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Abstract

This paper describes the derivation of the nodal flux expansion method HEXNEM3, its
implementation into the nodal diffusion code DYN3D and the corresponding testing versus
benchmarks. As in the earlier versions of expansion method HEXNEM1 and HEXNEM?2, the
neutron flux in a hexagonal node is expanded into superposition of orthogonal polynomials
and exponential functions. The main difference of the HEXNEM3 method is the additional
use of tangentially weighted exponential functions and the coupling of neighboring nodes by
tangentially weighted fluxes and currents on node surfaces.

The HEXNEM3 method was tested in several benchmark problems, including numerical
benchmarks with given cross sections set and reference solutions by fine-mesh finite
difference diffusion and a real plant benchmark with Monte Carlo reference solution. The test
results demonstrate good agreement with reference solutions and improvement of method
accuracy in comparison with HEXNEM1 and HEXNEM?2.

1. Introduction

The reactor dynamics code DYN3D is used to simulate static and transient behavior of
nuclear reactor cores with hexagonal or rectangular fuel assemblies (Rohde et al., 2016,
Kliem et al., 2016). The multi-group neutron diffusion is solved utilizing nodal expansion
methods specific for geometry discretization type: rectangular (Beckert and Grundmann,
2008), hexagonal (Grundmann and Hollstein, 1999) or trigonal (Duerigen et al., 2013). In the
case of hexagonal assemblies, the three-dimensional neutron diffusion equation is divided by
transverse integration into a two-dimensional equation in the hexagonal plane and a one-
dimensional equation in the axial direction. These two equations are coupled by the
transversal leakages (Grundmann, 1999).

Concerning the HEXNEM1 method the two-dimensional flux expansion in the hexagonal
node is based on second order polynomials and six exponential functions directed to the six
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faces of the hexagon. The nodes are coupled by the face averaged fluxes and currents. The
method is sufficiently accurate for the smaller hexagons of the Russian reactor VVER-440. In
order to obtain better results for the larger node size of the VVER-1000 reactor, six exponen-
tial functions in direction to the corners are additionally used in the HEXNEM2 method.
Fluxes and currents of the three hexagons at the corner are coupled with each other.
HEXNEM?2 shows an improved accuracy against HEXNEMI1 results presented in the refer-
ence. However, the conditions at the corners are somewhat complicated, especially at the out-
er boundary. If face averaged assembly discontinuity factors (ADF) of the neutron fluxes are
used to improve the nodal results (Smith, 1986), the HEXNEM?2 method requires also ADF
for the corner points.

Instead of fluxes and currents at the corner points, tangentially weighted fluxes and currents
together with tangentially weighted exponential functions were applied in (Christoskov and
Petkov, 2013). The face averaged ADF are used for both fluxes and tangentially weighted
fluxes. The method shows improved accuracy against HEXNEM?2 in some VVER-1000
problems. For these reasons, the method was implemented as the option HEXNEM3 into the
DYN3D code. The equations required for the method implementation are derived in this
paper. Results obtained with the three methods HEXNEM1, HEXNEM?2 and HEXNEM3 are
compared with references.

2. The method HEXNEM3

The 2-dimensional steady state equation of the group g in a node is given by

-DAD,(r)+X, @, (r)=S,(r) (1)
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with the 2D Laplacian operator A, and r = (x, y)

Besides the leakage of the axial direction L, the standard notation is used. The fluxes of each

energy group g are expanded by polynomials up to the 2" order, exponential functions and
tangential weighted exponential functions directed to the six faces of the hexagon.
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The variable a describes the half of the distance between two parallel sides of the hexagon in
Fig. 1. The area of the hexagon F,, and the length of the faces 5 are given by
_ 2
F, =23a® and 5 -2
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Fig. 1: Hexagon with the vectors of directions €., and e, , .
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with Kroneckers symbol §,, . The normalization factors N, are given by
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The vectors €, and e, depend on the basic unit vectors e, and €, by
. . ) V4
e, =cosq, e +sing e, and e,, =—sing e, +cosq, e, with ¢, = (k—l)g .

The exponential functions and the tangential weighted exponential functions of (3) are
solutions of the homogeneous equations (1) with the buckling B,

T
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The source of eq. (2) is expanded by the polynomials
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Inserting the flux expansion in eq. (1), the following expressions are obtained for the ¢, ; by
the orthogonal conditions (6)
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The averaged partial currents J ;‘is’k and the tangential weighted partial currents J gi’m’k at the

six faces 5, are given by
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with (+) for the outgoing and (-) the incoming values. The currents J, ( ) are given by Fick’s
law
J,(r)=-D V@ (r) . (15)

Inserting the ansatz (3) in (13) and (14), the following equations for the vectors of partial
currents J ;S and weighted partial currents J ;m result from the integrations.

J_ _Pg ng+Qg vagv—l_Qg vagm (16)
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C,. A,,. A, are the column vectors of the coefficients ¢, .a,,,.4d,, . The matrices

P,Q resulting from the integrations have symmetries similar to the matrices of the
HEXNEM?2 method (see appendix A).

One has 12 conditions for eliminating the vectors of the coeff1c1entsAgv,A from the

incoming values J, ,J,, given by the interface conditions to the neighbouring hexagons or

the outer boundary conditions. Then the outgoing variables of partial currents J ;’s and

can be represented by the incoming values J,

. . . N
tangentially weighted partial currents J s

g.m

J ... and the C, by using algebraic operations (see Appendix A):

T3 Vet ooy Wi (18)
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An outer and inner iteration scheme is used for the calculation of neutron fluxes in DYN3D.
Starting with the first energy group the coefficients of polynomials C, are calculated from the



polynomial coefficients of the fission source, axial leakage and up-scattering term of the last
outer iteration by (11) and (12). Then the outgoing partial currents and the tangential
weighted outgoing partial currents of radial direction are calculated from the incoming values
by eq. (18) and (19). The one-dimensional equation of the axial direction is treated by a
similar nodal method, which is used also with the HEXNEM1 and HEXNEM?2 method of the
radial direction (Grundmann, 1999). Averaged fluxes and currents are used only for the
coupling the nodes in the axial direction.

The incoming values are obtained from the outgoing values of neighbored nodes or boundary
conditions. Flux continuity or discontinuity conditions given by ADF can be taken into
account. The ADF are used for both fluxes and tangential weighted fluxes. Few inner
iterations (3 - 10) are performed for each group. After the last inner iteration, the polynomial
coefficients of flux are updated by weighting the flux expansion (3) with the polynomials and

integrating over the area of the hexagonal node. The updated coefficients c;k are obtained
from
c,=C,+1, A +I,A,,. (20)

Replacing the A

4.5+ Ag,, by the incoming partial currents the equations
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21)

are obtained (see Appendix B). Similar relations exist for the axial problem. The inner
iteration of the next energy groups follows with the down scattering terms from the previous
groups. If the inner iterations are finished for all energy groups, the new fission rate is

calculated and the eigenvalue kis evaluated from the fission rates of two successive outer

iterations. Convergency of the fission rates terminates the outer iteration accelerated by
Chebychev extrapolation.

The node averaged values of neutron fluxes Eg are an important result. In contrast to the

described scheme the three-dimensional diffusion equation integrated over the node volume
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is included in the inner iteration. J,_,

face of the node. The outgoing partial currents are replaced by using eq. (18) and the relevant
relations of the axial direction by the incoming values. Based on the symmetry of the matrix

+ .
J, . are the partial currents at the upper and lower

W, the tangential weighted incoming partial currents do not occur. Caused by the structure

g.,sm

of the matrix V, the elements ¢, and ¢, ; of the vector C, only contribute to the sum of
outgoing partial currents. In analogous way the polynomial coefficients ¢, , and c,, of axial
direction occur in the sum of outgoing partial currents (J MU B ) Then the elements ¢, ,,

8.tz

Co3-C40 and c,,appear in (22) together with the incoming partial currents. Besides a factor



1/N, the left side of the first of equations (21) describes the averaged flux 58 calculated
from the ansatz (3). Based on the properties of matrices M,, H_ and H,, a linear relation

between Eg ,Cooand ¢, 5 and the sum of the incoming partial currents J, , is obtained.

6
cg,O = Kg,OcDg + Kg,3cg,3 _Il'lg Z‘](;,s,k (24)
k=1

The constants X, o,K, 5,4, follow from the described algebraic operations. Then the

coefficient ¢, is eliminated in the integral balance equation (22) with the help of (24). It is
done in a similar way with the coefficient ¢, of axial direction. Finally the integral balance

equation is a linear relation between the variables CI)g,ng,c;J, the source Sg and the

incoming partial currents of the node faces
EN r 7' T r z .2 z S - r{r- -
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with the constants ¢,7%,&; ;.87 .77, from the algebraic operations. It is used for the
calculation of the averaged fluxes Eg in each inner iteration step. The arrays of the
coefficients ¢, q,c,, are not stored and the first equation of (21), the relation (11) and the

analogous equations of the axial direction are not needed. During each inner iteration ¢, , is

calculated for equations (18) and (19) from (24) by using the actual flux values. This modified
iteration already applied in HEXNEM1 and HEXNEM?2 was stable in numerous problems
analyzed with the code DYN3D. The HEXNEM3 method is implemented in the transient part
of DYN3D with the equal techniques used also with the HEXNEMI1 and HEXNEM?2
methods.

3. Results

A set of benchmark problems was solved to verify and validate the proposed HEXNEM3
method and its implementation into the code DYN3D.

1.1. AER-FCM101 numerical benchmark

The AER-FCM101 numerical benchmark is published in the AER benchmark book (“AER
benchmark book,” 2017). This benchmark represents 1/12 sector of a 3D VVER-1000
prototype reactor core. The benchmark problem contains five types of fuel assemblies,
burnable absorber, half-inserted control rods cluster as well as axial and radial reflectors. The
homogeneous two-group macroscopic cross-sections and diffusion coefficients for fuel and
reflector materials are provided in the benchmark definition. No discontinuity factors are
defined. The reference solution was obtained by the CRONOS code (Lautard et al., 1992),
utilizing finite elements method and extrapolated to zero mesh size.

The Fig.2 compares DYN3D results utilizing HEXNEM3 with the benchmark reference
solution. Difference in multiplication factor is 7 pcm, maximum difference in relative



assembly power, defined as 100~max|AP, is 0.4 % and the root mean square deviation

1 N
(RMS), defined as 100- /NZAPZ ,is 0.2 %.

Reference (keff = 1.04953)
HEXNEMS3 (keff = 1.04945)
difference (d.keff = 7.5 pcm

Fig. 2. Assembly power comparison for the three-dimensional AER-FCM101 numerical benchmark.

For the comparison of the reference 3D power distribution in ten axial layers with DYN3D
result, the maximum deviation in relative nodal power is 1.3 % and the RMS is 0.6 %. In
comparison to ref. (Christoskov and Petkov, 2013) the converged solution is used. If the
weaker convergence criteria published there is applied, the maximum deviations are equal to
the published values. The HEXNEMS3 accuracy is compared with HEXNEMI1 and
HEXNEM2 in Table 1. The HEXNEM?2 method accuracy demonstrates significant
improvement over HEXNEM 1, while HEXNEM3 improve results even more.



Table 1. Deviations of DYN3D results from the reference values.

APassembly: % APnodei %

Method ke, pem RMS max RMS

3D AER-FCM101 benchmark

HEXNEM1 41 2.0 13 4.0 15
HEXNEM?2 13 0.6 0.4 1.7 0.8
HEXNEM3 7 0.4 0.2 13 0.6

2D VVER-1000 type problem (albedo = 0.5)

HEXNEM1 59 3.0 2.0 - -
HEXNEM2 6 0.9 0.5 - -
HEXNEM3 9 0.2 0.1 - -
2D VVER-1000 type problem (albedo = 0.125)
HEXNEM1 50 2.1 1.3 - -
HEXNEM2 13 0.4 0.2 - -
HEXNEM3 9 0.2 0.1 - -

3D X2 benchmark critical state

HEXNEM1 172 3.7 2.3 6.1 2.6
HEXNEM?2 77 1.2 0.7 2.4 0.9
HEXNEM3 77 1.2 0.7 2.4 0.9

2D X2 benchmark rodded state

HEXNEM1 201 3.7 2.3 - -
HEXNEM?2 87 1.4 0.7 - -
HEXNEM3 87 1.4 0.7 - -

1.2. Two-dimensional VVER-1000 type problem

The two-dimensional VVER-1000 type numerical benchmark was described in (Chao and
Shatilla, 1995) and used in (Grundmann and Hollstein, 1999) for the verification of the
HEXNEM?2 method. The benchmark describes 1/6 of a 2D reactor core with homogenous
hexagonal fuel assemblies; 25 fuel assemblies are rodded. The boundary conditions are
defined by albedo coefficients, two cases are considered: with albedo = 0.5 and 0.125. The
two-group macroscopic cross-sections and diffusion coefficients for all materials are provided
in the benchmark definition. No discontinuity factors are defined. The reference solutions
were obtained by the DIF3D-FD code utilizing fine-mesh finite difference method. Results
were extrapolated from DIF3D-FD runs with 486 and 864 triangle/hexagon subdivisions.
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Fig. 3. Assembly power comparison for the 2D VVER-1000 type problem.

Fig. 3 compares DYN3D HEXNEM3 with the benchmark reference solution. For the case
albedo = 0.5 the difference in multiplication factor is 9 pcm, maximum difference in relative
assembly power is 0.23 % and the root mean square deviation (RMS) is 0.13 %, while for the
case albedo = 0.125 the difference in multiplication factor is also 9 pcm, the maximum
difference in relative assembly power is 0.18 % and the root mean square deviation (RMS) is
0.08 %. The HEXNEM3 accuracy is compared with HEXNEM1 and HEXNEM?2 in Table 1.
As in the previous case, HEXNEM3 is closer to the reference than HEXNEM?2, which in turn
is more accurate than HEXNEMI.

1.3. X2 VVER-1000 benchmark

The X2 VVER-1000 benchmark, published in the AER conference proceedings (Lotsch et al.,
2009, 2010), describes first 4 fuel cycles of the Khmelnitsky NPP 2™ ynit with VVER-1000
reactor. The benchmark specifications contain description of the reactor core material,
geometry and operational history supplemented by measured operational data, startup
experiments as well as some operational transients.

In this work, DYN3D result for the 1* fuel cycle fresh core hot zero power (HZP) state is
compared with Monte Carlo reference. The reference solution is obtained using the Serpent-2
Monte Carlo code (Leppinen et al., 2015) with ENDF/B-VII.O isotopic library. The Serpent
3D model of the VVER-1000 core features a detailed representation of the fuel assemblies,
control rods, and the reflector. The detailed model description and verification was published
in (Bilodid and Fridman, 2017). Table 2 demonstrates the very good agreement of Serpent
results with the measured values.

Table 2. Comparison of Serpent vs measurements

Parameter Measurement Serpent
Multiplication factor ke 1.0 1.00062+0.8e-5
Temperature reactivity coefficient, pcm/K -5.3910.54 -5.6710.2
Full SCRAM worth, % 7.00£0.43 -7.51+0.001




As long as the benchmark does not provide measurements of power distribution in HZP state,
the Serpent solution was used as a reference for verification of DYN3D results. The
assembly-wise power distribution was calculated in twenty axial layers. Since the fission
source convergence might be an issue in full core simulation, the results of ten independent
Serpent runs, each simulating 6*10° neutron histories, were averaged. Additionally, while the
problem is 60°-symmetric, Serpent power of symmetrically located assemblies was averaged
too. The resulting standard deviation of an assembly relative power is 0.1% while the standard
deviation in assembly’s axial layer is 0.25%.

The two-group homogenized macroscopic cross sections (XS) for DYN3D were calculated
using Serpent. A single assembly model with periodic boundary conditions was used to obtain
fuel XS, while reflector XS are obtained from a Y core model. The radial reflector
discontinuity factors are corrected with ADF of neighboring fuel (Smith, 2017). Axial
reflector XS were obtained from a 3D fuel assembly model with periodic radial and black
axial boundary conditions.

The DYN3D core model includes two rows of radial reflector and one axial reflector layer
under and above a core. Assembly discontinuity factors were applied in DYN3D in radial
direction.

Fig. 4 shows the comparison of Serpent and DYN3D results for the 3D critical state problem.
Although both DYN3D and Serpent calculations were performed in full 360 degree geometry,
the results are 60 degree symmetric and therefore shown in 60 degree sector. The difference
in ke between DYN3D and Serpent is 77 pcm. The maximum error in assembly power is
1.2 %, the RMS is 0.7 %.

Serpent (keff = 1.00069
DYN3D (keff = 1.0014
difference (d.keff = 77 pcm)

Fig. 4. Assembly power comparison for the three-dimensional X2 HZP critical state.
The comparison of axial power distributions in 20 axial layers obtained by DYN3D and

Serpent is illustrated in Fig. 5. The maximum error in a node (assembly layer) power is 2.4 %
and the RMS is 0.9 %.
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Fig. 5. Axial power distribution in assemblies #15 and #12.

An additional 2D case with inserted control rods was calculated: the same radial geometry
and materials as in the previous 3D case, but only one core layer in reflective axial boundary
conditions is modeled. The fuel assembly #15 contains control rod absorbers. Fig. 6 (left)
demonstrates the comparison of relative power distributions calculated by Serpent and
DYN3D.

Reference (keff = 0.9979
HEXNEMS (keff = 0.99878)
difference (d.keff = 85 pcm)

Reference (keff = 0.99792
HEXNEM3 (keff = 0.99880
difference (d.keff = 87 pcm)

single-assembly CR cross sections colorset CR cross sections
Fig. 6. Assembly power comparison for the two-dimensional rodded case.

The relative power error in the rodded assembly #15 is 2.8 %, which is significantly higher
than in unrodded assemblies. This error might be caused by XS generation approach — the XS
for rodded assemblies, as well as for unrodded, were produced in single assembly model in
periodic boundaries. To prove this point, the second set of XS for the rodded assembly was
produced in a colorset model with periodic boundaries, where the rodded assembly is
surrounded by unrodded (see Fig. 7). The XS of other materials were kept identical to the in
previous case. The DYN3D results using colorset-generated rodded XS are shown
in Fig. 6 (right). The relative power error in the rodded assembly #15 decreases to 0.5 %, and
the error distribution and magnitude are very similar to the 3D case in Fig. 4.

11



Fig. 7. Colorset model for a control rod.

Results for the 3D and 2D cases obtained by the three HEXNEM methods are compared with
Serpent reference solution in Table 1. HEXNEM2 and HEXNEM3 results are practically
identical, demonstrating very good agreement with the reference, while HEXNEMI results
are significantly worse. Average errors by all three methods for the X2 benchmark cases are
notably higher than those in numerical benchmarks since they also include errors of
homogenization, energy discretization and diffusion approximation. As it was demonstrated
in 2D case with different control rod cross sections (see Fig. 6), DYN3D results could be
further improved by more sophisticated homogenization technics. This is simiar to the
findings in XS creation procedure and application for fast reactor cores using the SERPENT-
DYN3D code chain (Nikitin et al., 2015; Nikitin et al., 2017).

1.4. Test cases summary

In all test cases both HEXNEM?2 and HEXNEM3 show much more accurate results than
HEXNEMI. In numerical benchmarks AER-FCM101 and 2D VVER-1000 type, where the
reference solution is obtained by a fine-mesh finite difference diffusion using benchmark-
defined cross sections, HEXNEM3 demonstrates notably better accuracy than HEXNEM?2.
The maximum error in relative assembly power is 0.4% and in nodal power 1.3%, which
could be described as perfect agreement with reference. On the other hand, in the X2
benchmark cases HEXNEM3 results are very similar to HEXNEM2. The reference solution
of the X2 problem is obtained by the continuous energy Monte Carlo code Serpent-2, so the
deviations of HEXNEM?2 and HEXNEM3 from reference are dominated by homogenization
and energy discretization errors. The maximum error in relative assembly power is 1.2% and
in nodal power 2.4%, which is a very good agreement with the reference.

4. Conclusions

The modified intranodal flux expansion method for two-dimensional hexagonal geometry
utilizes tangentially weighted fluxes and currents to couple neighboring nodes. The method
was implemented into the nodal diffusion code DYN3D under the name HEXNEM3 and
tested versus several benchmarks. In all test cases HEXNEMS3 results demonstrate
improvement over earlier versions of the nodal expansion method HEXNEMI and
HEXNEM?2. The calculation time by the HEXNEM3 method is similar or less than by

12



HEXNEM?2. Another advantage of HEXNEM3 over HEXNEM?2 is the simpler discontinuity
factors and boundary conditions definition, since no corner values are required.

The future work will be implementing and testing pin power reconstruction (Gomez et al.,
2014) with the HEXNEM3 method.
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Appendix A

The vectors of the relations (16) and (17) are

Ji

g,5,6

with the matrices P;S ,

cg,O

CgJ

Con

cg,3

Cg’4
C

8.5

g.m4

g.m,5

Q Q Q& Q Q& 9

g,m,6

(AL)

P’ consisting of maximum 6 different elements except for the sign

g.m

and the factor 2. The circulant matrices Q;ss, Qgi,Sm, Q;ims, Q:, have 2 or 4 different

g, mm

elements. The matrices P , Q have partly equal partly different symmetry as in the
HEXNEM?2 method described in (Grundmann and Hollstein, 1999).

+

8.5

15

+ +
pg,x,O 2pg,x,l O
+ + +
pg,_y,() pg,s,l pg,s,z
+ + +
pg,_y,() pg,_y,] pg,s,z
+ +
Peso — ng,s,l 0
+ + +
pg,s,O pg,s,l pgs
+ + +
pg,s,O pg,s,l pgs
+
0 0 2D ma
+ +
0 - pg,m,l pg,m,Z
+ +
0 - pg,m,l - pg,m,Z
+
0 0 - 2pg,m,2
+ +
0 pg,m,l - pg,m,Z
+ +
0 pg,m,l pg,m,Z
+ + +
qg,xs,l qg,xx,Z qg,m,S
+ + +
qg,ss,z Qg,ss,l Qg,ss,Z
+ + +
qg,ss,3 qg,ss,z qg,ss,l
+ + +
qg,sx,4 qg,m,S qg,m,Z
+ + +
qg,ss,3 qg,ss,4 Qg,ss,3
+ + +
qg,ss,z qg,ss,3 Qg,ss,4

+ +
pg,v 3 2pg,x,4 0
+ + +
pg,s 3 pg,s,4 pg,s,S
+ + +
pg,s 3 pg,s,4 pg,s,S
+ +
pg,x 3 2pg,x,4 0
+ + +
2 pg,_yj pg,s,él pg,s,S
+ + +
2 pg,s,3 pg,s,4 pg,s,S
+
0 0 2D ms
+ +
O - pg,m,4 - pg,m,S
+ +
O pg,m,4 - pg,m,S
+
0 0 2D ms
+ +
O - pg,m,4 - pg,m,S
+ +
O pg,m,4 - pg,m,S
+ + +
qg,m,4 qg,xx,S qg,xx,Z
+ + +
Qg,ssj Qg,ss,4 qg,ss,3
+ + +
Qg,ss,Z Qg,ssj Qg,ss,4
+ + +
qg,sx,l qg,m,Z qg,sx,S
+ + +
Qg,ss,Z qg,ss,l Qg,ss,z
+ + +
Qg,ssj Qg,ss,Z Qg,ss,l

(A2)

(A3)

(A4)



+ + + +
O qg,xm,Z qg,xm,S O - qg,xm,S - qg,sm,Z
+ + + +
- qg,sm,z 0 qg,sm,Z Qg,sm,3 0 - Qg,sm,3
+ + + +
+ _ - qg,sm,3 - qg,sm,Z O qg,sm,Z qg,sm,3 0 AS
g.sm 0 % % 0 + + ( )
qg,xm,S qg,sm,Z qg,xm,Z qg,xm,S
+ + + +
qg,sm,S 0 - qg,sm,3 - qg,xm,Z 0 qg,xm,Z
+ + + +
Qg,sm,z qg,sm,3 O - Qg,sm,3 - qg,sm,Z 0
The matrices Qg ., and Qg . as well as Qg ., and Qg .. are of equal symmetry. The product

of Q;,sm and Q‘;ms and the product of two matices of type Q> are of type Qgi’ss .The

g,588

multiplications of the matrices Qgi’ss and Q;‘r’sm are commutative. Therfore algebraic

operations can be applied and the vectors Ag,s, A, are obtained by using the eq. (16) and

8,m

(17) with the incoming partial currents

_pln- 71 -
Ag,s_R g,mmJg,s_Qg,sm g.m [ngm gs gsm gm]C )

(A6)
—1
Ag. ( anszgs+Qgsngnz+[ngs gs gss gm]C)
Die Matrix R is the inverse matrix of R.
R=(0;,0;,.-0;.9;,.) (A7)
R and the inverse R ' are of the type Q. .. With 4 different elements given by
l’i = q;,ss,lq;,mm,l + 2q;,ss,2q;,mm,2 + zq;,ssﬁq;,mmﬁ + q;,ss,4q;,mm,4
+ z(q;,sm,Zq;,m‘v,Z + Q;,xmﬁq;,m‘vﬁ)
r2 = q;,ss,lq;,mml + q;,ss,Z (q;mml + q;mm3 )+ q;,ss,3 (q;mmZ + q;mm4 )+ q;,ss,4q;,mm,3
+ q;’,xm,Z : Q;,m‘vﬁ + Q;,xmﬁ : q;,ms,Z
(A8)

r3 = qg,m,lqg,mmﬁ + qg,sx,Z (qg,mm,Z + qg,mm,4 )+ qg,sx,3 (qg,mm,l + qg,mm,3 )+ qg,sx,4qg,mm,2
- (qg,sm,Z : qg,ms,z + qg,sm,3 ' qg,ms,3)
r4 = Qg,xs,IQg,mmA + zqg,s‘v,qu,mm,S + 2qg,m,3qg,mm,2 + Qg,xs,4qg,mm,l

- 2(61;,%,261;,%,3 + q;,sm,aq;,ms,z)

The 4 elements I’k_1 of the inverse matrix R~ are obtained by algebraic operations or using a

computer algebra system. With the results of (A6) the expressions of the outcoming partial
currents are given by

Jo, =V, CAW, J W T .

8,58

(A9)
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Jen =Veulo ¥ W o =W e cn

&m-g
with
-1 -1
V Qg ssR (Qg mm gs - gsm gm)+Qg st (Qg ms gs gsng m)
(A10)
-1 -1
Vg,m g m Qg msR (Qg mm g s g sm g m )+Qg mmR (Qg ms g s g, sng m)
and
— -1- + -1 - _ -1 + -1y-
W ss Qg SSR g.,mm _Qg st 8> ms g sm Qg SSR g,sm _Qg,st 8,58
(A11)
— N+ -1- + -1- _ - -1 -
Wg,ms - Qg,msR Qg,mm _Qg,mmR Qg,ms , Qg mYR Qg sm Qg mmR 8,58
Based on the symmetries the matrices V, ;and Pi as well as V,, and Pg‘m are of equal
types. The types of W, W, are equal to Q; e and W, oW, to Qg .- The elements

are obtained from the algebraic operations of eqs. (A10) and (A11).

Appendix B

Weighting the flux expansion (3) with the polynomials (5) the integration over the hexagons
leads the relations for the updated coefficients cg '

CC+IA+IA. B1)

g.m 7 g.m

The elements of the matrices I, and I,, are results of the integrations

8,S g.m

”h (2 Zje ““dxdy bzw. —”h (x ()z)j( kr)e “dxdy . (B2)

F/u

The matrix I, is equal to the HEXNEM2 method.

g,5,0 g.5,0 g.5,0 g,5,0 g.5,0 g,5,0
2lg,s,1 lgsa Tlosa T 2lg,‘v 1 lgsa losi
0 i i 0 —i —i
g.8,2 g.8,2 g,8,2 g.5.2
I,=| . | | | | (B3)
& i i i i i i

8,53 8.s.3 g.s.3 85,3 g.s.3 8,8.3

21g,s,4 lg,s,4 - lg,s,4 21g,s,4 lg,s,4 - lg,s,4

0 logs  “legs 0 loos  —loys
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0 0 0 0 0 0
0 - lg,m,l - lg,m,l O lg,m,l lg,m,l
I _ 21g,m,2 lg,m,Z - lg,m,Z - 2’lg,m,2 - lg,m,Z lg,m,Z (B4)
& 0 0 0 0 0 0
0 - lg,m,4 lg,m,4 O - lg,m,4 lg,m,4
2lg,m,5 - lg,m,S - lg,m,S 2lg,m,5 - lg,m,S - lg,m,S

Replacing the vectors of the coefficients A, , A, with the help of formulas (A6) by the

n

incoming partial currents J, , J,, and the old polynomial coefficients C, eq. (B1) results

8.8
in
C; = M;Cg +H;SJ;’S +H;mJ;‘m (BS)
with
roo_ -1)- -1-
Hg,S - Ig,SR g.,mm - Ig,mR g.,ms
(B6)
r _ -1 - —1 =
Hg,m - Ig,mR 8,88 - Ig,sR g.,sm
M; =E —H;,SPg’,S —H;,mngm B7)

with the identity matrix E .The matrix H,  has the same structure as I,  and the structure of

roo. . r
H; isequalto I,, . The matrix M, has the structure

m, 0 0 my 0 0
0O m, 0 0 0 0
o 0o m, 0 0 0
M =| | o (B8)
my, 0 0 m, 0 0
o 0 0 0 m, O
o 0 0 0 0 my,

with only few elements obtained by algebraic operations.
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