Institute of Radiation Physics

Radiation Source ELBE

The attempt of using GaN as a photocathode in SRF Gun II

Jana Schaber
Helmholtz Zentrum Dresden-Rossendorf
j.schaber@hzdr.de
www.hzdr.de

HELMHOLTZ
| ZENTRUM DRESDEN
| ROSSENDORF

Introduction

Setup SRF Gun II

Core: 3.5 cell Nb cavity

cooled down at 2 K with liquid helium, low electrical losses & cw mode

SC solenoid

cooled down at 2 K, reduces the emittance

UV laser

illuminates the photocathode, max. power is 1 W

Development of photocathode plays an important role:

- Copper: used for demonstration of the working cavity and the first commissioning (QE of 10⁻⁵ with a bunch charge of several pC)
- Magnesium: mostly used for medium bunch charges of hundreds of pC (QE of 10⁻³ after cleaning)
- Cs₂Te: preparation and vacuum requirements are more complicated and higher (QE of 10⁻²)

Introduction

Photocathodes

Property [Unit]	K ₂ CsSb	Cs ₂ Te	GaAs	Cu	Mg	GaN
harmonic	2	4	2	4	4	3
λ [nm]	532	266	532	266	266	365
QE [%]	8	5	5	1.4E-2	0.5	~40
lifetime [hours]	4	> 100	58	> 1 year	> 1 year	several years (not in gun)
temporal response [ps]	prompt	prompt	< 40	prompt	prompt	prompt
vacuum tolerance	poor	very good	poor	excellent	excellent	excellent

Drive laser: Nd:YAG, output at 1064 nm

Mg

Introduction to the physics of electron emission, K.L.Jensen, 2017, p. 444 f.
Bazarov, Ivan V. et al. 2009. "Thermal Emittance and Response Time Measurements of a GaN Photocathode."
Journal of Applied Physics 105(8).

Research on III-Nitrides

- high relevance for industry
- very good thermical, mechanical and electrical properties
- direct band gap: range from red to UV

- especially used for short-wavelength devices in UV range (LEDs or LDs)
- based on thin semiconductor films with a large band gap
 - → avoiding structural and point defects

Focus on GaN

Properties of GaN

- direct semiconductor
- band gap of 3.37 eV @ 300 K
- Wurtztite structure:

 (hexagonal closed crystal structure: atoms have 4 neighbours
 (tetrahedrally coordinated)
 →alternating bilayers of Ga and N in c-direction (ABAB)

Applications of GaN

- Light emitting diodes (LEDs)
- Laser diodes (LDs)
- UV detectors
- Data storage (Blu-Rays)

GaN used as a photocathode

- substrate: sapphire, Si, SiC or metal
- high QE (~ 40%, up to 70%)
- working wavelength range of 150 nm²400 nm
- low thermal emittance and fast response
- negative electron affinity (NEA)
 - → cesium lowers the conducting band minimum below the vacuum level
- High robustness: resitant to vacuum contamination
- Good storage: ~3 years under nitrogen atm.

GaN(Mg)
GaN
AIN
Sapphire

Siegmund, O. et al. 2006. "Development of GaN Photocathodes for UV Detectors." 567:89–92.

Machuca, Francisco et al. 2011. "Prospect for High Brightness III – Nitride Electron Emitter Prospect for High Brightness III – Nitride Electron Emitter." 3042(2000):1–6.

GaN band structure

- Band gap of 3.4 eV → Laser wavelength of 365 nm
- (a) Mg GaN (Cs): Mg doping rate of 10¹⁶cm⁻³ (minimum) to 10¹⁹cm⁻³ (maximum) shift of vacuum level to lower energy than CB

 NEA: electron excite over the band gap and easily enter into vacuum
- (b) undoped GaN (Cs): high potential barrier, electrons cannot leave the surface

<u>Problem of high doping:</u> many trap sites and recombination centers

Setup PVD for GaN at University Siegen

Courtesy of M. Sc. M. Schumacher

- coating chamber: samples/substrate can be cleaned utilizing an ion gun (H⁺, He⁺ or Ar⁺)
- latter is done by sputtering cluster (In, Mg, Ti, GaAs as Ga source)
- last chamber: activation of sample and QE measurement

First activation treatments

- made on a sample of 10¹⁷-level p-doped GaN grown on sapphire
- only cesium (SAES Cs-tube) is used in the test to achieve the NEG surface
- background vacuum is usually 2•10⁻⁹ mbar in the small test chamber
- during the heat treatment at~700°C: vacuum droped down to 2•10⁻⁶ mbar
- After heating: stable again at 5-6•10⁻⁹ mbar, also during activation process

GaN on sapphire

- 710°C seems suitable for the heat cleaning of GaN
- 5% is the best QE in the activation tests on the same sample

First activation treatments

- thermal cleaning of the surface (710°C: oxides disappear)
- cathode has to cool down on room temperature
- applying a Cs layer with a Cs dispenser
- QE is controlled via laser during the preparation

OnGoing work- GaN(Cs)

OnGoing work- GaN(Cs)

Focus on GaN

OnGoing work- GaN(Cs)

Sample changement

→ easy handling

Combination of activation chamber with SEM/EDX

- → easy measurement of activated GaN
- → detect contaminations/ lattice impurities

OnGoing work

open questions???

- proper substrate material and its influence
- thermal emittance
- field emission from NEA surface
- chemical stability under intensive laser

Summary and Outlook

- Characterization and comparison of commercial available GaN wafer (surface parameters, depth profile, elemental mapping, cleaning process, QE)
- Activation of GaN wafer with Cs and characterization of activated GaN
- Comparision to GaAs & selfmade sputtered GaN (Uni Siegen)
- Last phase: test in SRF Gun II as a photocathode for high brightness beam

Thank you for your attention!

Thanks to the ELBE team

J. Teichert, R. Xiang, P. Michel, A. Arnold, P. Murcek, P. Zwartek, M. Freitag, R. Steinbrück

and to our co-workers and partners

Universität Siegen Johannes Gutenberg-Universität Mainz DESY H7B

