Helmholtz-Zentrum Dresden-Rossendorf (HZDR) i_l' _= D R

HELMHOLTZ ZENTRUM
DRESDEN ROSSENDORF

A Machine Learning Framework for Drill-Core Mineral Mapping Using
Hyperspectral and High-Resolution Mineralogical Data Fusion

Contreras Acosta, I. C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R;;

Originally published:
July 2019

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
12(2020)12, 4829-4842

DOI: https://doi.org/10.1109/JSTARS.2019.2924292

Perma-Link to Publication Repository of HZDR:
https://www.hzdr.de/publications/Publ-29508

Release of the secondary publication
on the basis of the German Copyright Law § 38 Section 4.


https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1109/JSTARS.2019.2924292
https://www.hzdr.de/publications/Publ-29508

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

A Machine Learning Framework for Drill-Core
Mineral Mapping Using Hyperspectral and
High-Resolution Mineralogical Data Fusion

Isabel Cecilia Contreras Acosta
Pedram Ghamisi

Abstract—Mining companies heavily rely on drill-core samples
during exploration campaigns as they provide valuable geolog-
ical information to target important ore accumulations. Tradi-
tional core logging techniques are time-consuming and subjective.
Hyperspectral (HS) imaging, an emerging technique in the mining
industry, is used to complement the analysis by rapidly character-
izing large amounts of drill-cores in a nondestructive and nonin-
vasive manner. As the accurate analysis of drill-core HS data is
becoming more and more important, we explore the use of ma-
chine learning techniques to improve speed and accuracy, and help
to discover underlying relations within large datasets. The use of
supervised techniques for drill-core HS data represents a challenge
since quantitative reference data is frequently not available. Hence,
we propose an innovative procedure to fuse high-resolution miner-
alogical analysis and HS data. We use an automatic high-resolution
mineralogical imaging system (i.e., scanning electron microscopy-
mineral liberation analysis) for generating training labels. We then
resample the ML A image to the resolution of the HS data and adopt
a soft labeling strategy for mineral mapping. We define the labels
for the classes as mixtures of geological interest and use the classi-
fiers (random forest and support vector machines) to map the entire
drill-core. We validate our framework qualitatively and quantita-
tively. Thus, we demonstrate the ability of the proposed technique
to fuse and up-scale high-resolution mineralogical analysis with
drill-core HS data.

Index Terms—Data fusion, drill-cores, hyperspectral (HS) data,
machine learning, mineral liberation analysis (MLA), random
forest (RF), support vector machine (SVM).

I. INTRODUCTION

RILL cores are cylindrical rock samples, which are com-
monly extracted in exploration campaigns by drilling
holes into the Earth’s subsurface up to a few kilometers. Drill-
cores are a few centimeters in diameter, wide enough to allow
exploring the geology of the underlying bedrock ore environ-
ment [1]. When the number of drill-cores is high, they allow
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to statistically represent the entire geological deposit. Fig. 1(a)
shows a simplified sketch of a geological ore deposit, where the
red lines represent examples of drill holes. Once drill-cores are
extracted, they are organized in so-called drill-core trays [see
Fig. 1(b)].

Drill-cores are analyzed by experts following core logging
techniques. Core logging is a systematic approach that assim-
ilates a wide range of data obtained from the cores to deter-
mine the lithology, structures, and alteration zones of a potential
mineral deposit [1]. Exploration and mining companies strictly
rely on the mineralization information obtained by core logging
techniques (e.g., the mineral assemblages, alteration patterns,
and structural features) to target important ore accumulations
and obtain a preliminary information about the composition and
size of an ore deposit.

The drilling phase is commonly the most expensive part of the
mineral exploration campaigns. Thus, extracting as much min-
eralogical information as possible from the cores is crucial. Tra-
ditionally, laboratory techniques such as optical microscopy [2],
X-ray diffraction (XRD) [3], and X-ray Fluorescence (XRF) [4]
are also used to characterize small selected drill-core samples.
Moreover, high-resolution mineralogical analyses have recently
been adopted to support geologists in the identification and
quantitative evaluation of minerals. For such analyses, scanning
electron microscopy (SEM) data integrated with the mineral lib-
eration analysis (MLA) [5] or with the QEMSCAN [6] software
are applied on selected polished thin sections of drill-cores in
the laboratory. Although these techniques provide important and
relevant mineralization information, they are extremely time-
consuming taking up to six hours for the analysis of one thin
section. In addition, they are costly and the commercial turn-
around can be lengthy. This represents an issue since hundreds
of meters of cores are extracted during exploration campaigns.

Hyperspectral (HS) imaging is an emerging technique in the
mining industry that enables a noninvasive and nondestructive
characterization of large amounts of drill-cores in a fast turn-
around time [7]-[11]. HS data are recorded in several tens of
spectral bands, which allows constructing rich reflectance spec-
trum profiles. Such profiles can be used for the task of mineral
mapping, which aims at determining the spatial distribution of
minerals in drill-cores. Minerals have varied spectral responses
in the visible and infrared part of the electromagnetic spectrum.

1939-1404 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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(a) Sketch of an alteration system. Different alteration zones surround the ore body located in the center of the system. Drill holes are represented by the

red lines. (b) Example of a drill-core tray and a drill-core sample. The length of the drill-cores in the tray tends to be 1 m.
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Fig. 2. Major spectral absorption bands in the VNIR-SWIR. Sample spectra
from the USGS [14].

These responses are triggered by the vibrational and electronic
absorption processes, which depend on the bonds between their
atoms and their electron orbitals [12], [13]. Also, mineral assem-
blages and grain size have an effect on the spectral responses.
Fig. 2 shows the major absorption regions in the visible and near-
infrared (VNIR) and short-wave infrared (SWIR) parts of the
electromagnetic spectrum and their associated molecular bonds.
Moreover, Table I summarizes the responses of some important
minerals in the VNIR, SWIR, and long-wave infrared (LWIR).

The accurate analysis of drill-core HS data is becoming more
and more important. Commonly, a reference spectral library
(e.g., United States Geological Survey (USGS) Spectral Library
[15]) is used to identify and map adequate minerals. A geologist
visually compares the absorption features and general shape of
the samples spectra in the data with the spectra from the library
[16], [17]. Another common approach, due to its simplicity and
availability, is based on the following steps: 1) dimensionality
reduction using a minimum noise fraction transformation [18],
[19]; 2) selection of representative samples or end-members,
using the pixel purity index (PPI) and the n-Dimensional (n-D)

TABLE I
SUMMARY OF INFRARED ACTIVE MINERALS

Mineral group VNIR SWIR LWIR
Phyllosilicates .
. . nonactive good moderate
Mica, Clay, Chlorite
Hydroxylated silicat
Y .roxy ated st }ca e nonactive good moderate
Epidote, Amphiboles
Anhydrous silicate . .
nonactive  nonactive good
Quartz, Feldspar group
Sulfates .
. nonactive good moderate
Alunite, Gypsum
Carbonates .
) . . nonactive  moderate good
Calcite, Dolomite, Ankerite
Oxides . .
good nonactive  nonactive

Hematite, Magnetite

Visualizer [20]; 3) manual or automatic identification of the end-
members using spectral libraries and the spectral analyst; 4) min-
eral mapping and/or determination of partial abundances using
spectral similarity measure algorithms [e.g., spectral angle map-
per (SAM)], spectral feature fitting [7], [8], [21], or unmixing
algorithms (e.g.; linear unmixing, mixture tune matched filter-
ing) [22], [23]. This chain of techniques has been implemented
in the Environment for Visualizing Images (ENVI, Exelis Visual
Information Solutions, Boulder, CO, USA) software. Moreover,
only a few automatic techniques based on exploiting specific ab-
sorption features, such as wavelength position, depth, and width
of the features, have been proposed to exclusively map specific
minerals [24]-[26]. Although the aforementioned approaches
have shown good results, they require a large amount of expert
interaction, thus, can be subjective and time-consuming.
Recently, to improve the speed and accuracy of data analy-
sis, the use of machine learning classification techniques has
been suggested in different scientific fields. Given a limited
number of known observations (i.e., training data), the goal of
a classification system is to learn the characteristics of a set of
predefined classes and assign a unique class label to each un-
known data sample. Machine learning classification techniques
offer automatic approaches to discover underlying relations
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within a large data set. The application of these methods in the
geological remote sensing community is growing [27]-[29].
Nonetheless, the implementation of these techniques for the
analysis of drill-core HS data has not been fully exploited in the
literature. Moreover, defining meaningful classes and selecting
representative samples for training a classifier is not straight-
forward in geological samples. Therefore, the development of
innovative solutions is needed.

In this paper, we propose a new framework to use machine
learning classification techniques for drill-core HS data analysis.
We exploit a data fusion strategy to address the lack of avail-
able training samples for the classification. More specifically,
we propose to use an automatic high-resolution mineralogical
imaging system (i.e., SEM-MLA) for generating training labels
to classify HS data. With the help of SEM-based analysis, we
first capture a very high-resolution image of a representative but
small area of a drill-core sample, which is coded by mineral
species. Then, we resample this image to the resolution of the
HS data and carefully coregister them. Finally, we exploit the de-
tailed mineralogical information in the resampled MLA image
to generate the training set. This integration allows us to make
use of the complementary information of both imaging sensors
for training a supervised classification system. There have been
few attempts in the literature to combine high resolution min-
eralogical data with HS data [30]-[34]. However, to the best
of our knowledge, this combination was mostly being consid-
ered to interpret and validate HS data analyses. In this paper,
we systematically investigate the fusion of these two sources of
information for the first time in the scientific community and use
it in an automatic classification framework to up-scale the high-
resolution mineralogical information to the entire drill-core data.
Once the training is performed and the classifier model parame-
ters are estimated, it can be used to classify a large amount of data
automatically. This needs a minimum human interaction and the
results are not impacted by the diverse interpretation of different
specialists as it happens in traditional visual analysis-based tech-
niques. Another important contribution of this work consists in
presenting a flexible labeling strategy for mineral mapping. In
our proposed technique, we use SEM-MLA not only for assign-
ing labels to HS drill-core images but also for defining different
mineral assemblages corresponding to each class label. In other
words, we define our class labels as mixtures of different miner-
als and use a machine learning classification technique to map
these mixtures to the entire drill-core collection. This strategy is
aligned with the nature of drill-core HS images where it can be
difficult to find pure mineral spectra at a given spatial resolution
of the data.

For the classification, we suggest to use RF and SVM since
they can handle high-dimensional data with a limited number
of training samples [35]-[38]. This is the case in drill-core
samples when usually detailed a priori information, such as
MLA reference maps, is only available for a small area of the
drill-core. Moreover, these classifiers are now commonly avail-
able in open-source software. Additionally, two well-known
endmember extraction algorithms (i.e, the chain of PPI and n-D
Visualizer [39] and vertex component analysis (VCA, [40])) are
examined in combination with SAM to illustrate results that can
be produced by commonly used and available tools.

Fig.3. SisuRock drill-core scanner equipped with an AisaFenix VNIR-SWIR
HS sensor.

TABLE II
USED SENSOR SPECIFICATIONS OF THE SPECIM AISAFENIX
VNIR-SWIR HS CAMERA

380 - 970 nm VNIR

Spectral range
970 - 2500 nm SWIR

. 3.5 nm VNIR
Spectral resolution
12 nm SWIR
Number of bands 450
Pixel size 1.5 mm/pixels
4 VNIR
Spectral binning
1 SWIR
Scanning speed 25.06 mm/s
Lo 15 ms VNIR
Integration time
4 ms SWIR
Frame rate 15 Hz
Field of view 32.3°

The rest of the paper is structured as follows. Section II
describes data acquisition (i.e., both HS and high-resolution
mineralogy). Section III presents the architecture of the sys-
tem describing the proposed resampling method and its details.
Section IV shows the experimental results, Section V the dis-
cussion, and finally, Section VI concludes this paper.

II. DATA ACQUISITION

HS and high-resolution mineralogical data were acquired to
show-case the proposed method. Details are presented in the
following subsections.

A. Hyperspectral Data

The HS data used in this work were acquired from unpolished
halves of drill-core samples with a Specim SisuRock scanner
available at the Spectroscopy laboratory at the Helmholtz Insti-
tute Freiberg for Resource Technology (see Fig. 3). The scanner
is a fully automatic HS imaging workstation, which scans drill-
cores in a fast manner. A tray table carries the trays under the
field-of-view of the spectrometer. For this study, the SisuRock
was equipped with a Specim AisaFENIX HS camera. This cam-
era implements two sensors to cover the VNIR and SWIR re-
gions of the electromagnetic spectrum. Table II shows the sensor
specifications used in this study.
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SEM-MLA instrument.

Fig. 4.

To convert the HS data from radiance values to reflectance,
radiometric corrections were performed. For this task, the dark
current and white reference measurements were automatically
used with a plugin in the acquisition software provided along
with the HS camera. To correct the sensor-specific optical dis-
tortions (i.e., fish-eye and slit-bending effects on the images)
and the spatial shift between the VNIR and SWIR sensors, the
toolbox presented in [41] was used.

To avoid bands with little or no coherent information, the
data were spectrally subsetted from 380 to 538 nm and from
2486 to 2500 nm by removing the first 47 and the last 3 bands,
respectively. The resultant wavelength range covers from 538
to 2486 nm in 400 bands. A smoothing polynomial filter (i.e.,
Savitzky—Golay filter) was applied to decrease noise while pre-
serving spectral features [42]. Special care was taken to avoid
attenuating spectral features while sufficiently smoothing the
data. Hence, different settings were tested to finally utilize a fil-
ter width of five spectral bands and a third-degree smoothing
polynomial.

B. High-Resolution Mineralogical Data

High-resolution mineralogical data of carbon-coated polished
thin sections of about 30 um thickness from the drill-core sam-
ples were acquired. It was carried out using scanning electron
microscope (SEM)-based mineral liberation analysis (MLA)
techniques at the Geometallurgy laboratory at the Helmholtz
Institute Freiberg for Resource Technology. For this, an FEI
Quanta 650 F field emission SEM instrument, equipped with
two Bruker Quantax X-Flash 5030 energy dispersive X-ray de-
tectors and the ML A 3.1.4 software suite were used (see Fig. 4)
[43]. Note that during the preparation of the carbon-coated thin
sections, the surface of the samples was grounded and polished.
This led to the removal of about 300 um of material between
the rock surface scanned with the HS sensor and the surface
studied with the high-resolution mineralogical analysis. Based
on the morphology of the samples used for this study and the
orientation of structural features, the mineralogical variation is
considered negligible with such a small surface shift. However,

in samples where veins are not vertical with respect to the sur-
face or coatings are presented in the surface, the removal of
material could influence on the link between the HS and the
high-resolution mineralogical data. Thus, special care needs to
be taken when preparing and analyzing such samples.

SEM-MLA automates microscope operations and data ac-
quisition for high-resolution mineralogy. The process is sum-
marized in Fig. 5. The SEM generates a beam of electrons that
scans the polished thin section. Then, the backscattered elec-
trons (BSE) interact with the minerals and are collected to pro-
duce an image, known as the BSE image. Therefore, the BSE
image shows the relation between the BSE and the incident elec-
trons coming from the SEM. This relation is represented with
different grayscale-levels which are a function of the average
atomic number of the minerals [44], [45]. The MLA software
collects the BSE images and uses them to effectively segment
the mineral grains by distinguishing the boundaries based on the
grayscale variations. The grayscale values are used to apply the
image segmentation to setup a grid of a given step size that will
allow for each grain to be measured. The identification of miner-
als is performed by collecting the X-ray data on the points of the
grid. When the electrons interact with the atoms, X-rays char-
acteristic of specific elements are generated. Finally, the min-
eral is determined by matching the resultant spectrum of energy
peaks with a reference library of X-ray spectra. Specifications
of the operating conditions used in this study are shown in Ta-
ble III, more information on the measurement mode is available
in [46], [47].

III. PROPOSED SYSTEM ARCHITECTURE

Fig. 6 shows the proposed machine learning-based system
for the analysis of drill-core samples where both HS and high-
resolution mineralogical data are fused and used to map minerals
and alteration patterns. Following the acquisition of the data,
described in Section II, our proposed system can be divided in
two main steps:

A. Resampling and Coregistration

To be able to fuse the SEM-MLA and HS data, MLA images
need to be resampled with respect to the spatial resolution of
the HS image. For this purpose, the most dominant mineral in
the MLA image is considered for each resampled pixel (resam-
pled to the HS pixel size). However, in the SEM-MLA analy-
sis, nonactive and active minerals in the VNIR-SWIR part of
the electromagnetic spectrum are detectable. More specifically,
from the 22 detected mineral groups in the SEM-MLA analysis
only ten have specific absorption features in the VNIR-SWIR.
Moreover, some minerals are not dominant but are required to
be mapped. To account for all these and estimate the mapping of
VNIR-SWIR nonactive phases, we adopt a soft labeling strategy
in which in all the pixels with the same dominant mineral (con-
sidering all the 22 SEM-MLA detected minerals), we count the
abundance of all the minerals in these pixels and normalized the
values with respect to the entire MLLA image. This process is per-
formed in every pixel of the resampled MLA image. In this way,
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To illustrate the resampling process better, Fig. 7 shows an ex-
ample of the proposed method. From the simplified MLA image
shown in Fig. 7(a), the dominant mineral in each HS pixel size
(represented by the grid on top) is considered for the MLA re-
sampled image. Hence, one class based on the dominant mineral
has been assigned to each pixel in the MLA resampled image
[see Fig. 7(b)]. In the case of the upper-left and lower-right pix-
els, both have muscovite as the dominant minerals, therefore,

—
26 mm
Thin section BSE image
Fig. 5. Summary of the process for the acquisition of SEM data with the MLA software.
TABLE III
USED OPERATING CONDITIONS OF THE SEM-MLA
SEM settings MLA settings
Mode GXMAP Resolution 1000x 1000 pixels
Frame width 1500 um Pixel size 3 um
BSE calibration Au 254 Step size 6% 6 pixels
Acceleration voltage 25 kV  Acquisition time 5 ms
Probe current 10 nA  Min. grain size 3 pixels

# Drill core sample ,‘
High-resolution
mineralogical data

Resampling to
HS resolution

/ Drill core HS data /

Supervised
classification

Mineral map

Fig. 6. Flowchart of the proposed machine learning technique to fuse HS and
high-resolution mineralogical data for mapping minerals in drill-core samples.

we consider degrees of membership for all the minerals in each
class being the percentages associated with the abundance of the
classes in the entire ML A image. Thus, the derived abundances
provide the means to analyze the different mineral assemblages
which then aid with the interpretation of the spectral variations
amongst classes and the mineral distributions.

both are assigned to class 1. For the upper-right and lower-left
pixels, chlorite and gypsum are the dominant minerals, respec-
tively. Therefore, class 2 and class 3 are assigned to these pixels.
From the soft labeling strategy, we obtain the degree of mem-
bership or mineral abundances associated with each class [see
Fig. 7(c)]. For this, the abundances of the minerals for each class
are obtained by normalizing the percentages of all the minerals
in all the pixels corresponding to the same class with respect to
the entire MLA image. For example in Fig. 7(c), the abundances
of the minerals for class 1 are obtained by normalizing the per-
centages of each mineral for both pixels assigned with class 1
(upper-left and lower-right pixels). Finally, Fig. 7(d) shows the
spectrum corresponding to the pixel in the upper-right corner
which corresponds to class 2 (mainly composed by chlorite).

After the MLA images are resampled, they need to be coreg-
istered with the HS images. For this, the MLA resampled im-
ages are carefully compared by visually setting tie points on
their respective HS images. This is supported by the analysis of
structural features found on the surface of the drill-core samples,
mineral composition, and spectral responses.

B. Classification

The last step in our proposed framework consists in extending
the extracted information from the SEM-MLA high-resolution
mineralogical data to the entire drill-core data by predicting the
labels of each pixel in the drill-core HS image. HS features
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Summary of the proposed resampling process: (a) Sketch of an MLA image with a grid indicating the HS pixels. For each pixel, the most dominant

mineral in the MLA image is used to define the MLA resample map shown in (b). (¢c) Abundances associated with each of the resultant classes obtained by the
proposed soft labeling strategy. (d) Spectrum of class 2, corresponding to the pixel in the upper-right corner, with the specific absorption features of each mineral

in the mixture. Mineral abbreviations after [48].

together with the MLA reference map are used as input for a
supervised classifier. Two well-known machine learning classi-
fiers which have been demonstrated having good performance
in geological applications are employed.

1) Random Forest (RF): RF is an ensemble learning classi-
fier, in which a set of decision tree (DT) classifiers are trained
and their individual results are then combined through a voting
process. It is expected that RF performs more accurately and
robustly than an individual DT classifier. Each tree contributes
by giving a unit vote for the most frequent class to the input
vector x and the classification label is allocated to the input vec-
tor through a majority vote: Crp = majority vote {Cy(x)}7T,
where x is the input vector, C’t(x) is the class prediction of the
tth tree, and 1" shows the total number of trees [49], [50].

2) Support Vector Machine (SVM): Exploiting the training
data, SVM searches for a separating hyperplane (class bound-
ary) with the largest margin [38]. To train the classifier and lo-
cate the hyperplane, only the samples that are close to the class
boundaries are needed (i.e., support vectors). In other words,
these are the training samples that influence the most in plac-
ing the hyperplane in the feature space. Because of this, SVM
performs well when a limited number of training samples are
available [37], [50], [51].

SVM was originally developed as a linear classifier to solve
binary classification problems [52]. However, for classification
problems, decision boundaries are often nonlinear. To tackle this,
the linear SVM approach was extended for nonlinear separable
cases by the so-called kernel methods. For this, the data are pro-
jected into a high-dimensional feature space where the samples
are linearly separable. The final hyperplane decision function is

defined as
fx) = ZaiyiK(xiaX) +b
i=1

where x; € IR%, i = 1,...,nis a set of n training samples with
their corresponding class labels y; € {1, +1}, a; denotes the La-
grange multipliers, K denotes the kernel function, and b refers to
the bias. SVM only requires the definition of the kernel function
K and the regularization parameter [50]. To implement SVM for
a multiclass classification problem, several methods were pro-
posed in the literature, the one-against-one and one-against-all
strategies are the most well-known and simplify the separation
of a multiclass problem into several binary classification prob-
lems. For a detailed review on the SVM technique, we refer
readers to [52].

IV. EXPERIMENTAL RESULTS

A. Data Description

Five drill-core samples were used to test the performance of
the proposed machine learning framework (see Fig. 8). These
samples were selected from sections at different depths to guar-
antee the presence of slightly varying alteration patterns and
mineral assemblages. In general, the matrix in the samples is
dominantly composed of feldspars altered at different degrees
to white mica. Disseminated chlorite and biotite are also found.
The samples show veins of varying composition with white mica
alteration halos of different thicknesses. This can be linked to the
differences between the temperatures and the chemistry of the
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RGB image of the drill-core samples used to test the proposed system. The area surrounded by red is where the thin sections for the SEM-MLA analysis

were performed. The original MLA images, obtained from the SEM-MLA analysis, are shown below the drill-cores and are stretched for visualization. The pixel

size in the original MLA images is about 3 pum. Mineral abbreviations after [48].

mineralizing fluids. In sample 1, there are quartz-gypsum veins,
thicker siderite-gypsum veins, and a fine pyrite vein. Sample 2
shows a large vein composed by mostly pyrite with less gypsum.
In sample 3, fine pyrite and quartz veins are presented. Very fine
pyrite-gypsum veins and quartz veins are presented in sample 4.
Finally, sample 5 shows one thin pyrite vein which seems to be
overprinted with a thicker pyrite-quartz-anhydrite vein.

These drill-cores were scanned to acquire their correspond-
ing HS images. After performing SEM-MLA analysis on char-
acteristic sections, the resultant MLA images were resampled
from 3 pm/pixel to 1.5 mm/pixel, corresponding to the pixel
size of the HS data. The labeling was based on the most dom-
inant mineral in the MLA map within the pixel size of the HS
data. From this, seven classes were obtained. However, classes
with less than 10 pixels were discarded resulting in a total of
five classes (see the upper-left image in Fig. 9). As explained in
Section III, for these classes a soft labeling strategy was pro-
posed. Thus, detailed abundance information for each of the

classes is provided along with the MLA resampled map (see the
upper-right image in Fig. 9). As an example, class [ is rich in
white mica with less quartz and feldspars; class 2 has mainly
gypsum; class 3 is dominated by a nonactive VNIR-SWIR min-
eral (i.e., plagioclase) with a mixture of white mica, chlorite, and
biotite as the active VNIR-SWIR minerals; class 4 is also dom-
inated by a nonactive VNIR-SWIR mineral, quartz, and white
mica mixed with gypsum; finally, class 5 is composed mainly
of pyrite, a nonactive VNIR-SWIR mineral.

B. Experimental Setup

RF and SVM were used as the classifiers (see mineral maps
at the bottom of Fig. 9). The number of trees is set to 500 for
the RF. The number of prediction variables is set equal to the
number of input bands. In the case of SVM, radial basis func-
tion (RBF) kernel is used. The optimal hyperplane parameters C'
(parameter that controls the amount of penalty during the SVM
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TABLE IV
TOTAL NUMBER OF SAMPLES AVAILABLE IN THE REFERENCE DATA

Class [[ Total [ Training [ Test

1 601 480 121
2 141 112 29
3 509 407 102
4 554 443 111
5 83 66 17

optimization) and y (spread of the RBF kernel) have been deter-
minedto C' = 4.4e 4+ 03 and v = 5.2e — 04 using fivefold cross
validation.

C. Quantitative and Qualitative Assessment

To quantitatively evaluate the performance of RF and SVM,
we followed an 80-20 approach were 80% of the available refer-
ence samples were randomly selected as the training set and 20%
as the test set (see Table IV). The experiment was repeated 30
times to avoid any bias and obtain a statistically sound result and
the mean values for the accuracies are reported in Table V. The
obtained low accuracy values were expected due to the mixed

TABLE V
OVERALL AND AVERAGE CLASSIFICATION ACCURACIES [%]

Accuracies RF SVM
Overall 69.6 (£2.2) | 739 (£2.1)
Average 62.1 (£3.1) 67.5 (£2.9)

nature of the training samples. However, SVM outclassed RF
by 4.3% and 5.4% for the overall and average accuracy, re-
spectively. Moreover, based on the variability of the overall and
average accuracies provided by the standard deviation, SVM
produces slightly more stable results than RF.

Confusion matrices presented in Tables VI and VII (bold
values represent the correctly classified samples) show that more
samples have been missclassified with RF than with SVM. To
illustrate, for RF, out of 29 available test samples in class 2, only
17 samples were correctly classified and from the 12 missclas-
sified, half of them were wrongly classified as class 4. However,
with SVM, 20 samples were correctly classified and from the
nine missclassified samples only four samples are classified as
class 4. From these tables, it is also possible to see how sam-
ples in class 3 are being mostly missclassified as class 4 by RF.
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TABLE VI
CONFUSION MATRIX RF [SAMPLES]

Predicted
1 [ 2 [ 3 [ 4 [ 5
86 8 16 | 10 | 1
1 7 2 6 3
10 0 76 | 16 | 0
15 3 14 | 77 | 2
2 1 0 7 7

Expected
(O, I SRS I NS
—

TABLE VII
CONFUSION MATRIX SVM [SAMPLES]

Predicted
T2 3 ]4]5
T][9% [ 1 [15] 9]0
B o2 4]20]0] 41
8 3 9o |8 |8 o0
5‘ 4016 2 ]13]8 0
50211101 9]s

The missclassification is understandable since the labels for the
classes are based on a degree of membership where the same
minerals are presented in all classes but their abundances differ.
This means that we are mapping mixtures of minerals instead of
pure minerals.

For the qualitative analysis, the resultant mineral maps are
shown in Fig. 9. In general, the majority of the structural features
and mineral distributions present in the surface of the drill-core
samples are well characterized. For example, in sample 4, the
structure of the veins is correctly mapped and differences in
the mineralogical composition along the veins are also mapped.
To illustrate, the vein varies from a purer muscovite content
(class I) on the right side and middle part of the vein to a more
muscovite-gypsum rich vein with higher amounts of nonactive
VNIR-SWIR minerals (class 4) on the left side of the vein. The
variations in the spectra within these two classes are mainly in
the intensity of the reflectance. As another example, an alteration
in the middle of sample 3, which is not actually visible in the
red-green-blue (RGB) image of the sample (see Fig. 8), is being
mapped. This highlights the capabilities of HS data to uncover
alteration patterns that are not visible to the human eye. However,
in this central area, there are differences in the classes assigned
by RF and SVM. With RF this area is being mapped as class
2 and with SVM as class 4. Another example of this occurs in
sample 1, where the vein in the central area has been classified
as class 2 with RF, whereas with SVM, it corresponds mainly
to class 4. Similarly, in sample 2, the central vein composed
of pyrite has been correctly classified as class 5 with SVM.
However, with RF this vein is being mapped as class 3 which
is rich in feldspars (nonactive VNIR-SWIR minerals as pyrite)
but also muscovite, biotite, and chlorite. Regarding the upper
gypsum vein in this sample, in any of the two maps this vein
has been completely mapped, but only a very thin area of it.
All these differences in the mapped classes can be linked to the
confusion matrices. To illustrate, the matrix in sample 4 is being
classified as a class 3 and class 4 by RF and mostly as class 3
with SVM. However, from the confusion matrices it is possible
to see that the majority of the missclassified samples in class 3

with RF are assigned to class 4, whereas with SVM the number
of missclassified samples for class 3 is lower.

To complement the visual analysis of these results, two min-
eral maps were obtained by using SAM (see Fig. 10). The end-
members utilized for the first map (v1) were derived by using
PPI and n-D visualizer implemented in the EN VI software. From
this, six classes were found and the same number of endmembers
was used when implementing VCA to extract the second set of
endmembers for the mineral map v2. These endmembers were
labeled by comparing them with a reference spectral library.
Fig. 10 shows the extracted endmembers and corresponding in-
terpreted labels. From this, it can be seen that the main min-
erals are white mica, gypsum, chlorite, and biotite, which also
correspond to the most abundant VNIR-SWIR active minerals
mapped in the MLA resampled image. To generate the mineral
maps, SAM was used on specific regions of the electromagnetic
spectrum that encompass the diagnostic absorption features of
each of the main minerals (Wmca, Gp, Chl-Bt). These ranges
were 1289-1659 nm, 1848—1948 mn, and 21362278 nm. After
some trials, a minimum angle of 0.05 was selected for a bet-
ter mapping. In general, although the same angle was used for
both maps, there is a higher number of unclassified pixels in
v2. Nonetheless, both maps show the main structural patterns
of all the samples, except for sample 1, where the central alter-
ation has been slightly delineated and the left vein has been only
mapped in v1. Differences in the classification of the Chl+Wmca
endmember are especially seen in the matrix of sample 4 and
sample 5, which can be attributed to the higher content of Wmca
in the PPI endmember. Another relevant difference is observed
for sample 4, where a better mapping was achieved using the
endmembers obtained by VCA.

Finally, to complete the examination of the capabilities of
our proposed method, we looked at the center spectra from the
training samples and the test samples (see Fig. 11). The center
spectrum is the sample spectrum closest to the mean. From these
plots, it can be seen that the general shape of the training center
spectra fit the general shape of their respective center spectra in
the test sets. The main absorption features present in the center
spectra from the training samples are also found in the center
spectra from the test samples, as for example in class 1. However,
with SVM, this is not that obvious and the center spectra from
the test set are more influenced by the nonactive VNIR-SWIR
minerals which results in a low-intensity reflectance spectrum
trend. Also, for class 3, which based on the soft labeling, it is
dominated by nonactive VNIR-SWIR minerals with a mixture
of white mica, chlorite, and biotite, as the active VNIR-SWIR
minerals, the center spectrum for the training samples shows
the higher content of white mica. However, the center spectra
for the test samples, in both RF and SVM, are dominated by
chlorite-biotite with less gypsum and muscovite.

V. DISCUSSION

In this paper, we propose a framework to map minerals in
drill-cores using a fusion of VNIR-SWIR HS data and high-
resolution mineralogical analysis. High-resolution mineralogi-
cal information is used as reference data to train a supervised
classifier to up-scale the detailed information coming from the
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mineralogical analysis to entire drill-cores. For the mineralogi-
cal data, we suggested to use SEM-MLA since this is an imaging
system which provides a complete model mineralogy allowing
a better fusion with the HS images. However, it is important to
highlight that the present approach is not restricted to the use
of SEM-MLA analysis as reference data, but any other imaging
method providing quantitative mineralogical data can be used
as substitution of the ML A images.

To process the HS data and test the proposed approach, we
organized the drill-core samples in a mosaic. This gives us the
advantage of having more training samples per class than using
the samples individually, which can be illustrated with sample 5.
In this sample, only a few training samples for class 3, which cor-
responds to the matrix, are available in its corresponding MLA
image. However, thanks to the mosaic, class 3 is well mapped
in the entire sample. As an additional added value, this mosaic
brings us closer to the real situation in the mineral exploration
industry, where high-resolution mineralogical analyses are per-
formed only for small areas in certain segments of the entire
drill-core. This allows the use of these areas to map minerals
within their corresponding alteration zones where mineralogi-
cal assemblages tend to be similar. However, it is important to

clarify that for this study only five samples reaching a few more
than 1 m were used while during exploration campaigns cores
can take up to a few kilometers. Thus, all the areas selected for
the SEM-MLA analysis must ideally be representative of all the
alterations occurring in the drill-hole interval.

MLA and HS images are acquired at different spatial resolu-
tions. To be able to fuse both data sets and develop a reference
map out of the MLA image, we proposed a system to resample
the MLA images. This starts by selecting the most dominant
mineral in the MLA image for a HS pixel size, which in this
study resulted in five classes. Then, to account for the fact that
the SEM-MLA analysis detects more than just VNIR-SWIR ac-
tive minerals we proposed a soft labeling strategy. Here, labels
for each pixel are accompanied by a bar graph where information
regarding the membership of the specific underlying minerals is
provided. Hence, the relative abundance of all the minerals ex-
isting in the samples is available. From the results, we have seen
the value of this labeling strategy which helped us to better un-
derstand the spectral changes amongst the classes in the mineral
maps. Moreover, this is highly relevant to understand the min-
eral composition and associations within a mineralized system,
which is essential in the evaluation of the distribution of target
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commodities and the economical potential of the deposit. Af-
ter resampling the MLA images, we coregistered both HS and
MLA images by a visual analysis. However, this step could be
automated by marking the desired areas for the mineralogical
analysis before the acquisition of the HS data. This makes pos-
sible to find the specific coordinates of the MLA images in the
HS data by automatic approaches. Another important fact re-
garding the SEM-MLA analysis is the selection for the areas
where this analysis is performed. We have seen with sample 2
how the upper gypsum vein is not well mapped in any of the
resultant maps (RF and SVM maps). This is due to its corre-
sponding MLA image, which is not representative enough of
the entire sample. For this reason, special care needs to be taken
for selecting the areas where the high-resolution mineralogical
analysis are performed.

As the supervised classifiers, we tested two well-known algo-
rithms, RF and SVM. From the resultant mineral maps, we have
seen that both methods provide good results with slight differ-
ences in certain classes which might be attributed to the content
of nondiagnostic minerals in the VNIR-SWIR range. Based on
the accuracies and confusion matrices, SVM performs, to a cer-
tain extent, better than RF, especially when it comes to class 1
and class 3. However, these are minor differences and together
with the center spectra, it shows the suitability of the proposed
framework to extrapolate and up-scale information from high-
resolution mineralogical analysis of a small area to larger sec-
tions of drill-cores. In general, the proposed method offers an
objective approach completely based on ground truth data up-
scaled from high-resolution mineralogical analysis capable of
achieving representative and descriptive mineral maps.

Finally, to illustrate the analysis that can be achieved by com-
monly used and available tools we implemented SAM in a spe-
cific wavelength range that enclose the main absorption features
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of the endmembers. For the determination of the endmembers,
two different approaches were used. The first map, obtained by
endmembers derived from the chain of PPI and n-D visualizer,
provided good results for a general characterization. For the sec-
ond map, endmembers derived by the VCA algorithm were used
and although the number of unclassified pixels is higher than in
the first map, a slightly more detailed mapping was achieved. The
experimental results obtained by these techniques indicate that
the proposed method could be considered as a precise alternative
approach for drill-core mineral mapping with minimal expert in-
tervention. Note that the examined endmember extraction-based
approaches imply the need of mineral spectroscopy knowledge
and consist of several steps (e.g., determination of the number
of endmembers), which may lead to major errors. Additionally,
with our proposed approach the mineralogical understating of
each class is possible, showing, for example, the influence of
VNIR-SWIR featureless minerals in each of the classes and the
relation with the general spectral shape. Also, the available quan-
titative mineralogical information helps with the interpretation
of the endmembers which can be difficult due to the nonlinear
relation between absorption features and mineral content, espe-
cially with mixed pixels.

VI. CONCLUSION

In this paper, we presented a supervised machine learning
classification system for drill-core mineral mapping by fusing
high-resolution mineralogical analysis and HS data. We sug-
gested to use scanning electron microscopy (SEM)-based min-
eral liberation analysis (MLA) since it provides high resolution
images useful to up-scale detailed mineralogical information to
entire drill-core samples. We used the MLLA image as reference
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data to classify the drill-core HS image. We proposed a tech-
nique to resample the MLLA image to the HS spatial resolution
and coregister it to the HS image. Here, our proposed approach
includes a soft labeling strategy where not only a single mineral
describes a class but also a set of mineral memberships represen-
tative of the entire ML A images. Then, we exploited this detailed
mineralogical information in the resampled MLA image by gen-
erating the training set and applying two well-known supervised
machine learning classifiers, random forest and support vector
machine.

After analyzing the results of the experiments carried out, we
conclude that our suggested framework is effective for fusing
high-resolution mineralogical information with HS data pro-
viding accurate quantitative and qualitative results. It allows
up-scaling and spreading detailed mineralogical information
coming from small portions of the drill-cores to entire drill-
core samples. Hence, not only alteration patterns, such as veins,
are possible to be mapped but also the mineralogical varia-
tions within them. With the proposed method and soft labeling
strategy detailed maps are achieved and the relative abundance
information of all the minerals presented in the sample is given.
Moreover, even when using only VNIR-SWIR HS data, an esti-
mation of the mapping of nonactive VNIR-SWIR minerals is
possible by means of the SEM-MLA. In general, this paper
presents a new effective and objective framework to map min-
erals in drill-core samples based on ground truth data by fusing
two techniques used in the industry, which up until now have
been commonly used independently.

In future developments, we will continue analyzing different
possibilities to exploit the fusion of high-resolution mineralog-
ical analysis with HS data to map minerals in drill-core sam-
ples. This includes different resampling and coregistration tech-
niques as well as the use of different quantitative mineralogical
methods.
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