
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Geostatistical Simulation of Geochemical Compositions in the Presence 
of Multiple Geological Units: Application to Mineral Resource Evaluation

Talebi, H.; Mueller, U.; Tolosana Delgado, R.; van den Boogaart, K. G.;

Originally published:

August 2018

Mathematical Geosciences 51(2018)2, 129-153

DOI: https://doi.org/10.1007/s11004-018-9763-9

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-27863

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1007/s11004-018-9763-9
https://www.hzdr.de/publications/Publ-27863


Geostatistical Simulation of Geochemical Compositions in the Presence 1 

of Multiple Geological Units - Application to Mineral Resource 2 

Evaluation 3 

Hassan Talebi1,  Ute Mueller1, Raimon Tolosana-Delgado2,  K. Gerald van den Boogaart2 4 

1School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, 5 

Australia, htalebi@our.ecu.edu.au, u.mueller@ecu.edu.au 6 

2Helmholtz Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resources 7 

Technology, Chemnitzerstrasse 40, D-09599 Freiberg (Saxony), Germany, 8 

r.tolosana@hzdr.de, boogaart@hzdr.de 9 

 10 

 11 

Abstract 12 

 13 

An accurate prediction of benefit in ore deposits with heterogeneous spatial variations requires 14 

the definition of geological domains that differentiate the types of mineralogy, alteration, and 15 

lithology as well as the prediction of full mineral and geochemical compositions within each 16 

modelled domain and across boundaries between different domains. This paper proposes and 17 

compares various approaches (different combination of log-ratio transformation, gaussian and 18 

flow anamorphosis, and deterministic or probabilistic geological models) for geostatistical 19 

simulation of geochemical compositions in the presence of several geological domains. 20 
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Different approaches are illustrated through an application to a nickel-cobalt laterite deposit 21 

located in Western Australia. Four rock types (Ferruginous, Smectite, Saprolite, and 22 

Ultramafic) are considered to define compositionally homogeneous domains. Geochemical 23 

compositions are comprised of six different components of interest (Fe, Al, Mg, Ni, Co, Filler). 24 

Results suggest that the flow anamorphosis is a vital element for geostatistical modeling of 25 

geochemical composition due to its invariance properties and capability for reproducing 26 

complex patterns in input data including: presence of outliers, presence of several populations 27 

(due to the presence of several geological domains), nonlinearity, and heteroscedasticity. 28 

 29 
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1 Introduction 34 

Ore deposits usually consist of ore materials with different characteristics. In order to maximize 35 

revenue in a mining project, a decision must be made regarding what processing plants are 36 

needed and the processing destinations of ore materials with different characteristics. For a 37 

better classification of ore materials, features such as rock type, alteration, microstructure, 38 

geochemical and mineral composition must be measured at sample locations and be predicted 39 

at the block model of the target deposit. These features normally have complex statistical and 40 

spatial relationships which should be reproduced in the predicted models (Boisvert et al. 2013; 41 

Maleki et al. 2016; Mery et al. 2017; Montoya et al. 2012; Mueller et al. 2014; Talebi et al. 42 

2017; Tolosana-Delgado et al. 2014; Tolosana-Delgado et al. 2015; van den Boogaart et al. 43 



2014). Among the different features of ore materials, mineral and geochemical compositions 44 

have a great impact on the final destination of materials and performance of processing plants. 45 

However, the compositional nature of these data induces several challenges for multivariate 46 

geostatistical techniques to predict them at the block support (Tolosana-Delgado et al. 2014; 47 

Tolosana-Delgado et al. 2015). Compositional data are multivariate, non-negative values 48 

which represent the importance of some parts of a whole. In such data, the constant sum 49 

constraint forces at least one covariance to be negative and induces spurious correlations. 50 

Furthermore, they carry just relative information (Aitchison 1986). To transform compositional 51 

data into unbounded space and to increase mathematical tractability, different log-ratio 52 

transformations can be applied prior to using standard (geo)statistical techniques (McKinley et 53 

al. 2016; Pawlowsky-Glahn and Egozcue 2016; Pawlowsky-Glahn et al. 2015; Pawlowsky-54 

Glahn and Olea 2004; Tolosana-Delgado and van den Boogaart 2013; van den Boogaart and 55 

Tolosana-Delgado 2013). Most of the multivariate geostatistical simulation techniques are 56 

based on the assumption of multivariate multigaussianity of the data. In real case studies, log-57 

ratio transformed data alone do not ensure this assumption, so the log-ratio transform has to be 58 

combined with a normal score transform prior to using geostatistical simulation techniques in 59 

order to not violate the assumptions of multigaussianity (Chilès and Delfiner 2012; Mueller et 60 

al. 2014). However, compositional data do not have a unique, canonical representation and 61 

several log-ratio transformations are available, making invariance of the simulated results 62 

under the choice of log-ratio transform desirable. Normal score transformations based on 63 

quantile matching do not have the invariance property and in addition the transformed data 64 

might not be multivariate normal. Flow anamorphosis (FA) has been designed to address these 65 

challenges, which means, it is capable of transforming original multivariate data to multivariate 66 

normal space and at the same time being invariant under the choice of log-ratio transform 67 

(Mueller et al. 2017; van den Boogaart et al. 2017). 68 



On the other hand, the heterogeneity of geological units in an ore deposit requires defining 69 

domains that differentiate various characteristics such as: types of mineralogy, alteration, 70 

lithology, and microstructures. Indeed, these geological domains control the ore characteristics. 71 

One can think of deposits in which the mean grades and patterns of spatial continuity depend 72 

upon the rock and/or alteration type. For example a porphyry copper deposit with high grades 73 

in potassic alterations surrounded by low grades in argillic and propylitic alterations (Talebi et 74 

al. 2013), presence of lately injected barren dykes of different sizes and orientations (Talebi et 75 

al. 2014), and spatial modelling of geological units in an uranium roll-front deposit (Renard 76 

and Beucher 2012). Currently, the most prevalent approach to model the uncertainty in the 77 

spatial distribution of the elements of interest is to divide the study area into subdomains 78 

(geological units) based on geological interpretation and to predict the variables of interest 79 

within each domain separately. This approach defines just one interpretation of the geological 80 

domains and does not offer any measure of the uncertainty in the position of the domain 81 

boundaries. This uncertainty can be evaluated by use of geostatistical simulation methods for 82 

categorical variables (Alabert 1987b; Armstrong et al. 2011; Mariethoz and Caers 2015). 83 

The objective of this contribution is to compare different approaches for geostatistical 84 

simulation of geochemical compositions to assess mineral resources in a nickel-cobalt laterite 85 

deposit. To evaluate the effect of geological domaining on the accuracy of the predicted 86 

geochemical compositions, three approaches are analysed: geological controls are ignored, a 87 

deterministic geological model is applied, and a probabilistic geological model is used (Talebi 88 

et al. 2016). The probabilistic geological model is calculated based on a plurigaussian (PGS) 89 

model (Armstrong et al. 2011; Emery 2007). An isometric log-ratio transformation (ilr) is used 90 

to transform compositional data from the simplex to real space (Egozcue et al. 2003). The ilr-91 

transformed data are transformed to normal scores and subsequently simulation is used to 92 

generate realisations at unsampled locations. Classical gaussian anamorphosis (GA) and flow 93 



anamorphosis are compared based on the accuracy of the predicted compositions, as well as 94 

their capability to reproduce complex statistical and spatial patterns present in the input data. 95 

The various approaches considered are illustrated through an application to a nickel-cobalt 96 

laterite deposit and their performances are evaluated against a set of validation boreholes. 97 

The paper is organised as follows: In Sect 2 the basics of the compositional data analysis are 98 

covered. Various log-ratio transformations used in this paper and transformation to multivariate 99 

normal space via flow anamorphosis are presented in this section. A new method for adjusting 100 

global proportion of geological domains is proposed in Sect 2.3. Various approaches for 101 

geostatistical simulation of regionalised compositions in the presence of several geological 102 

domains are presented in Sect 2.4.  In Sect 3 the case study (Murrin Murrin nickel-cobalt laterite 103 

deposit) is introduced and the dataset is presented. A compositional contact analysis is 104 

implemented in Sect 3.3. Section 3.4 presents the process of generating deterministic and 105 

probabilistic geological models via a plurigaussian simulation approach. In Sect 4 the results 106 

are presented and proposed methods are compared to each other based on several criteria. 107 

Finally, some conclusions and final thoughts are presented in Sect 5. 108 

 109 

2 Methodology 110 

2.1 Compositional Data Analysis 111 

Compositional data are multivariate data where the non-negative components are measured on 112 

the same scale and are constrained by a constant sum property, usually 100%. Geochemical 113 

and mineral compositions and proportions of various rock types or alteration types in a block 114 

are typical examples of compositional data in an ore deposit. The compositional space is a D-115 

dimensional simplex 116 



𝑆𝐷 = {𝑍(𝑢𝛼) = [𝑧1(𝑢𝛼), 𝑧2(𝑢𝛼),⋯ , 𝑧𝐷(𝑢𝛼)] | 𝑧𝑖(𝑢𝛼) ≥ 0;  𝑖 = 1,2,⋯ , 𝐷; 𝑢𝛼 ∈ 𝑨 ;∑𝑧𝑖(𝑢𝛼) = 𝑚

𝐷

𝑖=1

}, (1) 

 117 

where  𝑧𝑖(𝑢𝛼) represents the 𝑖𝑡ℎ component measured at location 𝑢𝛼 within the study area 𝑨. 118 

The number 𝑚 is the constant sum and common values are 1 (proportions), 100 (percentages), 119 

106 (ppm), and 109 (ppb). The constant sum constraint is known to induce problems of spurious 120 

correlation (see Aitchison (1982), for a detailed report). Compositional data carry just relative 121 

information, which is appropriately represented by taking log-ratio transformations (Aitchison, 122 

1986). Pairwise log-ratio transformation (Aitchison 1986), centred log-ratio transformation 123 

(Aitchison 1986), and isometric log-ratio transformation (Egozcue et al. 2003) are utilized in 124 

this study. Independently of which transform used, the resulting log-ratio scores happen to be 125 

free of the constraints of positivity and constant sum or of the spurious correlation problem, 126 

which make log-ratio scores more amenable to (geo)statistical treatment. The pairwise log-127 

ratio transformation (pwlr) is defined as follows 128 

 129 

𝑝𝑤𝑙𝑟 (𝑍(𝑢𝛼)) =

[
 
 
 
 
 
 
 0 𝑙𝑛 (
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0
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. (2) 
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 131 

The centred log-ratio transformation (clr), is calculated via the following formula 132 

𝑐𝑙𝑟 (𝑍(𝑢𝛼)) = 𝑙𝑛

(

 
𝑍(𝑢𝛼)

√∏  𝑧𝑖(𝑢𝛼)𝐷
𝑖=1

𝐷

)

 . (3) 
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 134 

Finally, ilr transformation is defined as follows 135 

 136 

𝑖𝑙𝑟 (𝑍(𝑢𝛼)) = 𝑉 ⋅ 𝑐𝑙𝑟 (𝑍(𝑢𝛼)), (4) 

 137 

 138 

where 𝑉 is a (𝐷 − 1) × 𝐷 matrix whose columns are pairwise orthogonal vectors and sums to 139 

zero. Each matrix 𝑉 satisfying these conditions give rise to an ilr transformation. There are 140 

infinitely many ilr transformations and often it is recommended to select one that increases the 141 

interpretability of the ilr scores. However, the aim of this study is to predict the geochemical 142 

compositions and model the associated uncertainty at unsampled locations accurately. Hence, 143 

a default orthonormal basis is used (Egozcue et al. 2003). The predicted compositions do not 144 

depend on the actual log-ratio transformation implemented for the computations (Tolosana-145 

Delgado 2006).  146 

 147 

2.2 Flow Anamorphosis 148 

The flow anamorphosis introduced by van den Boogaart et al. (2017) is a multivariate form of 149 

gaussian anamorphosis. In this method a kernel density estimate is deformed from the given 150 

multivariate density of the observations into the density of a standard multivariate normal 151 

distribution. Several statistical tests of multivariate normality can be applied to check the fit of 152 

the transformed data to normality (Korkmaz et al. 2014; Mardia 1970; Székely and Rizzo 2005; 153 

Székely and Rizzo 2013).  The fit is highly dependent on the selection of the two parameters 154 

of FA, 𝜎0  and 𝜎1 (initial and final spreads of the smoothing kernels of the kernel density 155 



estimates). Deformation of the underlying space is controlled by 𝜎0. The smaller the value, the 156 

closer the transformed data are to multivariate normality. Selecting a proper 𝜎0 is dependent on 157 

the number of variables (𝐷), sample size, and complexity of the input data (Mueller et al. 2017). 158 

On the other hand, 𝜎1 controls the ranges of the transformed distributions. In this study, in order 159 

to force the marginal distributions of transformed data to have standard deviations close to 160 

unity, 𝜎1 is selected as 𝜎1 = 𝜎0 + 1 (Mueller et al. 2017). Figure 1 shows the process of 161 

simulation via FA.  162 

[Fig. 1 about here.] 163 

  164 

Figure 1(a) depicts the scatter plot and marginal kernel smoothing density estimates of the input 165 

data with two simulated variables whose relationship is complex. The characteristics include 166 

the presence of some outliers, nonlinear relationships, several populations, and 167 

heteroscedasticity. Figure 1(b) and Fig. 1(c) show the co-deformation of the underlying space 168 

and final distribution of the transformed data respectively. The transformed data in multivariate 169 

normal space can be simulated (Fig. 1(d)) via many geostatistical algorithms (Alabert 1987a; 170 

Deutsch and Journel 1998; Emery 2008; Emery et al. 2016; Emery and Lantuéjoul 2006). 171 

Several experiences have shown that the FA-transformed data are not only multivariate normal 172 

but often also exhibiting lack of spatial cross-correlation which make the geostatistical 173 

simulation of such orthogonal factors, straightforward (Mueller et al. 2017; van den Boogaart 174 

et al. 2017). Otherwise, multivariate simulation or spatial decorrelation technique followed by 175 

univariate simulation could be implemented. The simulated results are back-transformed to the 176 

original space via FA−1. Figure 1(e) and Fig. 1(f) show the co-deformation back from simulated 177 

multivariate normal space to the original space and final distribution of the simulated data 178 

respectively. A visual comparison of these two plots shows that all the characteristics of the 179 

input the data are very well reproduced.  180 



 181 

2.3 Geological Domaining   182 

By constructing multiple spatial realisations of the geological domains, geostatistical 183 

simulation helps to improve the geological interpretation and to measure associated 184 

uncertainty. Several geostatistical methods for categorical variables can be used to this end. In 185 

the field of two-point geostatistics, PGS has gained popularity and proved to be suitable for   186 

reproducing complex configurations of geological domains without the need to define a 187 

training image. After simulating 𝐾 geological domains at each location 𝑢𝛼  in the study area 𝑨, 188 

local proportions of the simulated domains, (𝑞1(𝑢𝛼), 𝑞2(𝑢𝛼), … , 𝑞𝐾(𝑢𝛼)), can be calculated 189 

from the realisations. By assigning the geological domain 𝑘, (𝑘 = 1,2,⋯ , 𝐾), with the highest 190 

proportion to each location 𝑢𝛼  the most probable map is obtained. In this study, 𝐾 spatial 191 

proportion maps (associated with 𝐾 geological domains) and the most probable map are used 192 

as probabilistic and deterministic geological models respectively. It is known that the global 193 

proportions 𝑄⃗⃗ = (𝑞1, 𝑞2, … , 𝑞𝐾) of simulated domains in the most probable map might be 194 

different from the global proportions 𝑃⃗⃗ = (𝑝1, 𝑝2, … , 𝑝𝐾) of the domains in the input data. 195 

Some economically important domains might be under-represented. To reduce under-196 

representation of geological domains in the simulated geological model, it is common to post-197 

process the proportions. One such method is the Soares correction (Soares 1998) which restores 198 

the global proportions of the input data, but is known to lead to artefacts and does not take 199 

account of the location of the datum to be adjusted. The correction method proposed here is 200 

also based on the proportions of domains in the input data, but takes location into account by 201 

borrowing a technique from compositional data analysis. The local proportions at each location 202 

𝑢𝛼 in the simulated geological model are perturbed by putting  203 

 204 



𝑟(𝑢𝛼) = (𝑟1(𝑢𝛼), 𝑟2(𝑢𝛼), … , 𝑟𝐾(𝑢𝛼)) = (
𝑏1𝑞1(𝑢𝛼)

𝑅(𝑢𝛼)
,
𝑏2𝑞2(𝑢𝛼)

𝑅(𝑢𝛼)
, … ,

𝑏𝐾𝑞𝐾(𝑢𝛼)

𝑅(𝑢𝛼)
). (5) 

 205 

Here 𝑟(𝑢𝛼) is the vector of perturbed proportions at location 𝑢𝛼,  𝑅(𝑢𝛼) = ∑ 𝑏𝑘
𝐾
𝑘=1 𝑞𝑘(𝑢𝛼), 206 

and finally (𝑏1, 𝑏2, … , 𝑏𝐾) = (
𝑝1

𝑞1
,
𝑝2

𝑞2
, … ,

𝑝𝐾

𝑞𝐾
). The resulting new local probabilities 207 

(𝑟1(𝑢𝛼), 𝑟2(𝑢𝛼), … , 𝑟𝐾(𝑢𝛼)), form the new probabilistic model of geology and can be used to 208 

determine the adjusted most probable map of geological domains. 209 

 210 

2.4 Approaches to Geostatistical Simulation of Compositional Data  211 

In this study several scenarios are investigated to assess the effects of geological models and 212 

transformation to normal space on the geostatistical simulation of geochemical compositions. 213 

Selected approaches to incorporate geological information are as follows: prediction without 214 

geological control, prediction by using a deterministic geological model, and prediction by 215 

using a probabilistic geological model. GA (Wackernagel 2003) and FA algorithms are 216 

compared to assess the effect of transformation to normal space and subsequent back-217 

transformation on the spatial simulation of regionalised compositions.  218 

In the first (M0) and second (M1) proposed methods there is no geological control (Table 1). 219 

In these two scenarios all input compositions (without considering a geological domain 220 

partition of the deposit) are transformed to real space via an ilr transformation and subsequently 221 

to normal space via GA and FA, respectively. If the normal scores are spatially correlated, they 222 

are transformed to spatial orthogonal factors via Min/Max autocorrelation factors (MAF), 223 

(Bandarian et al. 2008; Desbarats and Dimitrakopoulos 2000; Rondon 2012; Switzer and Green 224 

1984). This orthogonalization makes the simulation step more straightforward. However, 225 

normal scores obtained via FA are normally spatially orthogonal and independent (Mueller et 226 



al. 2017; van den Boogaart et al. 2017). The normal scores (or MAFs) are simulated 227 

independently at the simulation grid (in this case all the locations of the validation data) via 228 

turning bands (TB) technique (Emery and Lantuéjoul 2006). The simulated results are back-229 

transformed to the original space afterwards. 230 

In the simulation via a deterministic geological model (M2) input compositions are divided into 231 

several subsets based on their associated geological domains. Compositions in each subset are 232 

transformed to ilr space and subsequently transformed to multivariate normal space via FA. 233 

The simulation grid is also divided into mutually exclusive and exhaustive domains based on 234 

the most probable rock types (deterministic geological model) achieved by a PGS model. 235 

Normal scores from each subset are simulated at the associated part of the simulation grid. 236 

Finally simulated results at each part of the simulation grid are back-transformed to the original 237 

space independently.  238 

The last proposed method (M3) is geostatistical simulation of geochemical compositions using 239 

a probabilistic geological model. In this case input compositions are divided into subsets based 240 

on their associated geological domain. Compositions in each subset are transformed to ilr space 241 

and subsequently transformed to multivariate normal space via FA. Normal scores from each 242 

subset are simulated on the entire simulation grid and back-transformed to the original space 243 

independently. This process provides several sets of simulated geochemical compositions 244 

associated with the geological domains. Final simulated compositions can be obtained via 245 

weighting the simulated compositions associated with the different domains by the local 246 

probabilities of occurrence of each domain (Emery and González 2007a; Emery and González 247 

2007b; Talebi et al. 2015)  248 

𝑍⃗(𝑢𝛼) = ∑ 𝑞𝑘(𝑢𝛼)

𝐾

𝑘=1

𝑍⃗𝑘(𝑢𝛼), (6) 



 249 

where 𝐾 is the number of classes (geological domains), 𝑞𝑘(𝑢𝛼) is the probability of geological 250 

domain 𝑘 at the location 𝑢𝛼  calculated by a PGS model, and 𝑍⃗𝑘 is the simulated composition 251 

associated with geological domain 𝑘. The final simulated vector 𝑍⃗(𝑢𝛼)  is still a composition 252 

because  253 

∑𝑧𝑖(𝑢𝛼)

𝐷

𝑖=1

= ∑ ∑ 𝑞𝑘(𝑢𝛼)

𝐾

𝑘=1

𝑧𝑖
𝑘(𝑢𝛼)

𝐷

𝑖=1

= ∑ 𝑞𝑘(𝑢𝛼)∑𝑧𝑖
𝑘(𝑢𝛼)

𝐷

𝑖=1

𝐾

𝑘=1

= ∑ 𝑞𝑘(𝑢𝛼)𝑚

𝐾

𝑘=1

= 𝑚. (7) 

 254 

Finally methods based on a deterministic model of geology (M2) and a probabilistic model 255 

(M3) are repeated with the corrected deterministic (M2c) and probabilistic (M3c) models. The 256 

correction is based on the method described in Sect 2.3. Table 1 provides a summary of the 257 

proposed methods.  258 

[Table 1 about here.] 259 

 260 

 261 

 262 

3 Case Study: Murrin Murrin Nickel-Cobalt Laterite Deposit 263 

Murrin Murrin East (MME) is a nickel-cobalt laterite deposit located in Western Australia, at 264 

about 60 km southeast of Laverton and at an average elevation of approximately 420 metres 265 

above mean sea level. The orebody is approximately 1,500 meters long, 600 meters wide, and 266 

30 meters thick. Figure 2 shows a satellite image of the orebody together with the location of 267 

the boreholes.  268 



 269 

[Fig. 2 about here.] 270 

 271 

 272 

3.1 Geological Description  273 

Laterite deposits are formed during chemical weathering of ultramafic rocks near the surface 274 

of the earth. At MME, nickel laterite deposits occur as laterally extensive, undulating blankets 275 

of mineralisation with strong vertical trends covering basement ultramafic rocks (Murphy 276 

2003). Proximity of the deposit to a major salt lake probably influenced the development of the 277 

regolith (Markwell 2001). Based on the geochemical interpretation and the logging information 278 

from geologists, lateritic weathering of the ultramafic rocks at MME has produced a profile 279 

that may be broadly divided into four geological units (Camuti and Riel 1996; Markwell 2001; 280 

Monti and Fazakerley 1996). The sequence of these units from the bottom to the top is as 281 

follows: (i) ultramafic rocks (UM) at the base of weathering overlain by (ii) a Saprolite zone 282 

(SA) overlain by (iii) a Smectite zone (SM) and finally capped by (iv) a Ferruginous zone (FZ, 283 

Fig. 3(b)). UM occurs as a thin layer of unweathered ultramafic rock at the base of the deposit. 284 

Due to the undulating nature of different layers in this deposit, some outcrops of UM can be 285 

recognized at the surface of the deposit.  SA consists mainly of Lizardite and Smectite. SA is 286 

enriched in Mg, but low amounts of Fe are present in this zone. A strong contrast between Mg 287 

in SM and SA allows easier domaining of the two units (Markwell 2001). SM consists mainly 288 

of Smectite and is confined to the shoulders of Saprolite domes. SM is enriched in Ni and Co 289 

(Fig. 3) and depleted in Mg. FZ is composed predominantly of Goethite, Kaolin, and 290 

Maghemite. FZ is less enriched in Ni, but it can host significant amounts of Co, especially at 291 

the transition to the Smectite zone (Fig. 3).  292 



Table 2 shows the mineral assemblage in each geological unit at MME, obtained from several 293 

representative samples (Markwell 2001). 294 

[Table 2 about here.] 295 

 296 

 297 

3.2 Dataset 298 

In total, 17,512 samples (of 1 meter length) from 926 RC holes (Fig. 2) make up the database 299 

for this study. Four rock types (FZ, SA, SM, and UM) are considered to define compositionally 300 

homogeneous domains. Three major (Fe, Al, and Mg) and two target (Ni and Co) elements are 301 

the variables of interest in this study. Since the data are compositional, a filler variable is 302 

introduced to achieve closure and to retain the intuitive relationship between each component 303 

and the mass of its associated element. The data set was subdivided into two subsets: 453 holes 304 

(8,694 samples) are considered for validation and 473 holes (8,818 samples) for geostatistical 305 

modelling, called input data from hereon. The input data are used for constructing the various 306 

geostatistical models. Locations of the validation and input boreholes can be seen in a cross 307 

section of the deposit for northing 300m (Fig. 3(a)). Figure 4 depicts the histograms of different 308 

geochemical components in the validation and input sets. Figure 5 shows centred ternary 309 

diagrams (Buccianti et al. 1999; Pawlowsky-Glahn et al. 2015) of the sub-compositions. In this 310 

case study geochemical compositions are composed of different populations. The multi-311 

population character is consistent with the presence of four geological units (Fig. 4 and Fig. 5). 312 

These geological units control the statistical and spatial distribution of the geochemical 313 

compositions. Figure 6 shows the vertical curves of the rock type proportions and clr-314 

transformed of the geochemical components.  315 



There is a zoned weathering profile (Fig. 6), in which Mg as a mobile element effectively has 316 

been removed while Fe and Al, as less mobile elements, have been enriched residually in the 317 

Ferruginous zone. On the other hand, Co (one of the value elements), has been accumulated at 318 

the transition between Ferruginous and Saprolite zones (Talebi et al. 2017) where Smectite 319 

units are mainly located. Finally, the Smectite and Saprolite zones between fresh (ultramafic 320 

parent rock) and weathered zones (Ferruginous zones), have been enriched in Ni (the other 321 

value element). Figure 7 shows the scatterplots of the clr-transformed components. Complex 322 

relationships (nonlinearity, multi-population, and presence of outliers) can be recognised 323 

between different components. Based on the vertical curves (Fig. 6) and the scatterplots of the 324 

clr-transformed components (Fig. 7), Al-Fe, Ni-Co, and Mg-Ni are positively correlated. On 325 

the other hand, Al-Mg, Al-Ni, Co-Filler, Fe-Mg, Ni-Filler, are in terms of their clrs negatively 326 

correlated. From Fig. 4 to Fig. 7, it is clear that the validation and input sets are statistically 327 

and spatially similar. 328 

 329 

[Fig. 3 about here.] 330 

[Fig. 4 about here.] 331 

[Fig. 5 about here.] 332 

[Fig. 6 about here.] 333 

[Fig. 7 about here.] 334 

 335 

 336 



3.3 Compositional Contact Analysis 337 

In order to evaluate the variation of the variables of interest at the transition zone between two 338 

geological domains, a contact analysis was conducted. To do this, statistics of the variables of 339 

interest such as means and standard deviations are plotted as functions of distance from the 340 

contact zone (Ortiz and Emery 2006). However, compositional data have spurious correlations 341 

and real variation in one component might cause apparent variations in others, so contact 342 

analysis of raw components should be avoided (Tolosana-Delgado et al. 2016). Although log-343 

ratio transformed data can be treated as real data and compositional contact analysis can be 344 

implemented on the clr-transformed data, contact analysis of the pwlr-transformed data 345 

provides the geologists with an enriched view of the variations at the contact zone. Figure 8 346 

shows the compositional contact analysis between the two dominant rock types, FZ and SA. 347 

Diagrams in the last row and last column show means and standard deviations as functions of 348 

the distance from the contact zone for the clr-transformed data and raw components 349 

respectively while the remaining diagrams show those of the pwlr-transformed data 350 

(row/column).   351 

 352 
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 354 

 355 

A comparison of the contact diagrams of the raw components with the associated clr-356 

transformed ones shows that the behaviour of the means at the transition zone has been 357 

exaggerated unrealistically in the raw contact analysis. Except for Filler which shows different 358 

behaviour in the clr plot, other components show similar behaviour in raw and clr analysis. Al, 359 

Fe, and Mg show abrupt transitions (variation of means as a function of distance) while the 360 



local variations are stable (standard deviations as a function of distance). All the diagrams of 361 

the Co (raw, clr, and pwlr) show an increase of the mean and the standard deviation 362 

(proportionality effect) at the transition zone. The reason for this behaviour would be the 363 

presence of Smectite units at the transition from Ferruginous to Saprolite zone, not recognised 364 

during logging (Smectite units are enriched in Co). Pairwise log-ratio of the Co/Ni and Al/Fe 365 

means and standard deviations are stable across geological units. The results suggest that these 366 

two geological domains (FZ and SA) can be considered as stationary for some subcompositions 367 

such as Al and Fe, but domaining would be necessary for other subcompositions or ratios, for 368 

example Mg and Ni. Similar assessments were conducted on the other contacts between the 369 

four geological domains and results supported the necessity of domaining. Given the results of 370 

compositional contact analysis and statistical analysis of compositional data in Sect 3.2, it is 371 

reasonable to partition the study area to four homogeneous geological units (four rock types) 372 

prior to geostatistical modelling.   373 

 374 

3.4 Deterministic and Probabilistic Geological Models  375 

The geological domains (rock types) for the validation data were simulated via a plurigaussian 376 

model (Armstrong et al. 2011). Overall 100 realisations were generated and used to determine 377 

the probability of occurrence for each rock type (Fig. 9(b) to Fig. 9(e)) and the most probable 378 

rock type (Fig. 9(f)). Proportions of the rock types in the most probable map (Table 3) show 379 

that, under-representation of the SM has occurred. Since SM units are highly mineralised in 380 

Co, prediction of these units with high accuracy is of great importance. The method described 381 

in Sect 2.3 was used to adjust the proportions of geological domains in the simulated models.  382 

The last column in Table 3 shows the adjusted proportions in the most probable rock type map, 383 

demonstrating an improvement in the proportion of the SM units. Figure 9(g) to Fig. 9(j) show 384 



cross-sections of the validation boreholes, coloured by the adjusted probabilities, for northing 385 

300m. A visual comparison of Fig. 9(c) and Fig. 9(h) indicates a clear improvement in the 386 

proportion of the SM units, more representative of reality (Fig. 9(a)).  387 

 388 
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 393 

 394 

 395 

4 Results and Discussion 396 

Figure 10 shows the histograms and scatterplots (coloured by kernel density estimate) of the 397 

ilr-transformed input data. As the ilr-transformed data (in this study) are not multivariate 398 

normal (Fig. 10), a transformation to normal space is needed prior to geostatistical simulation.  399 

Transformation of ilr transformed data into normal space in M0 was based on GA. Figure 11 400 

shows the scatterplots of the normal scores obtained by GA. Although the marginal 401 

distributions are normal, the scores are not multivariate normal. An analysis of the 402 

omnidirectional experimental semivariograms and cross-variograms further revealed that these 403 

normal scores are spatially correlated, with Tercan’s 𝜏̅ and 𝜅̅ (Tercan 1999) equal to 0.1973 404 

and 0.8147, respectively. To make the simulation step more straightforward, normal scores 405 

data were transformed to spatially orthogonal factors via MAF.  MAF transformation improved 406 

spatial orthogonality with 𝜏̅ and 𝜅̅ equal to 0.0782 and 0.9689, respectively. Orthogonal factors 407 



were simulated at the entire validation holes via the TB algorithm. The simulated results were 408 

back-transformed to the simplex afterwards to recover outputs in the original scale as 409 

percentages.  410 

On the other hand, M1 transforms the ilr-transformed data to multivariate normal space via FA. 411 

Due to the complexity of the data and the number of the observations and variables, 412 

multivariate normality was not achieved by a single FA. Two successive FA with the same 413 

parameters (𝜎0 = 0.1 and 𝜎1 = 1.1) were required to achieve multivariate normality. Figure 12 414 

shows the normal scores are obviously close to multivariate normal and uncorrelated, so 415 

statistically independent. Spatial structural analysis (variography) showed further that the 416 

normal scores are spatially orthogonal, with Tercan’s 𝜏̅ and 𝜅̅ equal to 0.0656 and 0.9873, 417 

respectively, so they could be simulated independently. The scores were simulated at the 418 

validation holes independently via TB algorithm and back-transformed to composition 419 

afterward.  420 
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 424 

 425 

For simulation based on a deterministic geological model input compositions were divided into 426 

four subsets based on their associated rock types (FZ, SM, SA, and UM). Compositions in each 427 

subset were transformed to ilr space and subsequently transformed to multivariate normal space 428 

via FA independently. The validation holes were also divided into four mutually exclusive and 429 

exhaustive parts based on the most probable rock types (Fig. 9(f)) and the corrected most 430 

probable rock types (Fig. 9(k)), provided the simulation grids for M2 and M2c respectively. 431 



Normal scores from each subset (for example, flow anamorphosed FZ data) were simulated at 432 

the associated part of the simulation grid (for example, locations in the validation holes with 433 

the most probable rock known as FZ). Finally simulated results for each domain were back-434 

transformed to the original space independently.  435 

Unlike the deterministic approaches (M2 and M2c), in the probabilistic approach normal scores 436 

from each subset of input compositions were simulated at the entire simulation grid. This 437 

process provided four sets of simulated geochemical compositions associated with the four 438 

geological domains (FZ, SM, SA, UM). Final simulated compositions obtained by weighting 439 

the simulated compositions associated with the different domains by the probabilities of 440 

occurrence of each domain (Eq. 6). Two sets of probabilities are available, the raw probabilities 441 

(Fig. 9(b) to Fig. 9(e)) obtained by the PGS model (M3) and adjusted probabilities (M3c) 442 

obtained by the proposed correction method in Sect 2.3 (Fig. 9(g) to Fig. 9(j)).  443 

The simulated compositional models based on the six proposed approaches were validated 444 

against reality available at the validation boreholes (Fig. 3(a)). Figure 13 shows the global 445 

histogram reproduction of the six methods. Best realisations were achieved by M1 followed by 446 

M2c. Visual comparison of histogram reproduction of M2 and M2c reveals that adjusting 447 

proportions (Sect 2.3) has improved the histogram reproduction especially for Co component. 448 

Worst reproductions were achieved by M0.   449 

[Fig. 13 about here.] 450 

 451 

 452 

To check the ability of the methods to reproduce the complex patterns in the simplex space, 453 

ternary diagrams were plotted and compared to each other (Fig. 14). Due to the averaging 454 

nature of M3 and M3c, different populations have been mixed up, which is not acceptable. On 455 



the other hand, M0 was not able to reproduce different populations and complex patterns inside 456 

the simplex space. Here, M1 generated the best results followed by M2 and M2c.    457 

The smoothing effect of the M3 and M3c is more obvious from the experimental variograms of 458 

the simulated models (Fig. 15). In Fig. 15 continuous black lines are input data, dashed black 459 

lines are validation data and grey lines are realisations. The sills of the variograms for one of 460 

the simulated component (Ni) are systematically less than the sills for input and validation data, 461 

representing a systematic reduction of the spatial variability. Adjusting probabilities of 462 

geological domains has improved the variogram reproduction for the deterministic approaches 463 

(compare M2 and M2c).  464 

Risk quantification in grade-tonnage curves (GTC) and predicting true curves are critical for 465 

feasibility studies and capital investment in mining projects. The accuracy of the six methods 466 

was investigated based on their capability for reproducing input GTCs and predicting true 467 

(validation data in this study) GTCs. Figure 16 and Fig. 17 show the GTCs for Ni and Co 468 

components respectively. The smoothing effect of the M3 and M3c is again clear from the GTCs 469 

of both Ni and Co. Comparing GTCs of M2 and M2c, an improvement can be recognised due 470 

to the implementation of the proposed technique for adjusting underrepresented domains. 471 

GTCs for Co component generated by M0 is not acceptable. M1 generated the most satisfactory 472 

results followed by M2c.  473 

Finally, the six proposed methods were compared to check the presence of any systematic bias 474 

in the predicted proportions of samples above cut-offs (Fig. 18). In multi-element deposits, 475 

there are more than one target elements (in this study two target elements: Ni and Co). In Fig. 476 

18, each cell of the maps is associated with two cut-offs (one for Ni and one for Co).  For each 477 

cell the expected proportion of samples above the two cut-offs were calculated from all 478 

realisations and subsequently subtracted from the real associated proportion calculated from 479 



validation data. These maps can be compared to show the capability of the proposed methods 480 

for avoiding any serious bias (over or underestimations of ore tonnages). M0, M3, and M3c 481 

show clear systematic over and underestimations in some range of cut-offs. In this regard, M1 482 

generated the best (least bias) results, followed by M2c. 483 

According to the aforementioned criteria, M1 outperformed other proposed techniques for 484 

geostatistical simulation of geochemical compositions. One reason is that M1 considers spatial 485 

correlations of geochemical components across geological boundaries. More important reason 486 

is the ability of geostatistical simulation via FA to reproduce multi-population characteristic of 487 

the input data which is consistent with the presence of several geological units.     488 

    489 
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 496 

5 Conclusion  497 

This paper compares various geostatistical approaches for simulation of geochemical 498 

compositions and their application to mineral resource evaluation. Results and several 499 

validation tests showed that the classical transformation to normal space (gaussian 500 

anamorphosis) is not capable of reproducing complex statistical patterns inside data and should 501 

be replaced with more advanced transformations. The method for modelling geochemical 502 



compositions based on a probabilistic geological model exhibits smoothing effects due the 503 

averaging nature of the algorithm. Although this method generates satisfactory results for 504 

kriged maps (Emery and González 2007a; Emery and González 2007b; Talebi et al. 2015), it 505 

should be avoided for simulation purposes. The proposed technique for adjusting 506 

underrepresented domains improved the result of simulation and should be used in the cases 507 

where there are important geological domains with small proportions such as SM in this case 508 

study. Flow anamorphosis is a vital element for geostatistical modelling of geochemical 509 

composition due to its invariance properties and capability for reproducing complex patterns 510 

in data such as: outliers, multi-population, nonlinearity, and heteroscedasticity. In the case 511 

study presented, a simulation involving a global flow anamorphosis without domaining was 512 

best capable of reproducing all performance targets (histograms, variograms, grade and 513 

tonnage curves). In the authors’ opinion, this remarkable property might occur again in other 514 

settings in which domains emerge as the effect of chemical processes mostly involving the 515 

composition modelled. 516 
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Fig. 7 Scatterplots of clr-transformed geochemical components (upper triangle is input and lower triangle is 801 
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Fig. 8 Compositional contact analysis for two dominant geological domains (FZ and SA). Mean values and 811 

standard deviations are represented by continuous and dashed lines respectively (black for input set and red for 812 

validation set)   813 
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Fig. 9 Cross sections of validation boreholes for northing 300m and 50m thickness. a) true rock types. b) to e) 821 
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Fig. 10 Histograms and scatterplots of ilr-transformed input data (coloured by kernel density estimate) 836 
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Fig. 13 Histogram reproduction of the six proposed methods for simulation of geochemical compositions. 853 
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Fig. 14 Ternary diagrams of input and validation data (three components: Ni, Co, Fe), and one realisation 863 
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Fig. 15 Experimental variogram reproduction (Ni component) of the six proposed methods in vertical (short range) 870 

and horizontal (long range) directions.  871 
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Fig. 16 Grade-tonnage curves (for Ni component) of the six proposed methods. Continuous black lines are the 873 

proportion of samples above Ni cut-offs while continuous red lines are the average grades for input data. Dashed 874 

lines are for validation data while grey lines are different realisations. 875 
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Fig. 18 The difference between the expected proportions above cut-offs (Ni and Co), calculated from realisations, 882 
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Table 1 Proposed methods and the related features 916 

Code 

Geological 

control 

Adjust 

proportions 

Transform 

to real space 

Transform 

to normal 

Factorization 

Spatial 

simulation 

M0 

No geological 

control 

- ilr GA MAF TB 

M1 

No geological 

control 

- ilr FA - TB 

M2 

Deterministic 

geological model 

- ilr FA - TB 

M2c 

Deterministic 

geological model 

✓ ilr FA - TB 

M3 

Probabilistic 

geological model 

- ilr FA - TB 

M3c 

Probabilistic 

geological model 

✓ ilr FA - TB 
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Table 2 Ore mineralogy of different geological units at MME 924 

Geological unit Kaolin Goethite Hematite Maghemite Chlorite Smectite Lizardite 

FZ <50% <50% < 10% <50% - - - 

SM <2% < 10% <2% <2% < 10% >75% <2% 

SA - < 10% <2% <2% <2% <50% <50% 

UM - - - - - - - 
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Table 3 Proportions of rock types 939 

 Validation Input Most probable map Most probable map (adjusted) 

FZ 0.352 0.367 0.417 0.376 

SM 0.092 0.068 0.027 0.084 

SA 0.485 0.486 0.479 0.462 

UM 0.071 0.079 0.077 0.078 
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