Institute of Radiation Physics

Radiation Source ELBE

The attempt of using GaN as a photocathode in SRF Gun II

Jana Schaber
Helmholtz Zentrum Dresden-Rossendorf
j.schaber@hzdr.de
www.hzdr.de

Introduction

Setup SRF Gun II

Core: 3.5 cell Nb cavity

cooled down at 2 K with liquid helium, low electrical losses & cw mode

SC solenoid

cooled down at 2 K, reduces the emittance

UV laser

illuminates the photocathode

Development of photocathode plays an important role:

- copper: used for demonstration of the working cavity and the first commissioning (QE of 10⁻⁵ with a bunch charge of several pC)
- magnesium: mostly used for medium bunch charges of hundreds of pC (QE of 10⁻³ after cleaning)
- Cs₂Te: preparation and vacuum requirements are more complicated and higher (QE of 10⁻²)

Research on (new) material

Properties of GaN

- direct semiconductor
- band gap of 3.37 eV @ 300 K
- Wurtztite structure:
 →alternating bilayers of Ga and N
 in c-direction (ABAB)
- mostly on sapphire substrate or others

Applications of GaN

- Light emitting diodes (LEDs)
- Laser diodes (LDs)
- UV detectors
- Data storage (Blu-Rays)

Focus on Research on GaN

GaN band structure

- Band gap of 3.4 eV → Laser wavelength of 365 nm needed
- (a) Mg GaN (Cs): Mg doping rate of 10¹⁶cm⁻³ (minimum) to 10¹⁹cm⁻³ (maximum) shift of vacuum level to lower energy than CB

 NEA: electron excite over the band gap and easily enter into vacuum
- (b) undoped GaN: high potential barrier, electrons cannot leave the surface

Problem of high doping: many trap sites and recombination centers

Cleaning of GaN

Untreated GaN

→ Roughness between 1.4 to 1.7 nm

→ not sensitive enough

after 4-6 hours on air

Cleaning of GaN wafer pieces

GaN: Piranha/water

after 3h

Cleaning of GaN

AFM Imaging

basic treatment	sample No.	1	2	3	4
	H ₂ SO ₄ :H ₂ O ₂ (1:1), T ~140°C (15 min)	✓	✓	√	✓
	rinsed 2 x H ₂ O	✓	✓	✓	✓
	40% HF (30 s)	•	√	✓	-
	0.5% HF (2 min)	-	-	✓	✓
post- treatment	H ₂ O rinsing tank (10 min)	-	-	✓	✓
	EtOH & benzene:Isopropanol (3:1) (1 min)	✓	ı	✓	✓

5 μm GaN on sapphire

reference: uncleaned GaN

GaN: reference

GaN_mit 0.5 HF gereinigt

GaN: Piranha/ water, after 4h on air

after several hours

GaN_gerein 20.0kV x5.00k SE(M)

Crystal growth after cleaning ?!?!

→ Avoid air exposure+ use Glovebox & sealed bags

Focus on Research on GaN

OnGoing work- GaN(Cs)

<u>Planed:</u> <u>combination of</u>

activation chamber with SEM/EDX

- easy measurement of activated GaN
- detect contaminations

Summary and Outlook

- Charaterization and comparison of commercial available GaN wafer (surface parameters, depth profile, elemental mapping, cleaning process, QE)
- Activation of GaN wafer with Cs and characterization of activated GaN
- Comparision to GaAs & selfmade GaN (Uni Siegen)
- If sucessfully: test in SRF Gun II as a photocathode for high brightness beam

