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Abstract: We revealed a novel type of axisymmetric magnetorotational instability in viscous
and resistive rotating flows with radially increasing angular velocity, or positive shear, exposed
to a helical magnetic field. It operates for a broad range of positive shear, provided that magnetic
Prandtl number is not unity. This instability can play an important role in the magnetic activity
of the equatorial parts of the solar tachocline, where the shear of differential rotation is positive.
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1. Introduction The standard version of magnetorotational instability (SMRI) with ax-
ial magnetic field [1] as well as its “relatives” in viscous and resistive flows – azimuthal MRI
(AMRI, with a purely azimuthal field [2]) and the helical MRI (HMRI, with combined axial and
azimuthal fields [3]) – have been investigated theoretically in great detail in the case of flows
with radially decreasing angular velocity and increasing specific angular momentum, which
are hydrodynamically stable. AMRI and HMRI have also been detected in experiments [4, 5],
while a solid experimental evidence of SMRI is still missing, despite promising first efforts [6].

By contrast, much less attention is dedicated to flows with radially increasing angular ve-
locity, because up to now such flows have been regarded as strongly stable, even in the presence
of magnetic fields. However, for high enough Reynolds numbers Re = O(106), they can exhibit
non-axisymmetric linear instabilities, as recently shown in [7]. Besides this hydrodynamic in-
stability, there exists a special type of AMRI at much lower Reynolds numbers but sufficiently
high positive shear [8]. Yet, the latter limitation makes this so-called Super-AMRI astrophys-
ically less relevant. One of the few positive shear domains is a part of the tachocline within
±30◦ about the solar equator [9]. However, even there, the shear expressed in terms of Rossby
number Ro = r(2Ω)−1dΩ/dr is about 0.7, much less than the so-called upper Liu limit (ULL)
RoULL = 2(1+

√
2)≈ 4.83 [10] needed for Super-AMRI.

Given the general affinity between AMRI and HMRI [11], one might anticipate a similar
result also for Super-HMRI. However, as we show below, using Wentzel-Kramers-Brillouin
(WKB) short-wavelength approach, there exists in fact a new type of axisymmetric HMRI
which can operate for arbitrary positive shear. The only requirements are the presence of both
axial and azimuthal field components, and magnetic Prandtl number different from both zero
(the inductionless limit) and from unity. These conditions are fulfilled in the solar tachocline,
where this new instability can potentially play a key role in its magnetic activity.
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2. Presentation of the problem Consider a Taylor-Couette flow of an incompress-
ible, conducting fluid which rotates with angular velocity profile Ω(r) between two cylin-
ders with radii ri and ro. The imposed helical magnetic field has a constant axial, B0z, and
a radially-dependent, current-free azimuthal components, B0φ (r) = βB0zro/r, where β charac-
terizes field’s helicity. We investigate the linear stability of this equilibrium to axisymmetric
perturbations of the form ∝ exp(γt+ ikrr+ ikzz), where γ is the (complex) frequency and kr and
kz are the radial and axial wavenumbers. The resulting dispersion relation can be expressed as
a fourth-order polynomial [11],

γ
4 +a1γ

3 +a2γ
2 +(a3 + ib3)γ +a4 + ib4 = 0, (1)

with the coefficients
a1 = 2k2Re−1(1+Pm−1),

a2 = 2(k2
z +2α

2
β

2)Ha2Re−2Pm−1 +4α
2(1+Ro)+ k4Re−2 (1+4Pm−1 +Pm−2) ,

a3 = 8(1+Ro)α2k2Re−1Pm−1 +2k2Re−3Pm−1 (1+Pm−1) [k4 +(k2
z +2α

2
β

2)Ha2],

b3 =−8α
2
βkzHa2Re−2Pm−1,

a4 = 4α
2k4Pm−2 [(1+Ro)Re−2 +β

2Ha2Re−4]
+4α

2k2
z RoHa2Re−2Pm−1 +Re−4Pm−2 (k2

z Ha2 + k4)2
,

b4 = 4k3
z β
[
Ro
(
1−Pm−1)−2Pm−1]Ha2Re−3Pm−1.

The roots with a positive real part, Re(γ) > 0, indicate instability. Here, γ is normalized by
Ωo, and the wavenumbers by r−1

o . The other parameters are: α = kz/k, where k = (k2
r + k2

z )
1/2

is the total wavenumber; the Reynolds and magnetic Reynolds numbers are Re = Ωor2
o/ν and

Rm = Ωor2
o/η , and their ratio, the magnetic Prandtl number Pm = ν/η = Rm/Re, where ν

is viscosity and η resistivity; the Hartmann number Ha = B0zro/
√

µ0ρ0νη , characterizing the
imposed axial field, where ρ0 is the (constant) density and µ0 the magnetic permeability.

We focus specifically on positive Rossby numbers (shear), Ro > 0, so that the flow is stable
both hydrodynamically and against SMRI with purely axial field (i.e., β = 0) [11]. As for the
dependence on β , as long as β 6= 0, it follows from Eq. (1) that β can be removed by re-scaling
the wavenumbers, Hartmann and Reynolds numbers as kz/β → kz, k/β → k, Re/β 2 → Re,
Ha/β→Ha, which does not change these coefficients and hence the eigenfrequencies. Without
loss of generality, we set β = 1.

In the inductionless case, Pm→ 0, Eq. (1) can be solved analytically [11]. For positive
and relatively large Ro > RoULL, one of the roots always has a positive real part,

Re(γ) =
√

2X +2
√

X2 +Y 2− (k2
z +2α

2
β

2)Ha2Re−1k−2−Rek−2, (2)

where
X = α

2
β

2(α2
β

2 + k2
z )Ha4Re−2k−4−α

2(1+Ro),

Y = βα
2kz(2+Ro)Ha2Re−1k−2,

which is the growth rate of HMRI operating at positive shear, i.e. Super-HMRI. Our primary
goal is to demonstrate that besides this Super-HMRI at larger positive shear, Eq. (1) also gives
an entirely new type of dissipation-induced, or double-diffusive instability at nonzero Pm.

Figure 1a presents the growth rate Re(γ) versus the axial wavenumber, following from a
numerical solution of Eq. (1) at finite but very small Pm = 10−6, alongside the inductionless
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Figure 1: Panel (a) plots the growth rate Re(γ) vs. kz, at Ha = 90, Re = 8 ·103, α = 0.71 (kr = kz), and
Pm = 10−6, for various Ro = 1.5, 2, 6 alongside the inductionless solution (2) for Ro = 6 (black dashed
line). The new instability branch is at smaller kz and finite Pm, for all Ro, whereas Super-HMRI branch
at larger kz exists only for Ro = 6 > RoULL, but persists in the inductionless case. For this Pm, panel (b)
shows the growth rate of the instability, maximized over kz, Ha and Re and normalized by Ro1.75, vs. α ,
while panel (c) shows this growth rate maximized over kz and α , in (Ha,Re)-plane at Ro = 1.5.

solution (2) for given Ha and Re. We consider Rossby numbers lower, Ro = 1.5,2, and larger,
Ro = 6, than RoULL. We can clearly identify two distinct instability regimes. The first one
is located at small kz and occurs at finite Pm both for Ro < RoULL and Ro > RoULL, i.e. it
is independent of the Liu limit, but vanishes for Pm→ 0 at given Hartmann and Reynolds
numbers. By contrast, the second one, Super-HMRI, is located at larger kz, occurs only for
Ro > RoULL, and tends to the inductionless solution as Pm→ 0.

The first instability branch is a new dissipation-induced mode at positive shear, which
needs both finite viscosity and resistivity. As shown below, it does not operate near Pm = 1, that
is, it is double-diffusive, operating for both small and large Pm. As for all MRI-type instabilities,
the present one is supplied by shear flow energy, since the imposed field is current-free, thereby
excluding current-induced instabilities. Like the familiar HMRI at negative shear, energy is
extracted from the flow to the perturbations due to the coupling between meridional circulation
and azimuthal field perturbations brought about by the imposed azimuthal field. Super-HMRI,
existing for Ro > RoULL is also new and interesting, but is not covered here.

To explore the behavior of the new instability further, we first vary α , Hartmann and
Reynolds numbers. The growth rate, maximized over the last two numbers and kz, increases
linearly with α and scales as ∝ Ro1.75 (Fig. 1b), while its dependence on Ha and Re, when
maximized over kz and α is shown in Fig. 1c at Pm = 10−6 and Ro = 1.5 < RoULL (where
Super-HMRI is absent). The unstable area is localized, with the growth rate decreasing for both
small and large Ha and Re, implying that the instability, being double-diffusive, exists at finite
viscosity and resistivity. The overall structure in (Ha,Re)-plane does not change qualitatively at
other Pm and Ro; the unstable area is always localized, but moves up to larger Ha and Re with
decreasing Pm. The maximum growth rate, γm, is reached at Ham = 665 and Rem = 8.64 ·104

in Fig. 1c; as noted above, for a given γ these values can be rescaled to larger β .
Next we look at how the growth rate varies with Pm again at fixed Ro = 1.5 < RoULL, so

that Super-HMRI is excluded. Figure 2 shows the growth rate γm, maximized over kz, Ha and



11th PAMIR International Conference - Fundamental and Applied MHD
July 1 – 5, 2019, Reims, France

10-3 10-2 10-1 100 101 102

0.4

0.6

0.8

1

1.2

10-4 10-2 100 102

Pm

0

0.2

0.4

0.6

0.8

m

100

10-2

10-4

10-1

10-5
101 103

10-3

S
m

=Ha
m

Pm1/2

Rm
m

=Re
m

Pm

10-3

Ha
m

Pm-1/3

Re
m

Pm1/4

10-1

(b)

(c)

(a)

Figure 2: Panel (a) presents the growth rate γm, optimized over kz, Ha and Re, vs. Pm, at fixed Ro = 1.5
and α = 1. Panels (b) and (c) show the corresponding Ham and Rem, respectively. For both Pm� 1 and
Pm� 1, γm approaches constant values. The Hartmann and Reynolds numbers scale as Ham ∝ Pm−1/2

and Rem ∝ Pm−1 for Pm� 1, and as Ham ∝ Pm1/3 and Rem ∝ Pm−1/4 for Pm� 1. Panels (b) and (c) are
compensated by these factors to more clearly show these scalings. The dashed lines are at Pmc1 = 0.223
and Pmc2 = 4.46, marking the stable region around Pm = O(1).
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Figure 3: Panel (a) plots the lower (Pmc1, blue) and upper (Pmc2, red) margins of the instability vs. Ro.
Panel (b) shows that these marginal curves are related by Pmc1 = 1/Pmc2. The vertical dashed line in (a)
marks the Liu limit RoULL = 4.83, showing that the instability is not affected by this limit.

Re, as a function of Pm as well as the corresponding Ham and Rem at which this maximum
growth is reached. We see that for Pm . 10−2, the growth rate is essentially constant, γm =
0.043, while Ham and Rem increase with decreasing Pm as power-laws, with Ham ∝ Pm−1/2

and Rem ∝ Pm−1. That is, in this small-Pm regime the instability is better characterized by
Lundquist, Sm =Ham ·Pm1/2 = 0.7, and magnetic Reynolds, Rmm =Rem ·Pm= 0.091, numbers
and is hence independent of Pm, as is SMRI, meaning that this new instability does not exist in
the inductionless limit, which implies S,Rm→ 0 if Ha and Re remain finite.

With increasing Pm, beyond Pm∼ 0.01, γm steeply decreases, and eventually the instability
vanishes at the first critical point Pmc1 = 0.223, with corresponding Ham = 2.018, Rem = 0.071,
and critical wavenumber kzm = 0.0024. It emerges again for larger Pm at the second critical
point Pmc2 = 4.46, with Ham = 2, Rem = 0.046, and kzm = 0.005. Further increasing Pm,
for Pm & 10, γm finally reaches a constant value of 0.29. The corresponding Hartmann and
Reynolds numbers again follow power-laws, Ham ∝ Pm1/3 and Rem ∝ Pm−1/4. So, this new
instability exists over a broad range of magnetic Prandtl numbers, provided that viscosity ν and
resistivity η differ, so that Pm = 1 is avoided, and instead Pm < Pmc1 < 1 or Pm > Pmc2 > 1.
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Figure 3a shows the unstable regions in (Ro,Pm)-plane. For all Ro, the two marginal
(γm = 0) curves satisfy Pmc1 < 1 and Pmc2 > 1, and are related by Pmc1Pmc2 = 1, as seen
in Fig. 3b. For high shear (Ro→ ∞), the stable interval about Pm = 1 becomes increasingly
narrow, so most Pm values are unstable, whereas for Ro→ 0, the stable interval broadens to
encompass all Pm. This is because the shear is the only energy source (just as it is for SMRI,
AMRI, and HMRI) and hence there can be no instability at all for Ro = 0, which is a solid-
body rotation. Note also that Pmc1 and Pmc2 stability curves are unaffected by the Liu limit at
RoULL = 4.83, and the instability exists also for Ro < RoULL.

3. Conclusions We have revealed and analyzed a new type of double-diffusive HMRI
which is able to destabilize rotating flows with arbitrary positive shear, including 0 < Ro <
RoULL where magnetorotational instabilities were thought to be absent. The only requirements
are that Pm 6= 1, and the imposed magnetic field must consist of both axial and azimuthal
components. Both these conditions are fulfilled in the equatorial parts of the solar tachocline,
for which this new type of HMRI may have important consequences. Specifically, it can revive
the idea of a subcritical solar dynamo. Its axisymmetric (m = 0) nature can overcome the
difficulties that arise [12] in getting the so-called Tayler-Spruit dynamo [13] to form a closed
dynamo loop from the joint action of the m = 1 Tayler instability and the m = 0 Ω-effect.
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