [137]
in the temperature range down to 90 K show the signature of such a behaviour. Thus,
the dc-resistivity measurements available in literature do not contradict our proposed
band scheme, but support it.

The same holds for the XANES study by Marini et al. [136]. Their data demonstrate
only a slight spectral weight transfer. However, with an energy resolution in the order of
the band gap energy they do not have the sensitivity to resolve the proposed intra-gap
states.

Just as our reflectivity and transmissivity data fit to the results of Arcangeletti et al.
[29], our tentative band scheme is also compatible with the frequency-dependent con-
ductance that they derived from their results. As discussed in section 2.2, it is difficult
to identify the contributions of intra-gap states to the conductivity spectrum. Indeed,
Arcangeletti et al. [29] could only report that there appears band gap filling, but they
could neither describe if it is due to band gap narrowing or intra-gap states, nor could
they make a reliable conclusion about the persistence of the band gap or the conduc-
tivity at zero frequency.

Our proposed model for the insulator-to-metal is capable of describing dc-measure-
ments, as we confirm the existence of the band gap in combination with band gap filling.
Therefore this work can be a benchmark for future experimental studies as well as for

theoretical modelling of VO and strongly correlated electron systems in general.

4.6 Summary

Our NIR pump — MIR probe experiments on VO, under pressure give qualitatively new
insight into the pressure-induced insulator-to-metal transition. With a wavelength of
10 pm, the used probe is ideal to detect free charge carriers since the photon energy is
too low to excite electrons above the band gap of 0.6 eV at ambient pressure. The pump-
probe approach allows to test, whether pumping at 1.55eV can increase the number of

free charge carriers.
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Up to the highest pressures around 20 GPa, we observed a pump threshold for photo-
induced switching to a metallic phase, which has been reproduced several times. This
demonstrates that the band gap does not close under pressure. The relaxation time scale
for excitation below threshold scattered around 0.15-0.20 ps, which matches literature
values for ambient conditions, and did not show a clear pressure dependence.

On the other hand, at a critical pressure of about 7 GPa we observed an anomaly
of several properties: a drop of the threshold fluence, the onset of a long-lived pump
probe signal even at excitation below the threshold, the onset of an increase of the
linear reflectivity, and a vanishing linear transmissivity. This change in behaviour
can be explained by a pressure-driven band-filling scenario, as it is predicted in the
DMFT solution [11, 12] of the Hubbard model for a bandwidth-driven insulator-to-
metal transition. Thus, the rising linear reflectivity could be the consequence of a
narrow quasiparticle peak at the Fermi level inside the band gap. This is further
supported by the estimate of free charge carrier densities. The carrier density needed to
lift the plasma frequency up to the level of the probe frequency is an order of magnitude
below the pump-generated carrier density needed for the photo-induced IMT.

Under decompression, the linear reflectivity almost recovers, while the long-lived
pump probe signal for pumping below the threshold does not return to the original
values. This could be explained by the generation of pressure-induced defect states.
In combination with a pressure-dependent Raman experiment, we conclude that the
observed changes of the electronic structure are decoupled from a structural transition
to the rutile-type phase of VO,.

Overall, our data and interpretation is consistent with other experimental results on
VO3 reported in literature, including current dc-resistivity measurements. Our work
gives valuable input for the improvement of the theoretical description of VOy and
its pressure-induced IMT. For future experiments, it may be interesting to extend the
pressure range, vary the pressure-transmitting medium and examine the properties of

doped samples.
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pressure

Iron oxides are among the most abundant compounds on and in the earth [146]. From
early times mankind knew how to make use of these materials, first as pigments, later for
example as precursor for iron and steel or as catalyst for chemical reactions [146]. Con-
sequently there is broad interest in understanding the properties of these compounds.
Here we will focus on FesOs3. Its most stable modification o-FeyO3 is also known
as hematite [147]. This name originates from the ancient greek word oipa for blood
and is related to the typical red colour of thin hematite layers as found in prehistoric
paintings and well known from rust [146]. Today, hematite is attractive as an efficient
photocatalyst for water splitting [147, 148]. In this field the understanding of the
ultrafast carrier dynamics is essential which can be obtained by means of pump-probe
techniques [148]. However, interest in hematite ranges beyond technological application
and materials science. Thus, FesOj is considered to play an important role in the inner
earth oxygen cycle which demonstrates the importance of a better insight into this
material for planetary and geological science [149-151]. Therefore hematite has been
studied extensively under high pressure [150]. Besides a number of different structural
and magnetic phases, a pressure-induced IMT was observed [151-153]. We will use
pump-probe spectroscopy in order to obtain insight into the underlying mechanism of
the IMT in a pressure range that corresponds to the earth’s lower mantle conditions.
In section 5.1, a brief literature review on hematite is given. Section 5.2 addresses
details of our experiment. The pump-probe results shown in section 5.3 will be discussed

in section 5.4, which is followed by an outlook in section 5.5.

5.1 Introduction and motivation

5.1.1 Structural phases of Fe,0;3

At ambient conditions two macroscopically existing polymorphs of the sesquioxide
FeyO3 are known: hematite (o-FeaO3) and maghemite (y-FeaOg) [147]. The B-FeaO3

and e-FeaO3 modifications are stable only at the nanoscale [147]. Hematite crystallizes
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in the corundum structure (space group R3c) [146]. This means that oxygen atoms are
arranged in a slightly distorted hexagonal close packing and two thirds of the oxygen
octahedra are regularly filled with Fe?* [154]. In contrast, maghemite (y-FepO3) has
a defect spinel structure (space group Fd3m) [147]. In the cubic lattice both octahe-
drally and tetrahedrally coordinated Fe3* sites exist [146]. Besides by X-ray analysis,
it is possible to distinguish between hematite and maghemite for example by means of
Raman spectroscopy [155].

Here we will concentrate on hematite under pressure. In order to understand its
electrical properties we will first have a closer look at the crystal structure of hematite
before coming to phase transitions. Each oxygen octahedron surrounding Fe3T shares
three edges with other octahedra in the same plane and one face with a second octa-
hedron in a neighbouring plane [146]. Consequently, there are two lengths of Fe-O and
Fe-Fe bonds [156] leading to a trigonal distortion of the octahedra [146]. While accord-
ing to Rozenberg etal. [157] the distortion of the octahedra increases under pressure,
the studies of Schouwink et al. [154] and especially the EXAFS studies of Sanson et al.
[156] gave evidence that the octahedra are compressed nearly uniformly. Application
of pressure leads to a slight decrease of the ¢/a ratio [154, 157].

A pressure-induced phase transition discovered by shock wave and static compression
experiments on hematite attracted many groups to contribute to the determination of
FeoOs high-pressure structures [152, 153]. Here we will focus on the latest interpreta-
tion. The overview given by Bykova etal. [150] will be the basis for the following. As
orientation, the tentative p—T phase diagram shown in Fig. 5.1 presents the structural
phases observed under compression in the pressure range up to 100 GPa and temperat-
ures up to 1500 K.

At room temperature and a pressure around 50 GPa, when the volume is already
decreased by about 17 % in comparison to ambient conditions, a structural transition
from a-FesO3 to (-FeaOs appears [150]. This transition is accompanied by an addi-
tional drop of the volume by 8.4 % [150]. The crystal structure of (-FeaO3 had been
assigned to a GdFeOs-type orthorhombic perovskite (space group Pbnm) or a RhaOs-
II-type (space group Pben) [150, 156], only recently Bykova et al. figured out by single
crystal diffraction studies that (-FeaOg has triclinic symmetry (space group P1) [150].
Due to insufficient data, a full refinement of (-FesO3 in triclinic symmetry was not
possible [150]. Instead, Bykova etal. describe the phase with a monoclinic cryolite-
type double-perovskite structure (space group P2;/n), also called distorted perovskite,
and the general formula AsB'B”Og¢ [150, 159]. This structure consists of tilted corner-
sharing octahedra around crystallographically different B’ and B”-sites and bicapped

trigonal-prismatic A-sites for the Fe atoms [159]. Accordingly, the coordination number
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Figure 5.1: Schematic pressure-temperature phase diagram of FesO3 structures under
compression. Adapted from [150] including data of [151, 158]. Shaded areas
symbolize uncertainties of the phase boundaries. The sums indicate that
phases have been observed coexisting in the sample volume of a DAC.

of B-sites is 6 and that of A-sites is 8 [159]. When pressure is increased, the structure
becomes more symmetric, coming closer to the GdFeOs-type perovskite [150]. The tran-
sition from hematite to the (-FesO3 phase has been also observed in pressure-dependent

Raman measurements [160].

At room temperature and a pressure around 67 GPa a structural transition occurs
from C-FeaOg to 0-FeaOs, an orthorhombic phase with space group Aba2 [150]. It is
accompanied by a small drop of the unit cell volume by 1.7% [150]. In the 6-Fe2O3
phase, all Fe atoms are 6-fold coordinated [151]. Remarkably, in their EXAFS data
Sanson et al. do not observe a signature of a phase transition in the pressure range above
55 GPa [156]. When 0-FeaO3 is heated beyond 1600 K, components with a CalrOs-post-
perovskite-type structure (space group Cmcm), named 1n-FesO3 are observed [150].
Further high-temperature results described by Bykova et al. [150] are beyond the scope

of this short review.

Finally, it should be mentioned that starting from hematite it is possible to thermally
drive a phase transition into a RhyOgs-II-type structure of FeoOg [158, 161]. This phase,
also assigned as (-FeaO3 phase [150], separates the (-FeaO3 modification from «-FeyO3
as demonstrated by Ito etal. [158] in the temperature range from 1400 K down to
500 K, as schematically depicted in the p—T phase diagram in Fig. 5.1. Extrapolating
the phase boundary to room temperature results in a transition pressure of 39.7 GPa
for a possible structural transition from hematite to t-FeaOg [158]. The observation of
a pressure-induced transition from hematite to -FesO3 at room temperature might be

hidden because of slow reaction kinetics [158, 159].
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5.1.2 Magnetic and electronic properties of Fe;O3; under pressure

At ambient conditions, hematite is a Mott insulator [152, 162] with ferromagnetic order
within the planes of Fe atoms (111) and antiferromagnetic stacking of these sheets [163].
The Néel temperature is about Ty = 960 K [163].

Hematite is well-known for the Morin transition [164], a spin flip by 90 degree with
no change of crystal structure [163]. The transition occurs at ambient pressure when
hematite is cooled below 250-260 K, leading to a drop of the magnetic susceptibility
[163, 164]. The transition temperature increases when pressure is applied. At room
temperature the Morin transition appears at a pressure of 1.5 GPa [163].

The magnetic and electronic properties of hematite and its high-pressure phases have
been characterized by Mossbauer spectroscopy [150-152, 165, 166]. The Méssbauer
spectrum of o-FesOs contains only a strongly split sextet and indicates that all iron
atoms are Fe3* in a high-spin (HS) state [151]. With five electrons remaining in the
d-shell, the iron atoms have d® configuration and consequently S = % (see section 2.2).

At the onset of the distorted perovskite phase (-FeoOg, besides the 6 peaks of the
hematite phase a doublet and another sextet appear in Mdssbauer spectra [150]. The
two new features have equal weight, demonstrating that in the new phase one half of
the Fe atoms enter a non-magnetic phase [150]. According to Bykova etal. [150] and
Greenberg etal. [151] the oxidation state of all Fe atoms remains +3 in the (-FeaO3
phase. Consequently the pressure-induced additional sextet in the Mdssbauer spectrum
corresponds to Fe3*t sites in HS state with S = g, while the other Fe3T sites of the
(-FesO3 phase are considered to be in the low-spin (LS) state [150, 151]. That also
for LS states with finite S = % and even at low temperature only a non-magnetic
signature, 7. e. a quadrupole, but no hyperfine splitting, is observed at the Mdssbauer
experiment, indicates an itinerant character of the carriers of the LS sites [151]. Under
further compression, first the weight of hematite disappears in the Mossbauer spectra,
and finally the weight of the non-magnetic signature starts to dominate [150, 151]. In
the 0-FesO3 phase, only a doublet is observed, the spin-transition from HS to LS is
completed [150, 152].

The coexistence of LS and HS sites in (-FeoO3 can be related to its distorted per-
ovskite structure. DFT+DMFT calculations by Greenberg et al. predict that Fe3* ions
at A-sites are in the HS state and at B-sites in the LS state [151]. The HS-LS transi-
tion accompanying the structural transition from hematite to (-FeaOs can explain the
significant volume decrease since it is known that the volume of an ion in the LS state
is smaller than in the HS state [12, 150, 156]. In general, switching of one ion to LS
decreases the total energy of the system and can stabilize surrounding HS ions, thus

giving a hint why there exists a phase with coexistence of HS and LS states [12, 151].
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In de-resistivity measurements [151, 152] a decrease of the resistance by 6 orders of
magnitude is observed when pressure is increased from 35 to 60 GPa. The resistivity
curve measured by Greenberg et al. [151] has a kink around 40 GPa which interrupts the
decrease of the resistance. The main decrease of the resistance happens above 50 GPa
in agreement with Pasternak etal. [152]. Metallization is completed when the 6-FesO3
phase is reached, which agrees with the Mossbauer data [151]. In temperature de-
pendent dc-resistivity data, a pressure-induced switching from a clear semiconducting
behaviour, i. e. decreasing resistance with increasing temperature, to a better conduct-
ing phase with weak temperature dependence of the resistance has been observed for
pressures between 42 and 48 GPa [152]. At a pressure of 59 GPa the resistance in-
creases when the temperature is increased, which indicates metallic behaviour [152]. A
minimum of the resistivity in the temperature-dependent resistivity trace at low tem-
perature might be explained by Kondo physics or electronic correlation effects [151].

Remarkably, under decompression Greenberg et al. observe an increase of the resis-
tance and saturation within the (-FeoOj3 phase accompanied by a volume increase of
about 7% [151]. This behaviour is interpreted as an isostructural site-selective Mott
transition to a Mott insulating state, since the metal-to-insulator transition is related
to the spin-transition of the structural subset of 6-fold coordinated Fe3T sites in the
absence of any structural transition [151]. The important role of the spin configuration
is in line with the considerations that for compounds with d® configuration Ueg in the
LS state is much smaller than in the HS state (see section 2.2).

The band structure of hematite and its high-pressure phase has been studied via XAS
[167, 168], X-ray photoelectron spectroscopy [167, 169], linear optical spectroscopy [162,
170], ultrafast pump-probe spectroscopy [171-173] and theoretical simulations [151, 174,
175].

In Fig. 5.2 the band scheme of hematite at ambient pressure is sketched. The density
of states (DOS) plotted here in vertical direction is in reality much more complicated
[151, 167-169]. At ambient pressure, hematite has a band gap of about Eg,p, &~ 2.1€V
which is obvious from absorption measurements and causes the characteristic red col-
our [146, 162, 173]. Considering their d°® configuration and their octahedral oxygen
surrounding for all Fe atoms in the x-FeoOgs phase, the lowest unoccupied states are
the antibonding to4 and e, bands, which can be understood by ligand field theory [12].
From the distance of the peaks in an XAS spectrum it can be concluded that the crystal
field splitting A¢s between the to, and e, band is about 1.4eV at ambient conditions
[168]. As shown in Fig. 5.2, the energy difference between the bottom of the to4 to the
top of the e, band is about AE ~ 2.3eV, which Sorenson et al. extracted from photo-

induced optical absorption measurements [173]. The trigonal distortion of the oxygen
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Figure 5.2: Schematic band structure of FeoOg at ambient conditions. Occupied states
are coloured grey. The values for the band gap energy Eg,p,, the crystal field
splitting energy A.s and the energy difference AE between the bottom of
the to, and the top of the e, band are taken from [168, 173].

octahedra leads to a negligible further splitting of the {34 states into two low-energy eg
orbitals and an a4 orbital by about 0.2V [174].

XAS experiments reveal the qualitative splitting into f3, and e, bands at least up
to a pressure of 48 GPa [168]. The absence of a third peak demonstrates that the
trigonal distortions remain low. This confirms also the aforementioned results [156] of
structural analysis which indicate uniform compression of the octahedra. According to
the XAS data at 48 GPa the crystal field splitting energy A.s is about 1.85eV [168].
With this crystal field splitting and assuming a Hund’s coupling energy of J = 0.86eV
[151] which, in contrast to the crystal field splitting, is essentially independent of the
applied pressure [12], we can evaluate the simple criterion for the HS-LS transition
Acs > 3J [12] (see section 2.2). Since the crystal field splitting is far too low to fulfill
the criterion, in the o-FeyOg phase no transition to LS can be expected. Thus, the
estimate agrees with the Mdssbauer results which did not give any hint for a HS to LS
transition in hematite under pressure. At a pressure of 56 GPa, in the (-FeoOg phase,
the XAS spectrum broadens and the two-peak structure disappears [168]. Considering
that in the (-FesO3 phase the Fe sites have different coordination, such changes in the

XAS spectrum are not surprising.

According to DFT+DMFT calculations of Kune$ etal. [175] and Greenberg et al.
[151], the band gap energy decreases under pressure. The signature of this behaviour

is observed by absorption spectroscopy [170].

As mentioned above, the band structure of hematite has also been studied by pump-
probe spectroscopy [171-173, 176]. Pump pulses centered around a wavelength of
400 nm (photon energy 3.1¢eV) have been used, allowing the excitation of electrons from
the valence band to the t3, band. The majority of studies focus on transient absorp-
tion [171-173, 176], there are much less data available about transient reflection [172,

173]. The pump-probe signal scales linearly with the fluence [173]. Sorenson et al. [173]
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systematically discussed possible probe interactions like photo-induced absorption and
bleaching after photoexcitation of charge carriers to the to; band. This enables them
to determine the energy difference between the bottom of the t5, and the top of the e,
band, for example.

The pump-probe experiments revealed relaxation time scales of about 0.3ps and
3-5ps [172, 173]. In addition, relaxation on a time scale of several hundred picoseconds
is reported [172, 173]. The fast time scale is interpreted as cooling, the others are both
considered to correspond to recombination, trapping or recombination of trapped photo-
induced charge carriers [172, 173]. Joly etal. [172] report the observation of coherent
acoustic phonons at 68 GHz which corresponds to a cycle duration of 15 ps. Form this
they determine the sound velocity in crystalline hematite to be about 6 - 10% m/s.

Remarkably, recent optical pump — XUV probe experiments [177-180] demonstrated
that excitation with a pump around 400 nm leads to charge transfer from O 2p to Fe
3d-orbitals, but not Fe d-d transitions. Considering a d° configuration of Fe sites caused
by this transient photoexcitation, the conditions for the HS-LS would be changed (see
section 2.2) and pumping might strongly modify Ue.g, especially in combination with
the pressure-controlled crystal field splitting energy.

Overall, for a full understanding of the electronic transition under compression further
data are needed giving insight into the electronic configuration. How does the band
gap close under pressure and what is the driving mechanism for the IMT? What is the
impact of pressure on the ultrafast dynamics of charge carriers? How does the ultrafast
response change across the pressure-induced metallization? These are questions we

address with the first pump-probe measurements on FeoOg under pressure.

5.2 Experimental details

Single crystal o-FeaO3 samples have been provided by the group of Leonid Dubrovinsky
at Bayerisches Geoinstitut. The crystals had been obtained by slow oxidation of pure
iron at high temperatures [150, 154]. Their edge length is about 10 to 20pum. In
Fig. 5.3(a) an exemplary Raman spectrum of such a hematite crystal measured under
ambient conditions is shown. For comparison, a Raman spectrum of «-FesOg reported
in literature [160] is plotted in Fig. 5.3(b). Our observed phonon frequencies perfectly
agree with literature. There is no Raman signature present of maghemite (v-FeaOs3)
[155, 181].

For our pump-probe measurements, large samples with flat and parallel surfaces (at

least on two opposing sides) have been selected. Since the available hematite crystals
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Figure 5.3: (a) Raman spectrum of a-FesO3 at ambient pressure captured at one of
our sample crystals, (b) Raman spectrum of hematite at ambient pressure
taken from [160].

are tiny, samples have been always mounted in a DAC for pump-probe measurements,

even at ambient pressure, in order to ensure good cooling.

The optical pump — NIR probe measurements on o-FesO3 were performed with a
slight adaption of the set-up shown in Fig. 3.6. Simultaneously to the signal meas-
ured in reflection, the pump induced change of the transmission was captured with a
second photodiode and lock-in amplifier. The pump spot with a FWHM in the order of
3540 pm was clearly larger than the hematite sample crystal with edge lengths between
10 and 20 pm. The probe was focused to a FWHM of 7-11 pm, ensuring that the main
part of the probe light hits the sample when the set-up is well aligned and a large
sample crystal is chosen. After tuning the pressure of the DAC, the focus position of
the DAC was found by the crossing point of two alignment lasers on the gasket and the
correct lateral position was found as local minimum of the linear transmission signal.

The pump-probe traces are affected by an offset. Blocking the probe centered at
800 nm did not have an impact on the finite pump-probe amplitude at negative delay
time. This gives evidence that despite low-pass filters installed in front of the photodi-
odes, the offset is caused by the pump light centered at 400 nm. In the following the

offset is subtracted in all plots.
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Figure 5.4: (a) Comparison of normalized pump-probe traces obtained from hematite
mounted in a BX90 DAC (blue line) or in a plate DAC (orange). (b)
Comparison of pump-probe traces measured on hematite (blue) mounted
in the plate DAC and on the diamonds (orange) of the empty plate DAC,
normalized to the fluence. (¢) Pump-probe traces obtained on hematite
at 17 GPa in the BX90 for two different pump fluences normalized to the
fluence.

The pump-probe response in reflection obtained from hematite under low pressure in
a DAC agrees well with prior work at ambient pressure reported in literature [173]. A
fast decay on the time scale of a few hundred femtoseconds is followed by a relaxation
on a picosecond time scale, see Fig. 5.4(a). Tests with our empty plate DAC showed
that a finite pump-probe signal can also be obtained from the diamond anvils as shown
in Fig. 5.4(b). This signal originates from impurities or defect states in the diamonds,
further analysis is given in the appendix. We have to stress that we used type Ila
diamonds, the diamonds with lowest concentration of optically active impurities. This
means it is not avoidable that there might be a contribution from the diamonds to the
pump-probe signal. However, in contrast to the pump-probe response of hematite, it is
roughly step like, see Fig. 5.4(b). Thus, in first approximation, the observed relaxation
dynamics should originate from hematite — when it is not distorted by the pressure
transmitting medium. For example, the pressure transmitting medium KCI can be
excited at 400 nm giving rise to a pump-probe signal that relaxes on a picosecond time
scale, see appendix. For a filling with hematite surrounded by KCI we are still able to
measure the signature of hematite in reflection geometry, which demonstrates the tight
focus of the probe spot that is smaller than the cross section of a sample crystal.

In order to be able to apply sufficient pressure for the pressure-induced electronic

transition, a BX90 DAC equipped with rhenium gasket was used for the experiments
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(see section 3.1). The pressure cell was loaded at the Bayerisches Geoinstitut. The gas-
ket was preindented from the thickness of 200 pm to about 22 pm. In order to reduce
the stress on the diamond anvils, preindentation was done in two steps. After partial
preindentation, a gasket hole was cut which became smaller under further preindenta-
tion. Finally, when preindentation was finished, the hole was cut to final size. Neon
was used as pressure-transmitting medium. After filling, the gasket hole diameter was
about 80 pm and a pressure of 4.8 GPa was measured via ruby fluorescence. This means
that the neon was solidified [44] and kept the sample in a fixed position.

As shown in Fig. 5.4(a), the pump-probe signal obtained from hematite in the BX90
and the plate DAC are consistent. The time scale of relaxation dynamics agrees with
measurements performed on free standing samples reported in literature [171-173]. This
demonstrates that our signal traces are not distorted by pressure transmitting media.
In agreement with prior work [173] we observe that the pump-probe signal of &-FesO3

scales linearly with the pump fluence, see Fig. 5.4(c).

5.3 Pump-probe results

In Fig. 5.5 the pump-probe response at a pump fluence of 4.7mJ/cm? is shown for
a series of pressures up to 60 GPa. Each trace is corrected for its pump offset and
normalized to its absolute maximum. The blue traces mark the reflection signal, the
grey correspond to the changes in transmission.

For pressures below 40 GPa we observe a pump-induced increase of reflection, followed
by a sub-picosecond relaxation dynamics and a slower decrease on a picosecond time
scale. In addition, a transient reduction of the transmission is observed. Its duration is
comparable to the temporal resolution of the pump-probe scans, which is 66 fs. This is
similar to the rise time of the pump-induced reflection signal. Remarkably, the dip in
the transmission signal slightly precedes the onset of the reflection, see Figs. 5.5(a)-(d).
The reflection signal reaches its maximum when the transmission change returns to
zero. This temporal hierarchy is a reliable result since the reflection and transmission
signal have been captured simultaneously using the same delayed probe pulse. The
delay time zero was set to the delay stage position with the pump-induced minimum
transmission at a pressure of 5 GPa. Exactly the same scale has been used for all other
pump-probe traces shown in Fig. 5.5. With pressure increase up to 27 GPa the peak
in the transmission signal at delay time zero becomes weaker on an absolute scale. In
the normalized plots of Figs. 5.5(b) and 5.5(c) therefore the relative negative signal at
positive delay times becomes more pronounced as well as does the noise level. However,
the absolute negative pump-probe signal amplitude in transmission and its noise level

at positive delay times are almost independent of pressure.
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Figure 5.5: Normalized pump-probe results on FepOs in reflection (blue) and trans-
mission (grey) under pressure. (d) The dashed traces have been captured
several minutes after the measurement of the solid traces. (g) The dashed
traces have been captured immediately before the spatial pump-probe over-
lap has been realigned and the solid traces have been measured.
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At a pressure of 40 GPa we observed qualitatively different pump-probe responses. In
a first measurement we obtained a similar trace as at 27 GPa (compare blue solid lines
in Figs. 5.5(c) and 5.5(d)). The dashed blue line (see Fig. 5.5(d)) was obtained in a
reproduction test a few minutes later. Without any changes in the set-up, a drastically
different pump-probe signal was observed in reflection. The reflectivity is increased only
transiently around the zero delay time. Afterwards, a negative pump-induced change
of the reflectivity is observed that recovers on a picosecond time scale and much slower.
The transition point from positive to negative sign is at the delay stage position with
the former maximum in the transient reflection signal. In transmission, the repetition of
the measurement shows a slightly increased amplitude of the peak at delay time zero,
while the absolute noise level does not change. This trend holds also under further
compression.

With further pressure increase, the reflectivity signal became more noisy and the
positive response in reflection appears to precede the ultrafast response in transmission,
see Figs. 5.5(e)-(g). Finally, at a pressure of 60 GPa the spatial overlap of pump and
probe was realigned for a reproduction test (solid traces in Fig. 5.5(g)) by slightly
tuning the position of the pump spot with the last mirror in front of the DAC. It
turned out that the pump-probe overlap had drifted. By re-alignment, the amplitude
of the transient transmission signal could be increased by a factor of two. In addition
the pump-offset in reflection geometry and with this also the noise level was drastically
reduced. A small long-lasting negative pump-probe signal in reflection remained. The
realignment of the pump-probe overlap comes along with a slight shift of delay time
zero, see Fig. 5.5(g). The latter can be explained by the changed optical path length
for the pump.

In order to clarify the pressure dependence of the pump-probe signal of o-FesOg
a second measurement series was performed. Unfortunately, with the used BX90 a
dominant pump-probe signal from the diamond anvils was detected which made it

impossible to extract information on hematite, see appendix.

Thus, we concentrate here on the analysis of the data obtained for pressures up to
40 GPa. For better comparison, we show the corresponding normalized pump-probe
traces in one plot in Fig. 5.6. At positive delay times above 2 ps all traces are parallel.
Accordingly, bi-exponential fitting gives similar time constants for all traces. In Fig. 5.6
an exemplary fitting curve is shown for the data taken at 17 GPa. The time constants
are about 0.20 ps and 3.5 ps. This is close to literature values for hematite at ambient
conditions [171-173]. It is remarkable that during the relaxation, the pump-probe
signal changes from positive to negative sign at the two higher pressures plotted in
Fig. 5.6. Moreover, at negative delay times up to —2 ps, a negative pump-probe signal

is observed.
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Figure 5.6: Normalized pump-probe signal received on FesOgs in reflection geometry.
The dashed black line represents a bi-exponential fit on the pump-probe
signal measured at a pressure of 17 GPa.

5.4 Discussion

5.4.1 Origin of the pump-probe response

First we will discuss the reflection signal considering the absorptions from the valence
band to the ?5, band and between the f5, and the e, band.

At low pressures, the ultrafast response in reflection agrees well with literature. The
pump photons with 3.1eV excite charge carriers into the ?5, band as illustrated in
Fig. 5.7(a). Immediately after photoexcitation the thermalized hot carriers will oc-
cupy states significantly above the bottom of the t5, band as depicted with the grey
occupation in Fig. 5.7(b). These carriers can be further excited from the to4 to the
ey band. Thus, pumping induces an absorption band, as depicted by the black solid
trace in Fig. 5.8. Consequently, the real part of the refractive index (solid blue trace in
Fig. 5.8) of a-FegO3 is altered. Our probe with photon energy around 1.55¢€V is below
the absorption resonance [173] and the vicinity to the absorption resonance leads to a
significant increase of the real part of the refractive index. At ambient pressure, the
refractive index of hematite is around 2.6 [182, 183] which is above that of diamond
that is about 2.4 [48]. Thus, the difference of the refractive indexes of a-FeaO3 and
diamond is increased by pumping, which leads to an increased reflectivity for our probe
pulses.

The fast relaxation appears on a time scale typical of carrier cooling [173, 184]. In

Fig. 5.7(c) the band structure after the initial cooling of the photo-induced electrons is
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Figure 5.7: Schematic band structure of FesO3 at ambient pressure (a) in the ground
state, (b) immediately after photoexcitation with pump-photons of 3.1eV
and thermalization of the photo-induced charge carriers, (c) after comple-
tion of sub-picosecond cooling dynamics. Occupied states are coloured grey.
The blue arrows correspond to pump excitation, the length of the red arrows
correspond to the probe photon energy. Solid arrows show how photons can
be absorbed, while the dashed arrows only serve as guide for the eye to
estimate how close the probe energy is to a resonance.

shown. In comparison to the situation immediately after thermalization, the bandwidth
of the photo-induced absorption band is lowered through a shift of the low-energy
absorption wing to higher energy. According to Sorenson etal., at ambient pressure,
the main weight of the long-time pump-induced absorption concentrates at 2.0-2.3eV
[173]. This corresponds to a shift of the absorption band away from the energy of our
probe photons of 1.55€V to higher energies. As shown by the dashed traces in Fig. 5.8
due to such a shift, the impact on the real part of the refractive index is decreased.
Thus, the cooling of the photo-induced electrons in the ¢34, band can explain the fast
decay of the pump-probe signal measured in reflection shown in Fig. 5.6.

When the probe is non-resonant, only transient pump-probe signals from y3) can be
expected in transmission. Such nonlinearities might be the reason for the negative peak
at delay time zero preceding the response in reflection. That the transmission pump-
probe signal almost vanishes at the moment of maximum reflection signal, indicates that
even for the hot carrier distribution only few carriers are in states that allow the resonant

absorption of probe photons. As mentioned above, the simultaneous measurement of
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Figure 5.8: Schematic explanation of the impact of pump-induced changes of the ima-
ginary part of the refractive index, here absorption bands (black traces), on
the real part of the refractive index (blue traces). The red arrows from the
solid to the dashed traces demonstrate how an upshift of the pump-induced
absorption band modifies the pump-induced change of the real part of the
refractive index. The vertical grey line marks our probe photon energy of

1.55¢eV.

the reflection and transmission signals excludes that the transmission trace is time-
shifted against the reflection trace. Therefore the negative amplitude at delay time
zero cannot be due to probe-induced transitions from the t2, to the e, band. The small
negative transmission amplitude at positive delay times might be due to absorption

between different sub-bands of the broad valence band.

5.4.2 The band structure under pressure

With pressure increase, the crystal field splitting increases leading to a larger energy
difference between the t2, and the e, bands. According to the XAS data of Wang et al.
the crystal field splitting at 40 GPa is about 0.4 eV larger than at ambient pressure [168].
Consequently, the absorption band for the transitions of cooled charge carriers from the
tag to the ey band will shift to higher energies. In analogy to the effect described in
Fig. 5.8, it can be expected that the pump-induced increase of the real part of the
refractive index is weakened and therefore the reflectivity increase at the energy of our
probe photons is lowered. While the increased crystal field splitting can explain the
pressure-dependent decrease of the pump-probe amplitude in reflection after the initial

cooling of photo-induced charge carriers, it cannot explain why the change between
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5 and 17 GPa is much smaller than at higher pressure, see Fig. 5.6. Moreover, it is
surprising that the pump-probe signal at longer delays changes sign at these elevated
pressures.

A negative pump-probe amplitude in reflection could be caused by an absorption band
at lower energy than the probe photon energy or by bleaching effects. The splitting
of the t94 orbitals into ej and ajg orbitals caused by the trigonal deformation enables
absorption at energies below our probe photon energy and this splitting might increase
with pressure. However, the XAS data of Wang etal. [168] has no signature of such
behaviour.

Bleaching could become important, when the band gap between the valence band and
the t2, band gets smaller under pressure. The photo-induced charge carriers in the to,
band reduce the phase space available for absorption processes from the valence band
to the t2, band. In principle, contributions of pump-induced bleaching and absorption
to the real part of the refractive index exist in parallel. Which effect dominates at a
certain energy, depends strongly on the density of states (DOS) of the corresponding
initial and final states of the transitions [173]. At ambient pressure the higher DOS
in the ty; and e; band can explain the dominance of the photo-induced absorption
[173]. The situation at ambient pressure after the sub-picosecond cooling is depicted
in Fig. 5.9(a). The band gap energy of 2.1eV is comparable to the energy difference
between the bottom of the to, and the top of the e, band [173]. Therefore the total
impact on the real part of the refractive index Anye,) (red line in Fig. 5.9(a)) corresponds
to the appearance of a pump-induced absorption band.

In case of a decreasing band gap under high pressure, the pump-induced bleaching will
shift to lower photon energies. Moreover, the pressure-induced increase of the crystal
field splitting will shift the pump-induced absorption band to higher photon energies.
As demonstrated in Fig. 5.9(b), it is then possible that the bleaching dominates the
response at our probe photon energy and the real part of the refractive index is lowered
by pumping. The situation of Fig. 5.9(b) would fit to the observed pump-induced
decrease of reflectivity to negative values at a pressure of 27 GPa, see Fig. 5.6. This
scenario cannot only explain the pump-induced decrease of reflectivity, but also that
the change in reflection from 27 to 40 GPa is much larger than for the step from 5
to 17 GPa. The latter is due to the nonlinear increase of the impact of the bleaching
band, when it shifts down to the probe photon energy. In analogy to the explanation
how the application of pressure can change the sign of the long-lived pump-probe signal
from positive to negative, it can be understood that the reflection pump-probe signal
decreases during the ultrafast cooling. Immediately after excitation, before the cooling

on the sub-picosecond time scale, the components of the pump-induced absorption
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Figure 5.9: Schematic description of pump-induced changes of the imaginary and real
part of the energy-dependent refractive index of o-FesOs after the initial
electron cooling at (a) ambient pressure and (b) at elevated pressure in the
order of 30 GPa. Pump-induced absorption bands are plotted as black solid
lines, pump-induced bleaching bands with black dashed lines. The blue
traces (solid and dashed) show corresponding impact on the real part of the
refractive index. By summing the contribution of pump-induced absorption
and bleaching the red traces are obtained. The probe photon energy of
1.55eV is marked with a grey vertical line.

band will be at lower photon energies and components of the pump-induced bleaching
at higher energies than in Fig. 5.9(b).

In Fig. 5.10 we summarize the changes in the band structure for the proposed scenario.
The known band structure at ambient pressure is shown in Fig. 5.10(a). The probe
photon energy (dashed red arrow) is far off resonance with the band gap and therefore
bleaching has only a weak impact. At elevated pressure this can change as demonstrated

with the dashed red arrow in Fig. 5.10(b) starting from the valence band. With the
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Figure 5.10: (a) Schematic band structure of FesOs in the ground state at ambient
pressure. (b) Tentative schematic band structure at a pressure around
40 GPa after photoexcitation with pump-photons of 3.1eV and thermaliz-
ation of the photo-induced charge carriers in the t54 band, (c) at a pressure
around 40 GPa after completion of the sub-picosecond cooling dynamics of
the photo-induced charge carriers. Occupied states are coloured grey. The
blue arrows correspond to pump excitation, the length of the red arrows
correspond to the probe photon energy. Solid arrows show how photons
can be absorbed, while the dashed arrows only serve as guide to the eye in
order to visualize how close the probe energy is to a resonance.

pressure-induced increase of the crystal field splitting, the probe becomes clearly non-
resonant to the transition of photoexcited charge carriers from the ¢34 to the e, band,
as depicted by the other red arrow. After completion of the cooling this effect is even
stronger which can be understood from Fig. 5.10(c). While at elevated pressure the
probe is closer to be resonant to the band gap and not to transitions from the to, to

the ey, band, the opposite is the case at ambient pressure, as can be seen by comparison
with Fig. 5.7(c).

The proposed moderate band gap shrinkage agrees to calculations of the band struc-
ture [151, 175] and the monotonous reduction of the dc-resistivity [151, 152] in this
pressure range. The slight pressure-induced modifications of the transmission signal are
consistent with the proposed band scheme where the probe is still non-resonant. The
decrease of the amplitude at delay time zero could be explained by a pressure-induced

decrease of the x® nonlinearity or deterioration of the phase matching conditions.
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5.4.3 Slow relaxation dynamics

When photoexcited electrons recombine with holes, the pump-induced bleaching and
absorption decrease. Remarkably, on the picosecond time scale we observe an increase
of the absolute amplitude of the pump-probe signals at 27 and 40 GPa after they go
negative, see Fig. 5.6. This observation gives clear evidence that this relaxation time
scale is not related to recombination.

In contrast to literature [171-173] we consider the underlying relaxation as a slow
cooling process. The effect of cooling on more than one time scale is well known from
other materials [184, 185]. Perfetti et al. describe such behaviour with a 3-temperature
model, the temperature of the electron system, the temperature of phonons that are
well coupled to the electron system and phonons that are almost decoupled from the
electrons [185]. Acoustic phonons belong to the latter group, while LO phonons are
known to be strongly coupled to electrons in polar materials via the Frohlich mechanism
[184, 186]. The fast relaxation ends when the hot electrons have heated the well coupled
part of the phonon spectrum so that they both are at the same temperature [185].
Afterwards, the temperature dynamics of the hot electrons and the hot phonons are
similar and depend on the anharmonic decay of hot phonons and the electronic coupling
with cold phonons [185].

The observed sub-picosecond time scale might be related to the emission of LO-
phonons, which at ambient pressure are about 82 meV and at 40 GPa about 98 meV [160)
in hematite. This energy (corresponding to a temperature around 1000 K) could explain
that the main shift of pump-induced absorption and bleaching bands will be finished

on the sub-picosecond time scale, but clearly recognizable cooling occurs afterwards.

5.4.4 Transition at 40 GPa

The qualitative difference between the solid and the dashed trace of the pump-probe re-
sponse in Fig. 5.5(d) indicates a strong change in the electronic band structure. During
the pump-probe experiment, the pressure in the BX90 increased by 0.3 GPa. Therefore,
it is quite remarkable that we get an opposite picosecond relaxation behaviour.

That the negative pump-probe signal recovers to a long-lived negative value would be
consistent with pump-induced heating of a metal, where hot carriers are less conducting
and therefore the reflectivity decreases. This view is also supported by the fact that at
even higher pressures always a slightly negative long-lived signal amplitude is observed.
We recall that qualitatively the traces in reflection are quite similar for all pressures
above 40 GPa. Even after the improvement of the pump-probe overlap there is a slightly

negative pump-probe signal at positive delay time.
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A suboptimal pump-probe overlap cannot explain the changes at 40 GPa in Fig. 5.5(d),
since the pump-probe signal would have to change linearly proportional to the pump
fluence incident on the sample. It can be excluded that the probe was not well aligned
on the FeoO3 sample. After each change of the pressure, the lateral DAC position was
aligned according to the minimum in transmission and there always was a good contrast
between the transmission of the Fe;O3 sample and just neon.

The dc-resistivity data of Greenberg etal. [151] and Pasternak etal. [152] indicate
that the electronic band structure of hematite changes around a pressure of 40 GPa.
Thus, in the data of Pasternak et al. the main decrease of resistivity starts at a pressure
around 40 GPa. In the pressure-dependent resistance trace of Greenberg etal. [151]
there is a kink around 40 GPa that seems to separate two pressure ranges of drastic
resistivity decrease. The first drop by one order of magnitude occurs in the pressure
range from 32 to 40 GPa, the main drop by four orders of magnitude from 44 to 60 GPa.
According to the Mossbauer data of Greenberg et al. [151] the first drop of the resistance
is completed before the transition to the distorted perovskite phase appears.

Ito et al. have mentioned that at room temperature there might be a structural phase
transition from «-FeaOs to -FeaO3 around a pressure of 39.7 GPa [158]. At ambient
temperature the reaction kinetics might be slow, but heating can drive the phase tran-
sition [158]. At 500 K the hematite phase and the (-FesO3 phase are clearly separated
by the -FeoO3 phase [158], see Fig. 5.1. Thus, we will estimate the heating impact of
our pump.

We consider that the pump energy is completely absorbed at the sample surface
within the absorption length dapsorption- The temperature difference AT in the pumped

thin surface layer can then be calculated as

AT — PVs(p)Na

— WA 5.1
5Cm dabsorption ( )

where @ is the pump fluence, V(p) the pressure-dependent volume of a structural unit,
Np the Avogadro constant, and Cp, = 3R the molar heat capacity defined by the gas
constant R. The heat capacity of FesOg3 is approximated by means of the Dulong-Petit
law to 5Cy, which according to the data of Shim etal. [160] is close to the real value.
The values of the absorption length that can be extracted from literature vary widely,
ranging from about 20 nm [176] over 45 nm [162] to about 110 nm [173]. This uncertainty
probably results from the use of very thin samples and the reflection corrections in the
absorption measurements. With Vi(p = 40 GPa) = 43.6 A3 [150], dabsorption = 20nm
and the pump fluence & = 4.7mJ /cm2 we obtain a transient temperature increase

AT = 496 K, induced by a single pump laser pulse in a 20nm thin surface layer of
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the sample. For an absorption length of 45nm, the temperature increase would be
about 220K, and for dapsorption = 110nm only 90K. These estimates show that in
principle it might be possible by pumping to thermally switch the sample to the t-FeaO3
phase. The heat will diffuse away into the diamond anvils and the volume of the FeoO3
crystal, which is several hundred times thicker than its photoexcited surface layer. At
a pressure of 40 GPa, it might be possible that the sample does not relax back to the
hematite phase once it has been switched photo-assisted to the -FeaO3 phase. Such a
phase-switching scenario might explain the observed qualitative changes of the pump-
probe signal at 40 GPa. There is a lack of data about electronic properties of the
RhyOg3-II-type (-FeaO3. However, the RhyOs-1I-type structure had also been taken
into consideration for the -FeaO3 phase [161], where metallization is known to occur.
The observations described above might be an indication that even a transition to the
-Fes O3 phase can lead to improved conductance.

Finally, we estimate the pump-induced carrier density. Assuming that over an absorp-
tion lenght dapsorption = 20nm all pump light is homogeneously absorbed, the pump-
induced electron density would be ne pump = 4.7-10%! em~3 at a fluence of 4.7 mJ/cm?.
For dapsorption = 110 nm the density would be only ne pump = 8.6 - 10%° cm—3. For com-
parison, we calculate the density of free charge carriers in the metallic phase of FeoOg.
If we assume that five electrons of the Fe d-shell contribute to the conductivity, the free
charge carrier density would be about n, = 2.0 - 10?3 cm™3. Here we calculated with a
structural unit volume of 50.3 A3 [150] which corresponds to the situation at ambient
pressure. At the pressure of 40 GPa the electron density should be about 15 % higher.
Compared to the density of free electrons in the metallic phase, we photo-induce only
roughly 0.4 % to 2.4 %. This relative value is lower than the critical density that we de-
termined to be required for the ultrafast IMT in VOo, while the absolute pump-induced
carrier densities are comparable. Therefore a filling-controlled mechanism might be an

alternative scenario for the induction of a more conducting phase in FesO3.
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5.5 Summary and outlook

Our pump-probe study on hematite and its pressure-induced polymorphs have shown
that the relaxation time scales of the transient response are essentially pressure-inde-
pendent. The relaxation on a picosecond time scale is identified as cooling dynamics,
not recombination. In the pressure range up to 40 GPa, the observed changes in the
signal amplitude could be interpreted by changes in the pump-induced absorption and
bleaching following an increase of the crystal field splitting and a decrease of the band
gap energy. A qualitatively different response at 40 GPa indicates that at this pressure
probably a phase transition appears. Possible explanations could be a thermally-driven
transition or a transition driven by a critical photo carrier density.

In order to be able to draw more precise conclusions, further experiments will be
necessary. First, it is desirable to test the reproducibility of the results. For this, it
would be advisable to find a pair of diamonds with minimum pump-probe response
before filling the BX90. At further pump-probe measurements, the fluence dependence
of the response should be verified in the pressure range around 40 GPa. In order to
find out whether pumping leads to a long-lasting phase transition, it would be useful to
have a reference sample in the DAC which is not pumped. To meet this requirement,
it may be also necessary to lower pressure or cool the DAC between the pump-probe
scans. In addition, it would be interesting to determine the pressure-dependent changes

of the band gap by means of linear spectroscopy.
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We have combined ultrafast pump-probe spectroscopy and diamond anvil cell (DAC)
high-pressure technology in order to gain insight into the mechanism of the pressure-
induced insulator-to-metal transition (IMT) of strongly correlated electron systems.
The limits of the studied pressure range and the probe wavelength have been successfully
advanced in comparison to previous studies: Optical pump — near-infrared (NIR) probe
experiments have been carried out up to 60 GPa and NIR pump — mid-infrared probe
experiments have been demonstrated up to 23 GPa, at a probe wavelength of 10 pm.
In addition, successful pump-probe test measurements in a DAC with probe pulses
centered at 30 pm and provided from the free electron laser FELBE at the HZDR have
been demonstrated. The basis for the success of such experiments with a probe spot
diameter almost in the order of the sample cross-section was the robust design of the
whole set-up. A probe with large wavelength is desirable since it is sensitive to free
charge carriers only.

Remarkable results have been obtained on the archetypal transition metal compound
VO3. They indicate a band gap filling scenario for the pressure-induced IMT. In the
whole pressure range under study it was possible to photo-induce a transient metallic
phase when the pump fluence exceeded a pressure-dependent threshold. Even at a
pressure of 23 GPa a large pump-probe signal was observed, which demonstrates that
up to this pressure the band gap does not close. However, above a critical pressure of
7 GPa the linear reflectivity starts to grow, which can be explained by the scenario of a
bandwidth-driven Mott-Hubbard transition. Our interpretation is based on calculations
published in literature that predict for the Hubbard model an evolution of the IMT
over a three-peak structure, where the spectral weight of the two Hubbard bands is
transferred to an inner gap quasiparticle peak which is populated with carriers of high
effective mass [11]. Further anomalies, like a drop of the threshold fluence at the
critical pressure, a vanishing transmissivity and the onset of a finite long-lived pump-
probe signal even with an excitation below the threshold are compatible with this
description. When pressure was released, the linear reflectivity recovered, while the
long-lived pump-probe signal for photoexcitation below the threshold survived. This

indicates non-reversible pressure-induced changes in the sample, probably defects. In
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a high-pressure Raman study no structural transition to the rutile-type phase was
observed, hence we can conclude that the pressure-induced changes of the electronic
structure of VO are decoupled from the structural transition to the rutile-type phase.
In the pressure range studied, the relaxation time scale of the photoexcited carriers
was always around 0.15-0.20 ps, not showing a clear pressure dependence. Here, an
extension of the pressure range could be interesting for the future, however, we had
been limited by our DAC.

In order to achieve sufficiently high pressures necessary for the optical pump — NIR
probe experiments on a-FesOs, we used a BX90 DAC of the Bayerisches Geoinstitut.
The time scales of relaxation after photoexcitation were found to be essentially pressure-
independent. However, we observed changes of the pump-probe signal amplitude and
sign under pressure which can be explained by pump-induced absorption and bleaching
effects in combination with an increasing crystal field splitting. This change of the
sign demonstrates that cooling of the electron system is the origin of the picosecond
relaxation process. At a pressure of 40 GPa, the pump-probe response shows a sharp
qualitative change, which indicates a rearrangement of the electronic band structure
and might be a consequence of an IMT facilitated by optical pumping. A pump-probe
signal was even obtained at 60 GPa. In order to be able to draw further conclusions,
the experiment should be reproduced. At such an attempt with another BX90, un-
fortunately it turned out that the mounted diamond anvils absorb the 400 nm pump
light giving rise to a quite dominant pump-probe response that scales linearly with the
pump. The next step is to find a pair of diamonds that do not disturb the measurement.
Further tests with our own DAC demonstrate that qualitatively different pump-probe
signals can be obtained even when there is a small contribution of the diamond to the
pump-probe signal.

In the course of this work, a highly robust alignment procedure for pump-probe mea-
surements in a DAC has been developed. This allows the reproduction of measurements,
as it has been demonstrated several times for VOs. While there the DAC had to be
always removed from the set-up in order to change the pressure, in the future the use of
a membrane DAC will simplify the procedure. However, for the intended experiments
at low temperatures, it can be expected that the DAC changes position slightly when
the temperature is altered. Thus, the alignment procedure described in this work can
be beneficial for such experiments.

Our pump-probe approach allows indirect insights into the pressure-dependent elec-
tronic band structures, when classical methods like angle-resolved photoemission spec-
troscopy cannot be applied for technical reasons. Thus, our results, especially on VOs,
can serve as benchmark for future experimental studies as well as the development of

improved models for materials.



Appendix: Additional pump-probe results
on diamond and KCI

As described in section 5.2 we observed a finite pump-probe response from diamond
when using a pump wavelength around 400 nm. In this appendix we show further data
in order to demonstrate the qualitatively different character of the pump-probe signal
from diamond and KCI, as well as their linear scaling with the pump fluence.

In Figs. App.1(a) and App.1(b) pump-probe results obtained in reflection geometry
at the BX90 with absorbing diamonds are shown. After the focal position was aligned,
the pump-probe response at a lateral position corresponding to FeoO3 (blue trace) and
neon (green) was captured. Similarly, after the DAC has been opened the response
from diamond (orange) was measured at the empty BX90. The normalized plots of
Fig. App.1(a) demonstrate that the response is independent of the lateral alignment.
As shown in Fig. App.1(b), where the same pump-probe traces have been normalized to
the pump fluence, from the empty cell a larger signal was obtained than from neon or
hematite. These observation indicate a dominant pump-probe signal from the diamond
anvils. Further analyses showed that this signal scales linearly with the fluence.

It has been excluded that the similar results obtained for different lateral positions
of the BX90 are caused by an improper alignment of the focus. With the same align-
ment as it was used for the shown BX90 pump-probe results, it has been possible to
resolve qualitative different signals from our plate DAC filled with a hematite crystal
surrounded by KCIl as pressure-transmitting medium. The response obtained from KCl
is shown in Fig. App.1(c) for fluences of 2.4 (green trace) and 4.7mJ/cm? (orange). The
pump-probe signal scales almost linearly. In contrast to the response of FeyOs (com-
pare Fig. 5.4) no sub-picosecond relaxation is observed and the picosecond dynamics is
faster.

In Fig. App.1(d) we further show results obtained on the empty plate DAC, i. e., on
diamond for different pump-fluences. The traces captured at 1.2 (blue trace), 2.4 (green)
and 4.7mJ/cm? (orange) coincide when normalized to the fluence. This means that
the pump-probe signal from the diamond anvils scales linearly with the pump fluence.

Consequently it is not caused by two-photon absorption, but by single photon absorp-
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(a) Normalized pump-probe signal of FesO3 (blue), neon (green) and
diamond (orange) using the BX90 with absorptive diamond anvils and
(b) the same pump-probe signals normalized to the fluence. (¢) Pump-
probe signal from KCI filled in the plate DAC normalized to the fluence.
(d) Pump-probe signal of diamonds of empty plate DAC normalized to
the fluence. (a)-(d) All traces have been corrected for an offset.

tion. Since diamond has a much larger band gap energy than the used pump-photon

energy of 3.1eV, the pump-probe signal originates from defect states or impurities.
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