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Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear
shear flow
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The three-dimensional flow around a spherical clean bubble translating steadily in a wall-bounded
linear shear flow is studied numerically. The present work is concerned with the drag and lift forces
experienced by the bubble over a wide range of Reynolds number (0.1 < Re < 10, Re being
based on the bubble diameter and relative velocity with respect to the ambient fluid), wall distance
(1.5 < Lr < 8, Lg being the distance from the bubble center to the wall normalized by the bubble
radius), and relative shear rate (—0.5 < Sr < 0.5, Sr being the ratio between the velocity difference
across the bubble and the relative velocity). Based on the above range of parameters, situations
where the bubble is repelled from or attracted to the wall are both covered. The flow structure
and vorticity field are analyzed to obtain qualitative insight into the interaction mechanisms at
work. The drag and lift forces are computed as well. Their variations agree well with theoretical
predictions available in the limit of low-but-finite Reynolds number and, when the fluid is at rest,
in the potential flow limit. Numerical results and analytical expressions are combined to provide
accurate semi-empirical expressions for the drag and lift forces at arbitrary Reynolds number and
separation distance.
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I. INTRODUCTION

Determining the hydrodynamic force acting on bubbles, drops and particles moving parallel to a wall in a shear flow
is a problem of fundamental importance, as this configuration is involved in a variety of technical and natural systems.
The presence of the wall tends to increase the drag force, and more importantly causes a transverse lift force acting on
the body. This transverse force may be directed either towards the wall or away from it, depending on the detailed flow
conditions. The lift force, although often much smaller in magnitude than the drag force, plays a crucial role in the
accumulation of bubbles either close to or away from the wall [1]. This force also appears in the closure relations involved
in point-particle based Eulerian-Lagrangian approaches (e.g. [2] for bubbles) or in Eulerian-Eulerian approaches based
on the interpenetrating continua concept (e.g. [3] for bubbly flows).

Asymptotic theories, laboratory experiments and direct numerical simulation (DNS) have been employed to determine
near-wall hydrodynamic loads under various flow conditions. Asymptotic theories are suitable for studying low-Reynolds-
number configurations (see [4] for a brief review). They may also be employed at very large Reynolds number for clean
bubbles with a prescribed shape [5]. Asymptotic solutions are explicit but are valid only within a limited range of flow
conditions. Experimental and DNS studies do not suffer from the same limitations and allow, in principle, arbitrary
Reynolds numbers to be considered in a range of flow configurations. However, owing to mechanical limitations of the
experimental devices [6, 7] and numerical difficulties arising in DNS [8, 9], few studies to date provide reliable data
describing the variations of the lift force acting on a clean bubble moving in the vicinity of a wall as a function of the
relevant parameters. In particular, no systematic investigation of shear- and wall-induced effects has been reported in
the range of intermediate Reynolds numbers where inertial effects are dominant while bubbles still maintain a spherical
shape.

As discussed in recent reviews [10, 11] and illustrated in Fig. 1 below, the lift force acting on a sphere translating in
a wall-bounded shear flow at low-to-moderate Reynolds number arises from two primary mechanisms. The first of these
is the interaction between the wall and the vorticity produced at the body surface due to its translation with respect
to the ambient fluid (hereafter referred to as the wall effect). When the undisturbed flow is stagnant, (Fig. 1(a)),
this contribution reduces to a wall-normal lift force (so-called vortical wall-induced lift) pointing into the flow [12, 13].
The second mechanism is the distortion of the vorticity associated with the ambient shear by the three-dimensional
body (hereafter referred to as the shear effect), which results in the generation of a nonzero vorticity component in the
direction of the relative motion, concentrated within two counter-rotating trailing vortices. When the body is far enough
from the wall (Fig. 1(b)), this contribution reduces to the shear-induced lift force in an unbounded flow, the asymptotic
expression of which was derived in [14] and [15] for a rigid sphere and a drop of arbitrary viscosity, respectively. In
wall-bounded linear shear flows, both mechanisms are active. However they do not combine linearly, as the entire
flow disturbance is governed by the Oseen equation which prevents the linear superposition of individual disturbances.
Moreover, the body may either lag or lead the fluid, which, as illustrated in Fig. 1(¢) and (d), results in a cooperative
or antagonistic combination of the wall- and shear-induced lift effects. In the low-to-moderate Reynolds number regime,
bubbles and drops behave similarly to rigid spherical particles at the surface of which the no-slip condition applies,
although the magnitude of the various contributions to the hydrodynamic force differs according to the viscosity ratio
of the inner and outer fluids.
Things become different when the translational Reynolds number Re is large. This is because the vorticity produced at
the surface of a clean bubble does not go on increasing with Re, unlike the case of a solid sphere at the surface of which
the no-slip condition applies and the surface vorticity grows like Re'/? when Re is large [16]. Because of this saturation
of the surface vorticity, the magnitude of the vortical wall-induced lift force at a given distance from the wall decreases
as the Reynolds number increases in the case of a clean spherical bubble. Then a second, inviscid mechanism takes over.
Indeed, according to potential flow theory, a sphere translating parallel to a symmetry plane is attracted toward this
plane because the fluid velocity reaches a maximum in the gap, thus inducing a pressure gradient directed away from
the symmetry plane, owing to Bernoulli’s theorem [17-20]. Hence, there is a critical gap-dependent Reynolds number
beyond which the transverse force acting on the bubble switches from repulsive (corresponding to the above vortical
wall-induced lift mechanism) to attractive (corresponding to the above irrotational mechanism) [6]. No such reversal of
the transverse force takes place in the case of a solid sphere, as the vortical wall-induced mechanism remains dominant
however large the Reynolds number. Compared to the low-to-moderate Re range, in the situation where the irrotational
wall-induced lift mechanism is dominant (Fig. 2(a)), the wall- and-shear-induced lift forces acting on a clean bubble
combine differently. As illustrated in Fig. 2(c), the two effects are now antagonistic (resp. cooperative) if the bubble
lags (resp. leads) the fluid.
Owing to its fore-aft symmetry, a sphere may only experience a lift force in the presence of finite inertial effects [21].
In the low-but-finite Reynolds number regime, when the distance r to the sphere center increases, the magnitude of the
translation-induced inertia term becomes comparable to the viscous term at a distance r ~ O(L,,), where L, = v/|Usel|
is the Oseen length, v and Uyer denoting the fluid kinematic viscosity and relative velocity between the body and fluid,
respectively. Similarly, the shear-induced inertia term becomes comparable to the viscous term at a distance r ~ O(L,,),

where L, = (v/w)*/? is the Saffman length, w = ||w|| denoting the norm of the vorticity w in the undisturbed flow. The
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FIG. 1. Wall- and shear-induced contributions to the lift force acting on a spherical bubble in the low-to-moderate Reynolds
number regime. (a) Stagnant fluid in the presence of a wall, where only the vortical wall-induced lift exists and the bubble always
leads the fluid. (b) Unbounded linear shear flow, where only the shear-induced lift exists; the force points away from the wall
when the bubble lags behind the fluid, and its direction reverses if it leads the fluid. (¢), (d) Wall-bounded linear shear flow. The
bubble lags the fluid in (¢), where the two effects cooperate, while it leads the fluid in (d), making the two effects combine in an
antagonistic manner.
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FIG. 2. Wall- and shear-induced contributions to the lift force acting on a spherical bubble in the moderate-to-large Reynolds
number regime. (a) Stagnant fluid in the presence of a wall, where only the irrotational (Bernoulli) transverse mechanism exists.
(b) same as in Fig. 1(b). (c¢), (d) Wall-bounded linear shear flow. The bubble lags the fluid in (c), where the two effects act in an
antagonistic manner, while it leads the fluid in (d), where they cooperate.

parameter € = L, /L, determines whether the dominant inertial effect arises from shear (¢ > 1) or slip (¢ < 1). When
the flow is bounded by a flat wall, the distance L separating the sphere from the wall may be compared to the two
inertial length scales through the ratios L, = L/ L, and L, = L/ L.,. Provided that min(L,, L,,) < 1 (strictly speaking
< 1), the wall is located in the inner region of the disturbance, Whlle it stands in the outer region if max(L,, L,) > 1
(strictly speaking > 1). These two situations and the various length scales involved are illustrated in Fig. 3.

The wall-induced lift force acting on drops and bubbles in the low-Reynolds-number regime was considered in [4],
where its asymptotic expression was obtained for situations where the wall lies in the inner region of the disturbance. The
case where the wall lies in the outer region was worked out in [13] for clean bubbles, adapting the singular perturbation
analysis developed in [12] for a rigid sphere. In both cases, the wall-induced lift force was predicted to decrease with
increasing the inertial wall distance L,,. The wall lies usually in the outer region when the translational Reynolds number
(based on the particle diameter and relative velocity with respect to the ambient fluid) is larger than unity. Experiments
performed in still fluid [6] revealed that the vortical mechanism responsible for the wall-induced lift force dominates the
interaction process for Re < 30, while the irrotational mechanism becomes dominant at higher Re, making bubbles tend
to cluster at the wall.

The analytical expression for the low-Reynolds-number shear-induced lift force acting on a rigid sphere moving in an
unbounded flow domain was derived by Saffman [14, 22] in the strong shear limit (¢ > 1), using matched asymptotic
expansions. Extension of Saffman’s expression to finite €, i.e. to conditions under which advective effects due to the
sphere translation cannot be neglected with respect to those due to the shear, was later conducted independently in [23]
and [24] using a similar approach. The generalization of the above results to spherical drops of arbitrary viscosity was
achieved in [15]. This analysis indicates that the shear-induced lift force acting on a clean bubble (i.e. a spherical drop
with a vanishing inner viscosity) differs from that on a rigid sphere only by a numerical factor of (2/3)2. For moderate
Reynolds numbers, the vorticity generated at the bubble surface by the shear-free boundary condition and the vorticity
present in the ambient shear flow both contribute to the lift force [8]. The latter becomes dominant for Re = 102 and
the resulting lift force then approaches the inviscid prediction obtained by Auton [25].

Shear-induced and wall-induced lift effects combine in wall-bounded shear flows. In situations where the Reynolds
number is small and the wall lies in the inner region of the disturbance, the resulting lift force acting on deforming drops of
arbitrary viscosity was derived in [4] through a regular perturbation analysis. In this case, both inertia and deformation
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FIG. 3. Sketch of the various length scales and regions of the flow disturbance around a sphere with diameter d standing a
distance L from the wall in a situation such that L, < Lw, i.e. € < 1. The inner and outer regions correspond to distances r from
the sphere center such that r < min(Ly, L.,) and 7 > max (L, L), respectively. The wall lies in the outer region in (a), where
L > max(Lu, L), and in the inner region in (b), where L < min(Lu, L.,).

contribute to produce a nonzero lift force. The wall may lie in the outer region of the disturbance while the Reynolds
number is still small, in which case the lift force may still be evaluated analytically using matched asymptotic expansions.
This problem was first considered in [26] in the strong shear limit for a rigid sphere, and revisited independently in [27]
and [28] where the solution was extended to finite €. Both studies concluded that the presence of the wall consistently
reduces the shear-induced lift force, which agrees with the behavior predicted in [4] in the case the wall lies in the
inner region. In [27] and [28], the solution for the lift force was obtained in the form of a three-dimensional integral in
Fourier space. In [7] it was assumed that, similar to the solutions derived in [4], the lift force may still be expressed
as a superposition of the wall- and the (unbounded) shear-induced lift forces in physical space when the wall stands
in the outer region, provided some modification due to the shear (resp. the presence of the wall) is introduced in the
wall-induced (resp. shear-induced) contribution. This procedure yields an explicit approximate expression for the lift
force as a function of the various physical parameters.

At finite Reynolds number, the wall lies usually in the outer region. Investigations in this case rely on experimental and
numerical studies. Situations with bubbles rising at low-to-moderate Reynolds number along the wall of a wall-bounded
shear flow, with the bubble either lagging or leading the fluid, were investigated experimentally in [7]. This allowed the
authors to explore the cooperative and antagonistic interactions between the wall- and shear-induced lift effects. Using
an appropriate drag law modified by the presence of the wall and the influence of inertial effects, the resulting lift force
was obtained from the measured migration velocity. A semi-empirical prediction for that force comparing well with
the experimental data for Re < 1.5 was proposed. We are not aware of any experimental or numerical study for clean
spherical bubbles moving at moderate-to high-Reynolds number in the same configuration.

The development of reliable approximate expressions with a wider range of applicability for the transverse force
requires the acquisition of new data and an identification of the underlying mechanisms involved in the different flow
regimes. In particular the proposal of [29] to conduct simulations in a moving coordinate frame to account for the
translation of the body with respect to the wall possesses further potential to make progress in this direction. We
apply this idea in the present work, in which we report results of a systematic numerical study performed with clean
spherical bubbles translating in a wall-bounded linear shear flow with the bubble either leading or lagging the fluid.
The results provided in this paper may have an important bearing on the numerical prediction of wall-bounded bubbly
flows, especially because they are of direct use to improve the so-called ‘point-particle’ models in which wall effects are
usually ignored. Such improved models for bubble Lagrangian tracking may then be used to investigate situations as
diverse as turbulent wall-bounded bubbly flows [30], bubbly flows in vertical pipes and channels [31-34], drag reduction
or enhancement by micro-bubbles in turbulent boundary layers [35-40], or lateral migration of bubbles in wall-bounded
shear flows [41].

The paper is organized as follows. In Sec. II we formulate the problem and state more precisely the scope of
the present work together with basic definitions used throughout the paper. Section III provides a short description
of the numerical procedure and preliminary tests. Available expressions for the drag and lift forces available in the
literature and based either on theoretical or semi-empirical grounds are summarized in Sec. IV. Physical features and
hydrodynamic mechanisms revealed by the flow field are discussed in Sec. V, while results for the hydrodynamic forces
are presented and analyzed in Sec. VI. A summary of the results is provided in Sec. VII.
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FIG. 4. Schematic of a bubble moving in a wall-bounded linear shear flow.

II. STATEMENT OF THE PROBLEM

Throughout the present work, we make use of a Cartesian coordinate system (Oxzyz) with the origin located at the
center of the bubble, as illustrated in Fig. 4. We assume that the bubble moves with a velocity V' = Ve, parallel to a
single planar wall. The wall is located at + = —L and e, denotes the wall-normal unit vector pointing into the fluid.
In the reference frame translating with the bubble, the undisturbed flow is a one-dimensional linear shear flow with a
velocity profile o = [y(L + z) — Ve, and a nonzero spanwise vorticity wo, = —ye,. The relative (or slip) velocity of
the fluid with respect to the bubble is then U, = (vz —V)e,. The fluid velocity and pressure fields in the presence of
the bubble are denoted by w and p, respectively, and w = V x u denotes the vorticity.

The suspending fluid is assumed to be Newtonian and the flow is considered incompressible. The continuity and
Navier-Stokes equations thus take the form

ou

1
—i—u-Vu:—;Vp—&—Vw-, (la,b)

where 7 = v[Vu + TVu] is the viscous part of the stress tensor ¥ = —pI + p7 and p is the fluid density, I denoting
the Kronecker tensor. In the reference frame attached to the bubble center, boundary conditions at the wall and in the
far field are

w— { —Ve, for z= —E, @)

Uso = [Y(L +2) — Ve, for r— oo,

where r = (22 + y? + 22)1/2 denotes the distance to the bubble center. On the bubble surface, the normal velocity
must vanish, owing to the non-penetration condition. Moreover, the dynamic viscosity of the gas within the bubble is
assumed to be much smaller than that of the suspending liquid and the bubble surface is considered to be free of any
surfactant, so that the outer fluid obeys a shear-free condition at the interface. Last, we assume surface tension to be
strong enough for the capillary force to be able to maintain the bubble spherical whatever the local strength of the
hydrodynamic stresses. Under such conditions, the boundary conditions at the bubble surface are

u-n=>0 d
for r=—, (3)
nx(t-n)=0 2

where n denotes the outward unit normal to the bubble surface and d is the bubble diameter. With the above boundary
conditions, the steady flow field past the bubble depends on three characteristic parameters, namely the Reynolds
number Re, the dimensionless shear rate Sr, and the wall distance Lyr. These are defined as

User|d vd 2L
Re = Sr = Lgr = — 4
¢ 14 ’ g Urel, R ( )

with Uyel = Uyel - €,. A positive (resp. negative) Sr indicates that the bubble lags (resp. leads) the fluid.

As stated in the introduction, we are particularly interested in obtaining the hydrodynamic force acting on the bubble.
This force may be split into its drag component Fp parallel to U,e, and its lift or transverse component, F,, parallel
to e;. We thus define

_ Urel .
||Urcl||

FD /EndF, FL:ew~/E~ndF, (5)
r r



where T" is the bubble surface. Results concerning these forces will be expressed in terms of the dimensionless lift and
drag coefficients, Cy, and Cp, obtained by dividing the corresponding component of the force by md?pUZ2,/8. Note that
a negative (resp. positive) value of the lift coefficient corresponds to an attractive (resp. repulsive) force with respect
to the wall. We introduce the notations CYy (resp. C}V) and CY (resp. CU) to denote the drag (resp. lift) coefficients
in wall-bounded and unbounded flows, respectively. Situations where the wall lies in the inner or outer region of the
disturbance will be distinguished by the superscripts W-in and W-out, respectively. To appreciate the modification of
the drag force due to the wall and shear effects, results for the drag coefficient are usually given in the form of the
relative change ACp = (Cp — Cf)/Chy, where Cf, denotes the drag coefficient on a bubble moving in an unbounded
uniform stream. Drag (resp. lift) contributions corresponding to the wall-induced effect are denoted with the subscript
Du (resp. Lu), while those corresponding to the shear-induced effect are denoted with the subscript Dw (resp. Lw).

In most of the present work Re, Sr, and Ly are varied in the range [0.1,10%],[—0.5,0.5], [1.5, 8], respectively. Specifi-
cally, St = +0.4 corresponds for instance to a 1 mm diameter bubble rising/settling at 0.25m s~* in a downward /upward
shear flow with v = 100 s™!, an order of magnitude typical of turbulent boundary layers. Of course, in most practical
situations, rising bubbles do not stay spherical at high Reynolds number, even in water which has a strong surface
tension. Rather they turn into oblate spheroids, characterized by an aspect ratio, y, the length ratio of the major to
minor axes. The dynamics of moderately oblate bubbles is essentially similar to that of spherical bubbles up to x =~ 1.65,
beyond which a separated wake may exist within a certain range of Reynolds number [42]. However an oblate bubble
opposes a greater resistance to the surrounding flow than a spherical bubble with the same volume V. For instance, in
the high-Re limit, the drag and shear-induced lift coefficients are approximately 25% higher for a bubble with an aspect
ratio x = 1.2 than for a spherical bubble [43, 44]. In pure water under standard conditions, bubbles with y = 1.2 have
an equivalent diameter D = 1.15mm (with D = (6V/7)'/3), and a rise velocity Vz ~ 0.305ms~" [45]. Therefore their
rise Reynolds number Rer = VpD/v is approximately 350. If one regards the above 25%-difference as the upper limit
below which predictions for the hydrodynamic forces are reasonably accurate, results obtained with spherical bubbles
may be considered valid up to a Reynolds number Re & 350, with Re based on the slip velocity between the bubble and
the local flow. Since we only consider shear rates such that |Sr| < 1 here, shear-induced deformations are smaller than
those due to slip, and the above conclusion extends to bubbles rising in a linear shear flow.

Although effects of oblateness cannot be ignored for bubbles rising at larger Reynolds numbers in water, there is a
fundamental interest in considering fictitious conditions under which surface tension is strong enough to prevent bubbles
from deforming irrespective of the Reynolds number. This is because, in contrast with the case of rigid spheres, asymp-
totic results are available in the limit Re — oo for spherical bubbles at the surface of which the fluid obeys a shear-free
condition, making it possible to study how the corresponding asymptotic regime is reached for large-but-finite Re. This
is for instance the case with the viscous drag [46, 47], the shear-induced lift force [8, 25], or the irrotational transverse
force for a bubble rising parallel to a wall [17, 18, 48]. This is the reason why Reynolds numbers are considered up to
103 in the present study.

Finally, although gravity does not appear in (1) or (3), it is a key player in the real system we are considering, since
it provides the driving force that sets the relative motion between the bubble and the surrounding fluid. Equat-
ing the drag and buoyancy forces acting on a bubble rising in a fluid at rest (neglecting the gas density) yields
ReQTCgo(ReT) = %gD?’ /v?, g denoting gravity. The dimensionless number Ar = (¢D*)'/2 /v, frequently referred to
as the Archimedes number, compares buoyancy and viscous forces. Its value, which only depends on the bubble size,
fluid viscosity and gravity conditions, determines the rise Reynolds number, Rer. For instance, a 1 mm diameter clean
air bubble rising in water has a rise velocity Vpr =~ 0.25ms™!, hence a rise Reynolds number Ret ~ 250. Gravity also
has a side effect, since it tends to deform bubbles by inducing a hydrostatic pole-to-pole pressure difference of O(pgd)
along their surface. This deformation remains weak as far as this pressure difference is small compared to the capillary
pressure, i.e. the Bond number Bo = pgd?/c is such that Bo < 4. For the 1 mm bubble considered above, Bo ~ 0.14,
so that the gravity-induced deformation is negligible under the conditions considered here.

III. NUMERICAL APPROACH

The computational results discussed below were obtained with the JADIM code developed at IMFT. This code solves
the three-dimensional unsteady Navier-Stokes equations with a finite-volume discretization and, in the version used
here, makes use of a boundary-fitted staggered grid. Spatial derivatives are approximated using second-order centered
schemes. The velocity field is advanced in time with a third-order Runge-Kutta algorithm for the advective term,
together with a Crank-Nicolson semi-implicit algorithm for viscous terms. Incompressibility is satisfied at the end of
each time step through a projection technique which yields a Poisson equation for the pressure correction. Details about
this code may be found in previous publications, especially [49] for most algorithmic aspects, and [50] (resp. [48]) for
specific aspects concerned with curvilinear grids in unbounded (resp. wall-bounded) flows.

The grid system used in this study is similar to the one employed in [48], based on which the flow about two spherical
bubbles rising side-by-side in a viscous liquid was simulated. A two-dimensional grid is first built on the streamlines
1 = const. and the equipotential lines £ = const. of the potential flow around two circular cylinders moving in line along
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FIG. 5. Tllustration of the grid system. (a) Shape and size of the computational domain. (b) Definition of the number of nodes
in the computational domain. (¢) and (d) Partial view of the grid near the bubble with Lr = 1.5 and 2§/d = 0.01 in (c), and
Lr = 2.0 and 26/d = 0.002 in (d).

the z-axis. Then this grid is rotated about the z-axis with an angle ¢ = 7 or 2w. The first choice, which we used
in certain runs, exploits the planar symmetry of the problem geometry with respect to the plane y = 0, reducing the
computational domain to a half-space by imposing a symmetry condition in this plane. Most computations however
were run in the full domain 0 < ¢ < 27. There is a priori no guarantee that the flow keeps its planar symmetry at
high Reynolds number, owing to the combined presence of wall and shear, but none of these computations revealed such
a symmetry breaking. The resulting computational domain with ¢ = 27, shown in Fig. 5(a), has an inner boundary
coinciding with the bubble surface and a circular outer boundary of radius R Its height in between the bubble center
and the wall (resp. the outer boundary) is L (resp. Ro). The (&, 1,¢) grid is made of (Nw + N, + Noo) x N,y x N,

nodes as defined in Fig. 5(b). Here N is the number of nodes between the wall + = —L and the bubble surface, IV, is
the number of nodes along half of the bubble circumference (from z = —d/2 to © = d/2), N is the number of nodes
between the bubble surface and the outer boundary in the z-direction, INV;, and N, are the number of nodes along the
radial () and azimuthal (¢) directions, respectively. The bubble surface is thus discretized with N, x N, nodes.

In [48], it was found that the length R, and the distance § from the bubble surface to the first node above it near the
singular points = 4+d/2 of the x-axis are critical for an accurate calculation of the transverse force. To reduce the effect
of the outer boundary, we select R, such that 2R, /d = 100 for Re < 1, 2R, /d = 80 for Re < 100, and 2R, /d = 40
for Re > 100. To improve accuracy in the moderate and high-Reynolds-number regimes, the dimensionless distance
2§/d is set to 0.01 for for Re < 10 and to 0.002 for Re > 10. A constant spacing of nodes is chosen in the ¢-direction
with N, = 128 (resp. 64) in the case of a full (resp. half) domain. In the {- and n-directions, a geometrical progression
ensuring that the width ratio of two successive cells is less than 1.15 is applied, with No, = 58 and IV,, = 54. Some
tests were carried out at large Reynolds number with a finer resolution in the radial direction, namely N, = 80 and
108. Differences on the drag and lift coefficients were found to be less than 0.4% in all cases, from which we concluded
that N, = 54 is sufficient throughout the range of flow conditions considered here. In [48] it was shown that numerical
results are weakly sensitive to the number of nodes on the bubble surface, N, and in between the bubble and the wall,
Nyw. Regarding the former, the configuration considered here does not differ much from that in [48]. Hence we followed
this reference and set N, = 30. The situation is different regarding Ny, since the plane x = —L corresponds to a rigid
wall with a no-slip condition here, whereas it was only a symmetry plane in [48]. For this reason, more grid points
are required near the wall when the Reynolds number becomes large to properly capture the corresponding boundary
layer. For Re < 10, we found it convenient to employ Nyw = 10 for Ly < 2, Nw = 15 for 2 < Ly < 4, and Nw = 20
for Lr > 4. At larger Reynolds numbers, the results to be discussed later show that effects of the boundary layer are
‘felt’ by the bubble only for short separation distances, typically Lg < 2. We increased Ny up to 40 (resp. 60) for
Lr = 1.5 (resp. 2) and found that results are grid-independent for Ny > 30 (resp. 40) up to Re = 103. Therefore
we adopted the latter values, which allow to cluster approximately 10 grid points within the wall boundary layer for
Re = 103, guaranteeing a proper capture of the corresponding effects. Two examples of the near-bubble cell distribution
at low-to-moderate Reynolds numbers are provided in Fig. 5. The adequacy of the resulting resolution is established
in Appendix A where we discuss results for the drag and lift forces in the wall-bounded configuration with the fluid at
rest at infinity, as well as predictions for the lift force in an unbounded shear flow in the high-Reynolds-number range.

The velocity is assumed to correspond to the undisturbed flow (2) on the top plate © = Ro, and the cylindrical surface
(y? —|—z2)1/2 = Ro. On the bottom plate x = — L, the no-slip condition in the moving frame, u = —Ve,, is applied. The



e,-symmetry axis of the grid system introduces an artificial singularity, since a given point (z = zo,y = 0,z = 0) on
this axis is associated with different values of . A specific condition described in [8] is used to overcome this problem.
The techniques used to evaluate the various contributions to the hydrodynamic force experienced by the bubble may be
found in the same reference.

IV. AVAILABLE ANALYTICAL AND SEMI-EMPIRICAL EXPRESSIONS

Before we discuss the numerical results, an overview on expressions available in the literature to estimate wall- and
shear-induced forces, based on either theoretical or semi-empirical grounds, is in order. Indeed, these results help
to understand the dependence of wall- and shear-induced effects with respect to Re, Sr and Ly and provide useful
indications regarding the accuracy of the numerical results.

1. Unbounded linear shear flow

At low-but-finite Reynolds number, the presence of a uniform shear tends to increase the drag, and simultaneously
causes a transverse or lift force in the direction of U, x w. Both forces are proportional to (|Sr|Re)'/2. They may be
expressed in terms of the drag and lift coefficients in the form

CY_(Re < 1) — CYy(Re — 0) = %eJD(e), CY (Re < 1) = 7T82|2§|5JL(5), (6a, b)

where CfJ;(Re — 0) denotes the drag coefficient in the creeping flow limit, i.e. CY,(Re — 0) = 16/Re for a clean

spherical bubble, and ¢ = L, /L, = (|Sr|/Re)'/2 is the ratio of the Oseen and Saffman lengths scales. The function
Ji(g) was derived for arbitrary values of ¢ in [24] (Eq. (3.20)). In the limit € — oo, one has [51]

Jp(00) = 0.485,  Jp,(00) = 2.254. (Ta,bd)

The way Jp(e) tends to zero as e decreases is still unknown, but this is of little importance since the relative magnitude
of the shear-induced correction to the drag is small whatever ¢ in this regime. At finite ¢, Ji, may be approximated as
(8]

Ju(e) = Ju(00)(1 +0.2e72)73/2, (8)

In the inviscid limit, the lift force was determined analytically in [25] for a vanishingly small shear (Sr — 0). The
high-Reynolds-number behavior was investigated numerically in [8], where it was found that [52]

1+ 16Re™?

2
ACY (Re>> 1) ~0.555r%2, CY (Re> 1) ~ =Sr(1 — 0.07|Sr|) ——— —
pw(Re>1) r°,  Cp,(Re>1) 3 r( |St|) T 29Re 1’

(9a,b)
where ACS,, = (CF,,(Re) — C5y(Re))/CHo(Re), and CY,, = 2Sr is the asymptotic value of the lift coefficient found

in the limit Sr — 0, Re — oo in [25]. The fit (9a) for the shear-induced drag increase was confirmed in subsequent
numerical studies [53, 54].

2. Low-Re wall-bounded shear flow

The presence of a nearby wall results in a drag increase, while it may either increase or decrease the transverse force,
depending on the sign of the relative (slip) velocity with respect to the direction of the shear. For Re « 1, situations
where the wall lies in the inner region of the disturbance, i.e. max (L, L,) < 1, were investigated in [4]. The analytical
solutions for the drag and lift forces were found to be [55]

ACY™(Sr, L) = S + Spa)(1-3p 13 - (2 + 313 s (10a)
D TR 7R TR 7R T 4R 16 'R TgTR ’
ACE]J“’ Ac]\jiV;}in
, 1 1 33 11 9 1271 11 3
mSrLg) == (1+ L' = Lg% )+ = (Lp+ - — —Lg" — (1+ =Lzt ) sr? 10b
G (S Lr) 2<+8R 64R)+24(R+8 s5200® )5 g \L T gln )5 (10b)
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FIG. 6. Predictions for L ACY,°"" and CPY;°"* based on (11) for 0.01 < L, < 300. Open symbols: numerical integration; solid
line: approximate expression (12). (a) LRACW outs () CYvout,

where ACY"(Sr, Lg) = (CY ™ (Sr, Lr) — C,(Re — 0))/CHy(Re — 0).

Equations (10) make it clear that the drag modification and the lift force result from two contributions. One, denoted
as ACY-1 (resp. CV-) is due to the wall effect and depends on Lg only. The other, denoted as ACY;™ (resp CV-iny,
is due to the presence of the shear and depends linearly and quadratically on Sr, although it is also altered by the wall
proximity. The drag modification vanishes in the limit of large separations. In the same limit, the lift force becomes
governed by the shear effect which grows linearly with Lg. Since L, = %LR(R€|SI‘|)1/ 2, the term proportional to Ly in
the CYV-"_contribution differs from the the lift coefficient CY in (6b) for the unbounded case by a factor proportional
to L JL( ), which indicates that the two expressions reach a similar magnitude for some finite value of L.

When the wall lies in the outer region of the disturbance, L, = %LRRe and L, are not small any more, so that
the drag and lift forces depend on L, and L, in addition to Lg. This situation was investigated in the shearless case
(L, — 0) in [12] for a rigid sphere, then adapted to a spherical bubble in [13]. The relevant solutions are found in the
form of double integrals which cannot be evaluated in closed form, namely

27 i 1
A — L,
ACw out __ / / { X + )\ 2 + 2X6*2X _ 4X6*(X+>\) 1COS¢5 i 1 COSQS 62X} )\d)\dd), (113)
27TLRL X = A X

27
CW-out _ L2/ / X“ e — e X2AdAd6, (11b)
i

where ACY-°"(Re < 1) C’W“’“t(L ,Lr) — Cy(Re — 0))/CTy(Re — 0), and x? = A2 + 1AL, cos ¢ with i* = —1.
The rlght hand side of (11) may be evaluated numerically using an adaptive integration approach [56]. The corre-
sponding values for the drag and lift coefficients, shown in Fig. 6(a) and (b) respectively, may then be used to derive
approximate fits, which we obtained in the form
8

gLRAOW U (Re < 1) = fh(L,) =

1
1+ 0.16Ly(Ly +4)

1
14+ 0.13Ly(Ly +0.53)
(12a,b)
The two functions ff; and f{, shown in Fig. 6, describe how the wall-induced drag modification and the lift force relax
to zero as inertial effects in the bulk become dominant. In the limit L, — 0, expressions (12a, b) match predictions
(10a, b) taken in the limit Lg — oo.

In the presence of shear, the case where the wall stands in the outer region of the disturbance was worked out in
[28] for a rigid sphere. Again, the solution was obtained in the form of a volume integral in Fourier space, the value
of which cannot be put in closed form but was tabulated for various values of L., and ¢ = Eu / Ew. These results were
adapted to the case of a bubble in [7]. Variations of the volume integral with respect to L, and € were fitted to obtain
tractable estimates of the lift force, assuming that this force may approximately be expressed as the superposition of
the wall-induced effect and the unbounded shear-induced lift, provided each contribution is suitably modified to account
for the effect of the shear and the presence of the wall, respectively. The resulting fit was obtained in the form

CY e (Re < 1) & fLCP " (Re < 1) + hiCf, (Re < 1), (13)

20V (Re < 1) = f{(L,) =
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with CJ_(Re < 1) given by (6b) and C}¥-°"*(Re < 1) approximated by (12b). Appropriate fits for fi, and hy, were found
to be

11,2 Ly

fL(ng) _ 6—0.2250’%35 : hL(ng) — 1 BT T , (14)

with Ji(¢) as given by (8). In the double limit L, — 0 and L, — 0, the above expressions make the leading-order
contributions to C}¥-°"" in (13) match the leading-order terms of the inner solution C}V-™ in (10b). No approximate
expression for the drag force modification seems available in the literature under similar flow conditions, although
starting from (6a) and (12a), it can certainly be built using the same procedure.

3. Approzimate expression for the lift force at moderate-to-large Reynolds number

No theoretical solution for the hydrodynamic forces may be obtained when inertial effects become dominant. Reliable
extensions of the low-Reynolds-number and inviscid solutions to this intermediate regime may however be achieved
provided that sufficient and accurate data are available. Experimental and numerical studies [6, 9] devoted to the rise
of a clean spherical bubble close to a wall revealed that, for Re = O(10), the lift force exhibits a faster decay with
increasing L,, compared to the low-Re solution. In [6], experimental observations performed with bubbles such that
Re < 30 and theoretical considerations about the nature of the bubble-wall interaction could be summarized through
the following semi-empirical relation [57]

CYV (Re = O(1 — 10)) = b*(Lr/3)CYV" (Re < 1), (15)
with
b=1+2tanh [0.17Re”! — 0.12Re”%] and g = —2.0tanh(0.01Re). (164, b)

The factor b expresses the increase of the vorticity at the bubble surface with the Reynolds number. Indeed the maximum
of the surface vorticity is three times larger in the limit Re — oo than in the zero-Re limit. The exponent g accounts
for the increase of the decay rate of the lift force with L,, as Re increases, from L;? at low-but-finite Re to L, * in the
inviscid limit [6]. At higher Reynolds numbers, the irrotational mechanism illustrated in Fig. 2(a) becomes dominant.
In the inviscid limit, the transverse force becomes identical to that experienced by each of the two bubbles in a pair
rising perpendicular to its line of centers. The corresponding coefficient is obtained in the form of an infinite series with
respect to the inverse of the separation distance, the first terms of which are [17, 18, 48]

3
8

1
8

1

CYV (Re — o0) =~ 5

Lt |1+ sLg® + Lg% | + O(Lg"). (17)
Still for a bubble pair rising in the above configuration, the transverse interaction yields an asymmetry of the vorticity
distribution within the boundary layer surrounding each bubble. For this reason, a viscous correction arises in the

transverse force at large-but-finite Re, yielding [5, 48]
OV (Re > 1) = CYY (Re — oo) + 15Re ' Lg*. (18)

Returning to the problem of a single bubble translating parallel to a wall, the transition from the low-to-moderate Re
regime corresponding to Fig. 1(a) to the high-Re regime illustrated in Fig. 2(a) was discussed in [6]. It was shown that
the two driving mechanisms superimpose almost linearly, so that this transition is correctly captured by the empirical
expression

CV ~ OV (Re = O(1 — 10)) + c10oCYY. (Re = 00),  wWith  epee = 1 — e 022R"™ (19a, b)

As figure 8 of [6] shows, predictions based on this linear fit compare well with the experimental values of the lift coefficient
determined for Ly > 4 up to Re = 102, the largest Reynolds number considered in that study.

Effects of the shear on the lift force for Re = O(1) were investigated experimentally in [7]. Based on the corresponding
data, it was concluded that the linear superposition assumed in (13), which applies theoretically only for Re <« 1, still
holds for Re = O(1), provided the bubble deformation remains small. To the best of our knowledge, no empirical
expression for C}¥ (Re) at higher Reynolds number in the presence of shear is available in the literature.

V. CHARACTERISTICS OF THE FLOW FIELD AND FUNDAMENTAL MECHANISMS

Figure 7(a) shows the computed profiles of the streamwise velocity disturbance along the line (y = 0, z = 0)
perpendicular to the wall (z-axis) when the bubble translates in a stagnant fluid, for different separation distances and
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FIG. 7. Distribution of the streamwise velocity disturbance (4 — %oo) - €. /User along the line (y = 0, z = 0). (a) Stagnant fluid
(Sr = 0) for different separation distances; (b) Linear shear flow for Lr = 4. The wall stands at position 2z/d = —2 (resp. —4)
for Lr = 2 (resp. 4).

Reynolds numbers ranging from 0.1 to 500. Note that U,..; is negative if the bubble rises towards positive z, so that
negative (resp. positive) fluid velocities normalized by U,.; in this figure correspond to an upward (resp. downward)
fluid motion with respect to the bubble. At high Reynolds number (Re = 500) the disturbance decreases rapidly as the
distance to the bubble increases. In the gap [—Lr < 2z/d < —1], this decrease results in a pressure gradient directed
towards the bubble, hence a transverse force toward the wall, in line with the mechanism illustrated in Fig. 2(a). Due
to the Ly *-decay of the wall-induced pressure asymmetry (the footprint of which directly appears in (17)), wall effects
are almost negligible for Lr = 4 but are well visible for Ly = 2. Compared to the former case, the disturbance is larger
in the gap in the latter one, except within the thin boundary layer adjacent to the wall, in which it vanishes rapidly
to satisfy the no-slip condition. When the Reynolds number decreases, so does the magnitude of the disturbance close
to the bubble, owing to the growing influence of the boundary layer that develops at its surface (compare the profiles
found for Re = 500 and 100). This boundary layer is totally distinct from the one that develops at the wall, being a
direct consequence of the shear-free condition at a curved interface [58]. At Re = 10, the disturbance changes sign close
to the bubble, within a layer whose thickness is of the order of the bubble radius. At small Reynolds number (Re = 0.1)
it is negative everywhere along the line (y = 0, z = 0), i.e. directed along the direction of the bubble rise. The wall
proximity significantly decreases the disturbance in the gap, as may be seen by comparing its magnitude on the left and
right halves of the red and green lines at a given distance from the bubble center.

The influence of the shear is illustrated in Fig. 7(b), based on the results obtained with two opposite shear rates,
Sr = +0.5, for a separation distance Lg = 4. At high enough Reynolds number (Re = 500 or 100), the presence of a
positive (resp. negative) shear, corresponding to a configuration where the bubble lags (resp. leads) the fluid, increases
(resp. decreases) the magnitude of the disturbance in the gap, while it decreases (resp. increases) it on the opposite side.
At moderate Reynolds number (Re = 10), this behavior subsists outside the boundary layer surrounding the bubble,
within which only a tiny influence of Sr can be observed. In contrast, effects of the shear are detected only close the
bubble when the Reynolds number is low (Re = 0.1). There, a positive (resp. negative) shear decreases (resp. increases)
the magnitude of the disturbance in the gap, while it increases (resp. decreases) it on the opposite side.

Some aspects of these variations, and complementary features of the bubble-wall interaction, may be better understood
by examining the distribution of the y-component of the vorticity disturbance in the symmetry plane y = 0. This
distribution is displayed in Fig. 8 for the specific separation Lr = 2. Vorticity is generated both at the bubble surface
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FIG. 8. Iso-contours of the normalized vorticity disturbance d/(2Urel)(w — woo) - €y in the symmetry plane y = 0 at Lr = 2.
Left column: Sr = —0.5 (Urer < 0); central column: Sr = 0 (Uyrer < 0); right column: Sr = 0.5 (Urer > 0). The wall stands at the
bottom of each panel. The relative flow with respect to the bubble is from left to right, i.e. in the +z (resp. —z)-direction for
Sr = 0.5 (resp. Sr =0 and —0.5).

(due to the shear-free condition) and at the wall (due to the no-slip condition). In what follows, the contributions
provided by these two distinct boundaries are referred to as surface vorticity and wall vorticity, respectively. The
surface vorticity diffuses around the bubble and is advected downstream in the wake. When the fluid is at rest at
infinity, the vorticity distribution in the high-Reynolds-number regime (Re = 500, Fig. 8(k)), is almost symmetric with
respect to the plane x = 0. Negative vorticity (see the sign convention in the caption of Fig. 8) is generated at the wall,
owing to the weakening of the disturbance by the no-slip condition. However, in the high-Re regime, the wall shear layer
is too thin to affect the distribution of the surface vorticity, the iso-contours of which would be virtually unchanged if
the bubble were rising in an unbounded expanse of fluid. Because of this almost symmetrical vorticity distribution, it
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FIG. 9. Iso-contours of the normalized streamwise vorticity component d/(2|Urei|)w - € in the cross-sectional plane z = d in an
unbounded linear shear flow with Sr = 0.5. (a) Re = 100; (b) Re = 500. The main flow is going inwards, along the z-axis.

may be inferred that the asymmetry of the disturbance velocity observed in Fig. 7(a) is mostly due to the irrotational
mechanism illustrated in figure 2(a). When the Reynolds number decreases, the thickness of the two boundary layers
increases (Re = 100, figure 8(h)). Then they start to interact, making the asymmetry between the surface vorticity
iso-contours in the gap (z < 0) and those on the opposite side of the bubble (z > 0) more prominent (Re = 10, figure
8(e)). At low Reynolds number (Re = 0.1, Fig. 8(b)), the region containing positive vorticity originating at the bubble
surface and that containing negative wall vorticity interpenetrate each other, making the resulting vorticity magnitude
in the gap weaker than on the opposite side, especially around the mid-plane z = 0. This asymmetry is responsible
for the drag enhancement described by the contribution ACY-™ in (10a). In contrast it is not directly responsible for
the transverse force on the bubble, owing to the reversibility of the flow in the Stokes region of the disturbance. The
crucial process responsible for this force component is the gradual slowing down of the fluid displaced along the wall by
the bubble translation as the downstream distance increases. This slowing down corresponding to a negative 0,u, near
the wall, continuity implies the generation of a transverse flow with a positive d,u,. As u, = 0 at the wall, this tiny
transverse flow is directed away from the wall, yielding a pressure decrease as x increases. At downstream distances
larger than the Oseen length L,, (here L, ~ 10d), this process is no longer reversible, yielding a repulsive net transverse
force on the bubble.

The interaction between a uniformly sheared flow in an unbounded fluid and a three-dimensional bluff body is well
understood in the inviscid limit (e.g. [42] and references therein). A key result of this interaction is the tilting of the
upstream vorticity, w, - €y, = —v, by the transverse gradients of the streamwise velocity, d,u., resulting from the flow
around the body. This tilting mechanism yields the generation of a nonzero streamwise (or trailing) vorticity component
in the wake, concentrated within the two threads of a horseshoe vortex. Figure 9 shows how the streamwise vorticity w,
is distributed within a cross-sectional (z,y) plane located in the near wake of the bubble. Since w,-e, < 0 and U,¢ > 0,
the resulting w, is positive (resp. negative) for y < 0 (resp. y > 0) if Sr is positive; the sign of w, in each thread of
the vortex reverses if St is negative. Consequently, the fluid located in between the two threads is entrained downwards
(resp. upwards) if Sr > 0 (resp. Sr < 0), while the fluid located outside the double-threaded wake is entrained in
the opposite direction. This is the classical mechanism responsible for the inviscid lift force on a three-dimensional
body, illustrated in Fig. 2(b), which yields the result (9b) for a sphere [25]. The footprint of this mechanism may be
found in Figs. 8(j) and (), where it is seen that the spanwise vorticity generated at the bubble surface is advected
asymmetrically with respect to the plane = 0. Indeed, at such large Reynolds number (Re = 500), the aforementioned
downward (resp. upward) flow generated in the mid-plane y = 0 by the double-threaded wake bends the iso-contours
of the spanwise vorticity in the wake towards the < 0 (resp. = > 0) direction when the bubble lags (resp. leads) the
fluid. Although this asymmetry arises in the wall vicinity in the present case, the wall plays no role in the underlying
process.

Figure 10 reveals the spatial structure of the streamwise vorticity distribution in the presence of a nearby wall. Close
to the bubble, the two halves of the horseshoe vortex are already visible in the selected diametrical plane, and the sign
of w, within each of them reverses with the sign of Sr as expected. When Sr = 0, two thin layers with significant
values of w, develop close to the lower half of the bubble surface. This is because the streamwise fluid velocity u,
increases with the distance from the wall within the wall boundary layer, so that the lower part of the bubble is still
submitted to a nonzero shear (9 u, # 0), even though there is no shear in the upstream flow. The larger the Reynolds
number, the thinner the wall boundary layer, which is why the two w,-layers are much thinner and the magnitude of
the streamwise vorticity within each of them is significantly weaker when Re = 500. This mechanism subsists when
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FIG. 10. Iso-contours of the normalized streamwise vorticity component d/(2|Uel|)w - €. in the diametrical plane z = 0 in a
wall-bounded linear shear flow, with the bubble standing a distance Lg = 1.5 from the wall. The main flow is going inwards,
along the z (resp —z)-direction for Sr > 0 (resp. Sr < 0); the direction of the y-axis is adjusted such that the (z,y, z) coordinate
system remains right-handed in all configurations.

Sr # 0, and then combines with the tilting mechanism associated with the outer shear. When Sr is positive, the two
mechanisms cooperate, yielding a constant sign of w, on each side of the bubble (Figs. 10(c) and (f)). In contrast, they
induce opposite signs of w, when Sr is negative. This is visible in Fig. 10(a), where a thin near-surface layer with w, < 0
(resp. > 0) is encapsulated within a thicker layer of positive (resp. negative) w, in the half-plane y > 0 (resp.y < 0).
Clearly the inner layer results from the positive near-wall shear, while the outer layer is due to the negative upstream
shear. A salient feature in Fig. 10 is the presence of two counter-rotating ‘pancake’ streamwise vortices within the wall
boundary layer. These structures merely result from the spanwise displacement of near-wall fluid particles as the bubble
moves parallel to the wall. Indeed, whatever the sign of Sr, fluid particles standing in between the bubble and the wall
are displaced sideways towards positive (resp. negative) y-positions in the half-plane y > 0 (resp. y < 0), implying
positive (resp. negative) spanwise local velocities. Owing to the no-slip condition, w, vanishes at the wall, so that 0 u,
is positive (resp. negative) near the wall in the half-plane y > 0 (resp. y < 0), which yields w, > 0 (resp. < 0). Clearly
this process is independent from the outer shear, as the constant sign of w, in each half-plane irrespective of Sr confirms
(note that in Figs. 9 and 10 the vorticity is normalized by d/2|Uy.|, not d/2U,.; as in Fig. 8).

The generation of the surface vorticity (w, in the diametrical (z, z)-plane) is also modified by the shear. Indeed, for the
shear-free condition to be satisfied at the bubble surface in the presence of an outer shear, a shear-flow type correction
has to take place within the boundary layer. Compared to the un-sheared case, this correction yields an additional
positive vorticity component therein when the bubble lags the fluid. Hence this vorticity correction cooperates with the
primary positive vorticity in the part of the bubble boundary layer corresponding to z < 0, whereas it mitigates the
primary negative vorticity on the opposite side. Consequently, the intensity of the overall vorticity round the bubble
is increased for z < 0 and decreased for > 0, as Fig. 8(!) indicates, and the same happens to the disturbance flow
close to the bubble surface (see e.g. the profile corresponding to Re = 100 in Fig. 7(b)). These conclusions reverse
when the bubble leads the fluid, so that the surface vorticity and streamwise velocity disturbance are lowered for x < 0
and enhanced for z > 0, in line with the distributions displayed in Figs. 8(j) and 7(b). Again, the wall plays little role
in these mechanisms as far as the Reynolds number is large. More specifically, for Re = 500, Fig. 8(j) indicates that
the flow region in which the vorticity originating from the bubble surface takes significant values is disconnected from
the wall shear layer when Sr is negative, while there may be some weak connection between the two regions when Sr is
positive (Fig. 8(1)), owing to the bending of the wake toward the wall.

As the Reynolds number decreases, viscous effects tend to attenuate the efficiency of the inviscid vortex tilting mechanism
described above. This is why the bending of the surface vorticity distribution in the wake becomes weaker at Re = 100
(Figs. 8(g) and (4)). At the same time, the boundary layers thicken, so that the flow near the lower edge of the vortical
region in the near wake starts to interact significantly with the wall shear layer, just as it does in the un-sheared case.
This interaction strengthens as the Reynolds number decreases (Re = 10 and 0.1), making the situation combine effects
of the wall-induced asymmetry with those of the shear-induced asymmetry within the wake itself. As the wall-induced
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and shear-induced lift mechanisms both result in a force directed toward « > 0 if Sr is positive (Fig. 1(c)), they act
together to yield an enhanced repulsive force in this case, as reflected in (10b). Conversely, they produce antagonistic
effects if Sr is negative (Fig. 1(d)), which yields a reduced transverse force. Regarding viscous effects, the mechanisms
described above indicate that the wall interaction tends to reduce the spanwise vorticity in the gap, while the excess
surface vorticity resulting from the presence of the shear tends to enhance (resp. reduce) it when Sr is positive (resp.
negative). The two effects just do the opposite on the free side of the bubble. For this reason, the top-bottom asymmetry
of the wy-vorticity distribution existing in the un-sheared case is lowered (enhanced) by the shear if the bubble lags
(resp. leads) the fluid. This is why the drag is decreased (resp. increased) by the shear for positive (resp. negative) Sr,
as (10a) confirms.

VI. HYDRODYNAMIC FORCES ON THE BUBBLE

In this section, we discuss variations of the drag and lift forces on the bubble revealed by numerical data in the light
of the basic mechanisms described in Sec. V. Most of these data cover the range 0.1 < Re < 500, |Sr| < 0.5, but some
correspond to higher Reynolds number or shear rate. We found such larger values useful to determine the dependence
of several contributions with respect to Re, Sr and Lgr in the high-Reynolds number range. Note that, following earlier
studies aimed at revealing fundamental mechanisms rather that sticking to specific experimental conditions, we vary
arbitrarily Re, Sr and Lg without considering whether or not a real bubble would remain approximately spherical in a
given fluid under such conditions. In all cases, we make use of the numerical data to derive semi-empirical models valid
either in the low-to-moderate or moderate-to-large Re-range. Then we combine these models to propose empirical fits
valid at arbitrary Reynolds number.

A. Fluid at rest at infinity
1. Drag

The validity of the low-Re approximation for the wall-induced drag correction in the low-but-finite Re regime was
confirmed during the validation of the numerical approach (see (Ala) and Fig. 21(a) in Appendix A). Hence the
primary focus here is on the behavior of the drag coefficient C’EL(R@, Lg) at moderate-to-high Re. To appreciate the
modification of the drag force due to the wall influence, we compare C})), to its counterpart in an unbounded flow,
CHo- The relative drag change ACY, = (CY, — C5y)/Ch, is plotted in Fig. 11(a). Beyond Re = 100, this figure
reveals a clear increase, with both the Reynolds number and the inverse of the separation distance, L§17 of the relative
influence of the wall on the drag. In that range of Reynolds number, the relative drag increase becomes significant
only for Lr < 2. We are not aware of any theoretical prediction available for ACY, in the limit of very large Reynolds
number. In contrast, the case of a spherical bubble rising along the axis of a circular pipe was considered in [59], where

it was established asymptotically (for both Lg > 1 and Re > 1) that ACY), ~ 1'6L§3 + 0.2Rel/2L§9/2. The Lﬁg—drag
increase is a confinement effect, the vanishing of the fluid normal velocity at the pipe wall enhancing the local strain
in the flow disturbance throughout the fluid. The Re!/ 2L1§9/ Zincrease results from the wall boundary layer within
which the dominant velocity gradient varies as Re!/2. Due to the sharp decrease of the latter contribution with Lg, its
influence is significant for large enough Re only. Conversely, it eventually becomes dominant whatever Lg provided Re is
large enough. Although the geometrical configuration considered here differs from that in [59], the physical mechanisms
responsible for the drag increase remain qualitatively unchanged. For this reason, we sought an empirical expression for
AC]\DAL in the above form, adjusting both the pre-factors and the exponents to the numerical data. Fitting the numerical
results independently in the range 20 < Re < 50 (resp. Re > 50) to determine the Re-independent (resp. dependent)
contribution, yielded

ACE, (Re > 1) & 04TLg" +5.5 x 10° Ly Re/* (20)

Figure 11(a) shows that (20) compares well with the DNS data for Re 2 50. The surprising feature in (20) is that the
separation distance and Reynolds number appear with exponents significantly different from those found in [59]. We
carried out extensive tests to make sure that these findings are not due to an insufficient grid resolution. In particular
we increased the number of nodes Ny, between the bubble and the wall up to 40 (resp. 60) for Ly = 1.5 (resp. 2),
and the number of nodes N, in the radial direction up to 108 without observing any significant change in the drag and
lift forces. This makes us confident that the results displayed in Fig. 11(a) are truly grid-independent. Also, since the
relative drag variation induced by the wall boundary layer is still small for Lr = 2 and 1.5 (it only amounts to 9% for
Ly = 1.5 and Re = 10?), we ran additional computations for Lg = 1.25, a shorter separation distance at which this
effect is significantly larger. As the brown line in Fig. 11(a) reveals, (20) still closely follows the corresponding data,
confirming that this fit is robust whatever Ly within the range of Reynolds number we explored. This does not imply
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FIG. 11. Relative wall-induced drag correction ACY, for a bubble translating parallel to a wall in a fluid at rest. (a): high-Re
regime; (b): entire Re-range investigated numerically. Symbols: numerical data; solid lines: high-Re expression (20); dash-dotted
lines: low-Re expression (Ala); dashed lines: low-to-moderate-Re expression (22); dotted lines: composite fit (23).

that it is asymptotically correct in the limit Re — oo, and there are indications that it is not. Consider the situation in
which the wall is replaced by a symmetry plane, which corresponds to the case of a pair of identical bubbles rising side
by side. No boundary layer exists along the symmetry plane, and the drag modification in the limit Re — oo is then
just a consequence of the non-penetration condition across this plane. In the inviscid limit, this condition generates
an O(Lg*)-increase in the relative velocity U,..;, which in turn yields an O(Lz®) relative drag increase [48]. However,
numerical data provided in [48] show that, for Ly < 1.5, ACI%‘L still increases with the Reynolds number up to Re ~ 500
before becoming Re-independent. Consequently the asymptotic regime in which ACY, no longer depends on Re is only
reached for very large Reynolds numbers. Here, as previously mentioned, the “Re-independent” contribution to (20)
was determined from data corresponding to Reynolds numbers of some tens because this is the range where the wall
boundary layer effect is still negligibly small. However, viscous effects are still present in this Re-range, as the above
example revealed. This is confirmed by Figs. 8(h) and 10(b) which show that, for Ly < 2, the vortical region round the
bubble directly interacts with the wall boundary layer at such moderate Reynolds numbers. This interaction is much
weaker when Re = 500 (Figs. 8(k) and 10(e)), suggesting that the ultimate behavior corresponding to Re — oo is only
reached for Re = 500.

Figure 11(b) displays the relative drag increase throughout the range of Reynolds number explored in the simulations.
Examination of the low-to-moderate-Re range indicates that (Ala) under-predicts the drag increase at small separations
as soon as the Reynolds number is beyond the range 0.2 — 0.5 (see also Fig. 21(a)). Following [13], this prediction
may be improved by noting that the drag increase at low-to-moderate-Re is proportional to the square of the maximum
vorticity at the bubble surface. Variations of this quantity with the Reynolds number are empirically expressed by the
fitting function b(Re) in (16a). However, we found that a more accurate fit of the DNS data reported in [50] is provided
by

b(Re) = 1 + tanh(0.012Re”®) 4 tanh(0.07Re"®). (21)

Making use of (21), we then extend (Ala) toward moderate Reynolds numbers by expressing the drag increase in the
form

ACY (Re = 0(1)) = fhb*(Re)ACY:™ (22)

with CY-in and ff; as given in (10a) and (12a), respectively. As Fig. 11(b) shows, this expression allows an accurate

prediction of ACY up to Re &~ 2. Obviously neither (22) nor (20) is accurate in the intermediate range 2 < Re < 20.
Nevertheless, a simple fit may be obtained by combining empirically the above two models in the form

ACY (Re) =~ ACY,(Re = O(1)) + cpusc ACY,(Re > 1),  with cpyeo = 1 — e %07, (23a, b)

As Fig. 11(b) shows, this composite expression correctly reproduces the computed drag variations throughout the entire
range of Reynolds number.
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FIG. 12. Lift coefficient on a bubble translating parallel to a wall in a fluid at rest. (a) High-Reynolds-number range 10? < Re <
10%. Comparison of numerical results (symbols) with the potential flow prediction (17) (solid lines), and the high-Re prediction
(18) including the Re™! vortical contribution (dotted lines). (b) Complete Re-range 10~ < Re < 10®. Comparison of numerical
results (symbols) with the low-to-moderate Re semi-empirical model (24) (dashed lines), the high-Re prediction (18) (dotted
lines), and the composite model (solid lines).

2. Lift

Similar to wall-induced drag variations, the validity of the solution based on the combination of (10b) and (12b) for
the transverse (lift) force coefficient in the low-but-finite Re regime was confirmed during the validation of the numerical
approach (see (A1b) and Fig. 21(b) in Appendix A). For this reason, we first discuss the behavior of CV (Re, L)
in the high-Re range 102 < Re < 103, before examining the variations of the transverse force at arbitrary Reynolds
number. Figure 12(a) compares the numerical data obtained for C}Y, in that range with the irrotational prediction (17).
The agreement is excellent as soon as the Reynolds number is large enough (Re = 300) and the separation distance
is small enough (Lr < 4). The viscous effect associated with the asymmetry of the boundary layer surrounding the
bubble, which yields the correction (18), becomes significant at smaller Re, where it lowers the negative (i.e. attractive)
transverse force. Numerical results also confirm the sharp decay of the transverse force when Ly increases, as predicted
by (17), which makes the attractive effect negligibly small for dimensionless separations larger than a few units.

Figure 12(b) shows how C}Y, (Re, Lg) varies with the Reynolds number throughout the range 107! < Re < 103. In line
with experiments reported in [6], the transverse force is found to switch from positive (i.e. repulsive) to negative (i.e.
attractive) in the range 40 < Re < 60, depending on Lg; the smaller Lg the lower the critical Reynolds number at which
CW changes sign. At low Reynolds number, numerical data indicate that C)Y, — 1/2 for L 2 4, in agreement with the
asymptotic prediction (10b). Higher-order terms in (10b), which represent effects of the bubble finite size, somewhat
lower the transverse force when the bubble gets very close to the wall, owing to the negative sign of the L§2-contribution;
numerical results confirm this trend (see especially the data set corresponding to Lr = 1.5). However, the increase of
C’E‘; with increasing Ly at a given Re is not monotonic, as may be seen by spotting values of Lr for increasing values
of CIYZ at Re = 0.1 and 1. This is because, beyond a certain Lg, the wall stands in the outer region of the disturbance,
as illustrated in Fig. 3. Then, since Ly = LrRe/2, inertial effects due to the wall influence, which are at the root of
the wall-induced lift force, start to decrease as L increases, in agreement with (12b). This is also the origin of the
large decrease of the lift force with Re observed at every separation distance in the Reynolds number range where the
flow disturbance gradually switches from the low-Re regime to the moderate-Re regime; e.g. in the range 1 < Re < 30
for L = 1.5 and 0.1 < Re < 10 for Lr = 8. In [6], the semi-empirical expression (15) was proposed to estimate the
transverse force for moderate separations and Reynolds numbers, typically Lg = 2 and Re = O(10). This expression
accounts for the variations of the vorticity magnitude at the bubble surface as a function of Re through the empirical
function b(Re) given in (16a). In contrast, it does not account for the aforementioned finite-size effects which become
important for small separations, as it makes use of the prediction for CWV-°"*(Re < 1) resulting from (11b), in which
the bubble is treated as a point-force. To improve this aspect, we heuristically replace C’E\L‘O“t(Re < 1) in (15) by
CV (Re < 1) &~ f{CN-n as given in (A1b), so that (15) becomes

Ofn(Re = O(1 - 10)) ~ b*(Lr/3)* fLOL, ™, (24)

with CWV-n) f/ b and g as given in (10b), (12b), (21) and (16), respectively. The prediction of (24) (dashed lines in
Fig. 12(b)) is found to agree well with the DNS data up to Re & 10. For practical purpose, we sought an empirical
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FIG. 13. Transverse force on a bubble translating parallel to a wall in a fluid at rest in the range 0.6 < Re < 300 according to
various sources. Solid line: composite model (25) involving the low-to-moderate-Re model (24)-(21); dashed line: low-but-finite-Re
outer solution (12b); O: experimental data from [13] and [6]; *: numerical data from [9].

composite model similar in essence to (19), capable of fitting the variations of CYY, throughout the explored range of
Reynolds number. In (19), the high-Re viscous contribution which makes C\V (Re > 1) differ from C}Y,(Re — o) (see
(17) and (18)) was not considered, since the experiments reported in [6] were all run at Reynolds numbers less than
100. However, as Fig. 12(a) shows, this viscous effect is significant for Re = O(100). We found that the simplest way
in which the various contributions may be combined while respecting the proper asymptotic behaviors and having a
limited impact out of their own range of validity reads

OV~ OY.(Re = O(1 —10)) + cr1 [Cry(Re — 00) + eraRe Ly, (25a)
with cpi(Re) =1 — e 022R"® (/0 (Re) = 15tanh(0.01Re) . (25b)

As shown by the solid lines in Fig. 12(b), this empirical fit agrees well with the numerical data throughout the explored
range of parameters.

To further test the capabilities of the above composite model, Fig. 13 compares its predictions with available numerical
and experimental data taken from other sources. These data were obtained by considering bubbles with different
diameters and changing the separation distance for each of them. This is why each series plotted in the figure corresponds
to a fixed Reynolds number and varying L, = (Re/2)Lr (Lg varies from 2.5 to 10 in the reported experiments, and
from 1.2 to 20 in the computations). As expected, low-Re data approach the outer solution (12b) as L,, becomes of O(1)
(consider especially the series corresponding to Re = 0.6). The transverse force decays more slowly than predicted by
this solution when the Reynolds number is of O(1 — 10). As discussed in [6], this is primarily an effect of the finite-Re
increase of the vorticity produced at the bubble surface, which is reflected in the above fitting function b(Re). Last, the
transverse force changes sign for a critical Reynolds number of some tens, as it becomes dominated by the irrotational
mechanism when viscous effects are small enough. The composite model (25), which improves over the original model
(19) proposed in [6], is seen to properly capture these successive features.

B. Linear shear flow

We now perform the same type of analysis in the more complex situation where the effects of a constant shear combine
with those of the wall.

1. Drag

Results for the drag change ratio ACY = (CY — C§,)/CY, obtained in the low-but-finite Reynolds number regime,
0.1 < Re < 2, with a dimensionless shear rate Sr = +0.5 are plotted in Fig. 14 for different separation distances.
Results found with smaller shear rates behave similarly. Clearly, the shear-induced drag modification is negligibly small
compared with that due to the wall effect when Ly exceeds a few units. For the smallest two separations, the shear
is found to increase (resp. reduce) the drag when the bubble leads (resp. lags) the fluid, in line with the qualitative
discussion provided at the end of Sec. V. The solution (10a) assuming that the wall stands in the inner region of
the disturbance shows good agreement with numerical results at Re = 0.1 but, not surprisingly, overestimates them
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FIG. 14. Relative near-wall drag increase ACY for a bubble translating parallel to a wall in a linear shear flow in the low-but-
finite Reynolds number regime for Sr = +0.5. Symbols: numerical results for Sr = 0.5 (O), and Sr = —0.5 (O). Dashed lines:
asymptotic prediction (10a) corresponding to conditions L, < 1, L, < 1; solid lines: semi-empirical model (26). Thick (resp.
thin) lines correspond to positive (resp. negative) Sr.

at higher Reynolds number. No explicit counterpart of the theoretical solution (11a) exists when the shear is nonzero
and the wall stands in the outer region of the disturbance. However the relative influence of the shear is always small
under the conditions considered here (at Re = 0.1, the relative variation of ACY is approximately 8% for Sr = +0.5
compared to the un-sheared case Sr = 0). For this reason, we merely duplicate empirically the arguments employed in
the un-sheared configuration to derive (Ala) and (22), in order to obtain an estimate of the drag variation valid up to
Reynolds numbers of O(1). This yields

ACY (Re = 0(1)) ~ fb (LW (Re)ACY ™, (26)

with ACY™, f5(L,) and b(Re) as given in (10a), (12) and (21), respectively. As the solid lines in Fig. 14 show, the

corresponding predictions properly follow the numerical data up to Re =~ 2.

To analyze results obtained in the moderate-to-high-Re range, we first consider the unbounded configuration in which
the generation of the lift force is dominated by the inviscid vortex tilting mechanism described in Sec. V. Figure 15
shows how the relative drag change ACY_(Re, Sr) = (C§_(Re, Sr) — CY,(Re))/C(Re) varies with both the Reynolds
number and the dimensionless shear rate. Symmetry considerations imply that ACY_ (Re, Sr) cannot depend on the sign
of Sr, which numerical results confirm. If the carrying flow were irrotational, one would expect the relative drag increase
to be proportional to Sr? and independent of Re in the limit Re — oo, since boundary layer effects are negligibly small in
this limit. This may be confirmed by evaluating theoretically the drag experienced by a spherical bubble translating in a
pure axisymmetric straining flow of the form u., = —3(ve, +ye,)+ (vz—V)e.. As there is no wake in that case in the
limit Re — oo, the work produced by the drag force exactly balances the dissipation in the entire flow [58]. Evaluating
this dissipation yields ACJ, (Re — oo, Sr) = 2Sr®, with Sr = vd/|V|. The situation is drastically different in the linear
shear flow of interest here, since the disturbance is not irrotational and a wake made of the two counter-rotating trailing
vortices discussed in Sec. V extends to infinity downstream of the bubble. This configuration is similar to that of a wing
of finite span, on which the trailing vortices are known to produce a lift-induced drag force proportional to the square
of the lift force [58]. This additional drag is a second-order effect due to the interaction between the upstream vorticity
and the vortex-induced velocity disturbance induced by the trailing vortices, here proportional to yd. Consequently, it is
proportional to pd*y?2, yielding an increase in the drag force proportional to Sr? deUfel, hence a relative drag variation
ACY,, proportional to Sr’Re since CS, o Re~! in this regime. Based on this analogy, we sought a fit of the results
displayed in Fig. 15 in the form ACY, o [Sr|™Re™ and obtained

ACS,(Re>> 1) ~ 2 x 1073|Sr|*°Re, (27)

which is seen to properly capture the trends revealed by numerical results. The fact that the Sr-exponent in (27) is
slightly lower than predicted in the inviscid lift-induced drag scenario is presumably a finite-Reynolds number effect
that subsists in the limited Re-range considered in present simulations.

Now we need to evaluate how much the above results are altered when the bubble gets close to the wall. Based on Figs.
8(j) and (1), one expects this alteration to be fairly weak, since the wall boundary layer is thin in the considered Re-range,
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FIG. 15. Relative drag variation ACY,, for a bubble translating at moderate-to-high Re in an unbounded shear flow, with reference
to the drag in a uniform stream. (a) influence of the Reynolds number; (b) influence of the shear rate. In (a): numerical results
for Sr > 0 (O), and Sr < 0 (O). In (b) numerical results for Re = 500 (O), and Re = 300 (O). Solid line: prediction of (27);
dashed line: prediction of (9a) taken from [8]; x: numerical results from [8].
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FIG. 16. Influence of the wall-shear interaction on the relative drag increase for Re > 100. Symbols: numerical values of the
difference between the relative drag variation in the presence of wall and shear (ACY), and the sum ACY, + ACB,, of the relative
drag variation in the presence of the wall for Sr = 0 (ACY,,), and the relative drag variation in an unbounded shear flow (ACS,,).
Solid (resp. dashed) lines: empirical expression (28) for Sr > 0 (resp. Sr < 0).

and to depend on the sign of Sr, owing to the bending of the bubble wake towards (resp. away from) the wall for positive
(resp. negative) Sr. To clarify the magnitude of the wall-shear interaction, we computed the difference between the
actual drag variation in the near-wall configuration, ACY (Re, Sr, Lr), and the sum ACY, (Re, Lr)+ ACY, (Re, Sr) of
the two contributions discussed above. This difference, say AC’B\ZJ_U(Re > 1), is displayed in Fig. 16. The results show
that it is negligibly small whatever the Reynolds number and for both shear rates for Ly > 2. In addition to Ly = 1.5,
we ran computations for Lg = 1.25 in order to determine the sharp decrease of AC’B\{;U(Re > 1) as the separation
increases. Figure 16 indicates that AC&TU(Re > 1) grows linearly with Sr and is positive (resp. negative) when the
bubble lags (resp. leads) the fluid. This was expected on the basis of Figs. 8(j) and (1), since the interaction between
the wake and the wall is stronger when Sr is positive, due to the bending of the wake towards the wall. Based on DNS
data, variations of ACY ~Y(Re > 1) with Ly and Re are found to be correctly fitted in the form

ACYU(Re > 1) ~ 0.05L5/*SrRe/? o

Again, the above fit is grounded on a limited set of data obtained in the range 50 < Re < 10%. Hence it is presumably
not relevant in the limit Re — co. Nevertheless, up to Re ~ 103, the above decomposition allows us to model the entire
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FIG. 17. Relative near-wall drag increase ACY (Re, Sr,Lr) for a bubble translating parallel to a wall in a linear shear flow
throughout the Re-range investigated numerically. (a) Sr = £0.2; (b) Sr = £0.5. O and O: numerical data for Sr > 0 and Sr < 0,
respectively. Thick (resp. thin) solid lines: high-Re expression (29) for positive (resp. negative) Sr; thick (resp. thin) dashed
lines: low-Re expression (26) for positive (resp. negative) Sr; thick (thin) dash-dotted lines: composite fit (30) for positive (resp.
negative) Sr.

wall-induced drag correction in the moderate-to-high-Re regime in the form
ACY (Re > 1) ~ ACY, (Re > 1) + ACT,,(Re > 1) + ACY, V(Re > 1), (29)

where the three contributions in the right-hand side are provided by (20), (27) and (28), respectively.

Figure 17 finally presents all numerical results obtained throughout the range 0.1 < Re < 10° together with the
corresponding predictions based on the semi-empirical expressions established above. Comparing the two panels, which
only differ by the magnitude of Sr, reveals that the shear has only a secondary influence on the drag increase up to
Reynolds numbers of O(102). In that range, shear-induced drag variations do not exceed 10% of the total drag increase
for St = 40.5. This is in contrast with the behavior observed at higher Reynolds number, where ACY (Re = 500)
is found to be twice as large for Sr = 4+0.5 than for Sr = 4+0.2, owing to the large influence of the lift-induced-drag
contribution (27). Clearly, the sign of St has only a small influence on ACY at moderate-to-large Re, as the shear is seen
to increase the drag in all cases. In other words, the sign-dependent correction ACSZ:U resulting from the wall-shear
interaction is always small compared to lift-the induced-drag contribution ACY_(Re > 1). Interestingly, comparing
ACY in two flow configurations differing only by the sign of Sr, it turns out that the drag increase is slightly larger at
low Reynolds number when the bubble leads the fluid (Sr < 0), in agreement with (10a). However, the reverse holds at
large (and even moderate) Reynolds number. In a way similar to (23), one may seek an empirical expression combining
linearly ACY (Re = O(1)) and ACY (Re > 1), as respectively given by (26) and (29), to improve the estimate of the
drag increase in the intermediate range 2 < Re < 20. As the dash-dotted lines in Fig. 17 show, the composite expression

ACY (Re) = ACY (Re = O(1)) + ¢pwoc ACY (Re > 1) with ¢pye = 1 — e 007Fe (30)

correctly fits the DNS data throughout the entire range of Reynolds number.

2. Lift

The computed lift coefficient C}V(Re, Sr, Lg) in the low-but-finite Reynolds number regime is plotted in Fig. 18
for various normalized shear rates and separation distances. Numerical values corresponding to Ly < 2 only slightly
change with increasing Re up to Re ~ 0.5, which provides an indication that the wall lies in the inner region of the
disturbance in the corresponding (Re, Ly )-range. To properly interpret variations of CIYV at larger Reynolds numbers and
separation distances, it is important to keep in mind that, since Sr is kept constant, increasing Re makes ¢ = (Sr/ Re)l/ 2
decrease from left to right in each series. Consequently, for a given Lg, the larger Re the smaller the shear-induced lift
force. The wall-induced contribution is also a decreasing function of the Reynolds number, since it depends directly
on L, = %LRRe and sharply decreases when L, becomes of O(1) or larger in the shearless case, as shown in Fig. 6.
Since the two contributions cooperate when the bubble lags the fluid, their variations as Re increases reinforce each
other, making the total lift force decrease sharply as soon as the wall stands in the outer region (see e.g. the data sets
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FIG. 18. Variations of the lift coefficient C}¥ (Re, Sr, Lr) for a bubble translating parallel to a wall in a linear shear flow in the
low-but-finite Reynolds number regime with (a) Sr = £0.2 and (b) Sr = £0.5. O (resp. O): numerical data for Sr > 0 (resp.
Sr < 0). Dashed lines: asymptotic prediction (10b) corresponding to conditions L, < 1, L, < 1; dotted lines: fit (13) of the
asymptotic prediction corresponding to conditions L, > 1, L, > 1; solid lines: semi-empirical model (31) taking into account
finite-size effects.

corresponding to Lr = 4 and 8 in the top left panel of Fig. 18). Conversely, these variations tend to compensate when
the bubble leads the fluid, which mitigates the C}V variations (consider the same two data sets in the bottom left panel,
where these variations virtually cancel each other up to Re = 1, resulting in an almost Re-independent total lift force).
Keeping Re and Sr constant, the influence of the separation distance is closely related to the successive behaviors of
the shear-induced contribution as L,, and L, increase. Indeed, as (10b) shows, this contribution grows linearly with Lg
when the wall stands in the inner region. It grows more slowly when it stands in the outer region, until it reaches a
constant value for large enough separations (this evolution is reflected in the Ay, function involved in (14); see also figures
4, 6 and 8 in [28]). Because of this gradual evolution, different behaviors of the total lift force are observed in Fig. 18.
As far as the wall stands in the inner region or close to it, variations of C}¥ with Ly are dominated by the nearly linear
growth of the shear-induced contribution. Consequently, the lift force increases (resp. decreases, possibly changing sign)
with increasing Ly when Sr > 0 (resp. < 0). This is the behavior observed for Re < 0.5 (resp. < 0.8) with Sr = £0.2
(resp. £0.5). For larger Reynolds numbers, variations of the shear-induced contribution (which depends on Ly through
L, and L) become weaker, so that the overall variation of the total lift force with Lg is mostly controlled by that of
the wall-induced contribution (which depends on Ly through L,). Since this contribution weakens dramatically as L,
increases, the magnitude of the total lift force decreases, irrespective of its sign. When Re, Sr and Ly (hence L,, and
L,,) are large enough, the wall-induced contribution becomes negligibly small, so that the total lift force reduces to the
shear-induced contribution. In this situation, C’EV takes opposite values when the sign of Sr is reversed while Re and
Ly are kept constant. This is what happens when the three parameters in Fig. 18 reach their maximum, i.e. Lg = 8,
Re = 2 and Sr = £0.5. Indeed, the corresponding DNS data in the right two panels indicate C}¥ ~ 40.54, depending
on the sign of Sr. Interestingly, figure 18 of [8] indicates CY (Re = 2, Sr = 0.5) ~ 0.56 in an unbounded flow. Thus
it can be concluded that the wall virtually no longer influences the lift force for the considered set of parameters, i.e.
L,=8and L, =4.

The asymptotic expression (10b) corresponding to situations in which the wall stands in the inner region of the
disturbance (dashed lines in Fig. 18) closely predicts the computed lift force for small enough Lgr and Re, typically
Lyr < 4 and Re < 0.2 for both shear rates. Not surprisingly, the agreement deteriorates as Lr or Re increases, owing to
the increasing influence of inertial effects through L, and L. Overall, the approximate fit (13)-(14) of the asymptotic
solution obtained in the case the wall stands in the outer region of the disturbance (dotted lines in Fig. 18) properly
accounts for these effects. A closer look reveals that the corresponding prediction is in good agreement with the DNS
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FIG. 19. (a) Effect of the shear-wall coupling on the lift force in the high Reynolds number regime. (a) Symbols:
ACY(Re, Sr,Lr) = CYY (Re, Sr, Lr) — CL,(Re > 1) — CY,(Re > 1). (b) Performance of the shear-wall coupling model (32a, b)
estimated through the normalized difference ews = [CYY (Re, St, Lr) — Ct¥ (Re > 1)]/[|CL,|(Re > 1) + |CYY|(Re > 1)].

data obtained for Ly = 8, at least up to Re = 1, but increasingly deviates from the computational results as Ly
decreases. This is no surprise, as (14) is based on the outer solution of [28], which is valid only in the limit of large
separations. Indeed, (14) approaches the leading-order expression of the asymptotic solution (10b) in the double limit
L, — 0 and L, — 0, but does not account for the finite-size effects which affect both the wall-induced and the shear-
induced contributions. This limitation may be overcome by modifying heuristically (13)-(14) in a way similar to that
employed to obtain (24) in the un-sheared case. That is, the outer solution C}¥°"*(Re < 1) for the wall effect may be
replaced in (13) by the mixed expression CV (Re < 1) & f; C\WV-in (see (A1b)), and the hy,(L,,,¢) weighting function in
(14) may be substituted by a function hi (L, e, Lr) incorporating finite-size effects and tending towards hr (L, €) for
large separations. Instead of (13)-(14) one then has

1271 5 —

CVRe < 1) ~ fLlV (Re < 1) + W.CY (Re < 1) with R (Lu,e,Lg) =1 — ¢ %7 ntg(IHEla' =585 (31)

with fr(Ly,¢) still given by the first of (14). With these modifications, the semi-empirical model (31) approaches the
complete asymptotic solution (10b) when L, — 0 and L, — 0 (with the exception of the Sr*-term, usually much smaller
than the Sr-term as far as Sr < 1), while the initial approximation (14) of the outer solution is recovered in the limit
Ly > 1. Compared to (13)-(14), the predictions of (31) (solid lines in Fig. 18) exhibit a significantly better agreement
with numerical results when Ly and Re decrease.

Let us now examine the behavior of the lift force in the high-Reynolds-number range. At large enough separations, the
wake past the bubble does not interact significantly with the wall, so that the lift coefficient must approach CY_(Re > 1)
as given in (9b). When the bubble gets close to the wall, two distinct interaction mechanisms come into play. One is
due to the bubble translation, and would yield the attractive transverse force discussed in Sec. VI A 2 in the absence of
shear. The other is due to the interaction of the shear-induced vortex structure past the bubble, especially the trailing
vortices which dominate the wake, with the wall. This is similar to the ground effect known to increase the lift force on
an aircraft flying very close to the ground. To quantify this second effect, the difference between the actual lift coefficient
CYV(Re, Sr,Lg) and the sum CY_(Re > 1) + C}Y (Re > 1) (the latter as given in (18)) is plotted in Fig. 19(a). This
figure shows that this difference, say AC}Y, is small for Lg > 2 but becomes significant at smaller separations, sharply
increasing as Lgr reduces. As expected from the above analogy, AC}V is positive (resp. negative) for Sr > 0 (resp.
Sr < 0) and is linearly proportional to Sr. Note that the sign of AC}V is in line with what may physically be expected
from Fig. 8(j — 1), given the direction in which the wake bends for positive and negative Sr, respectively. ACY is also
seen to be a slowly decreasing function of Re, an effect which may be attributed to the wall boundary layer. Based on
these observations, and fitting the numerical data of Fig. 19(a), we model the total lift coefficient in the form

CVRe> 1) =0 (Re> 1) + O, (Re>> 1) + ACYY (Re > 1), (32a)
ACY (Re > 1)

= Iws ~ acLs/?(1 + bgRe~ %), wh ~0.23 and bg~13. 32b
U Re> 1) ws ~ agLg /7 (1+bgRe ), where ag an e (32b)

with
The performance of this model is assessed in Fig. 19(b) by computing the difference CY¥(Re, Sr, Lr) — C}V (Re > 1)
between the numerical value of the lift coefficient and the estimate provided by the model (32a,b). This difference is
normalized by |CP_|(Re > 1) +|CY|(Re > 1), the sum of the estimated magnitudes of the two dominant contributions
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FIG. 20. Lift coefficient CY (Re, Sr, Lr) for a bubble translating parallel to a wall in a linear shear flow throughout the Re-range
investigated numerically. (a) Sr = £0.2; (b) Sr = £0.5. O (resp. O): numerical data for Sr > 0 (resp. Sr < 0). Solid lines:
high-Re prediction (32); dashed lines: low-Re prediction (31); dotted lines: composite expression (33); black dash-dotted line:
moderate-to-high-Re behavior predicted by (9b) in an unbounded shear flow.

to the transverse force. The normalized difference, ews, is found to be only a few percent in all cases, confirming that
the above model captures the main characteristics of this interaction mechanism.

Figure 20 gathers the complete set of numerical results for the lift coefficient C}¥ obtained in the range 0.1 < Re < 103.
Clearly, most of the variations of the lift force with respect to both the Reynolds number and the separation distance
take place for Re < 10. At higher Reynolds numbers, discernible variations with the separation distance only subsist
for Lr < 2. For larger separations, the magnitude of the lift force becomes close to that found in an unbounded flow,
as predicted by (9b). Interestingly, for Sr = —0.2, the lift force changes sign at a critical Reynolds number in the range
3 < Re < 15 when the separation decreases from Lg = 4 to Lg = 1.5. This feature implies the existence of an equilibrium
position of the bubble, resulting from a balance between the wall- and shear-induced lift components. Indeed, only the
repulsive transverse force associated with the low-to-moderate-Re wall effect produces a positive transverse force in this
case. This force may dominate the attractive shear-induced lift, provided Lgr and Sr are small enough, which yields the
above change of sign. No such feature is observed for Sr = —0.5, since the negative shear-induced component is always
dominant, even at small separations. Note that another equilibrium position, not encountered in Fig. 20, exists at large
Reynolds number with weak positive shears and small separations. Indeed, balancing the dominant contributions in
(17) and (9b) in the limit Sr — 0%, Re — oo implies that the transverse force vanishes for Lg ~ (3/4)Y/28r™ /4, i.e.
Ly =~ 1.3 for Sr = 0.2. The predictors of this equilibrium position may be discerned in the panel of Fig. 20 corresponding
to Sr = 0.2, as the lift coefficient exhibits only small positive values at large Reynolds number, and these values are
significantly decreasing with Lg.

Predictions based on the low-Re model (31) and the high-Re model (32) are displayed in Fig. 20. These predictions
are seen to properly follow numerical results for Re < 2 and Re = 20, respectively. To fill the gap in which none of
these models apply, we empirically combine linearly the composite model (25) for the wall-induced transverse force with
a second composite model for the shear-induced contribution, providing a smooth variation from the low-Re expression
(31) to the high-Re expression (32). Following this approach, the resulting composite fit reads

CYV(Re, Sr, Lg) = CYY (Re, Sr, Lr) + C}",(Re, St, LR) (33)
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with

CYW (Re,Sr,Lr) = fr.f{b*(Lr/3)!Cry™ + cr1 [T (Re — 00) + epaRe T Ly, (34a)
CYW (Re, Sr, Ly) ~ h;.CP (Re < 1) + cr3(Re)(1 4 Iws)CL, (Re > 1) with cp3(Re) =1 —e 3% (34D)

where Iws is given in (320). Figure 20 shows that this fit accurately follows the variations of the lift coefficient throughout
the range of Re, Sr and Ly covered by the simulations. Although it involves several empirical functions which depend
on Ly, Ly, L, and Re, it properly reduces to the relevant asymptotic expression in the various possible limits Sr — 0,
Re<1,Re>1and Lg > 1.

VII. SUMMARY AND CONCLUSIONS

In this paper we reported on a numerical study of the drag and lift forces acting on clean spherical bubbles rising

along the wall of a wall-bounded linear shear flow. We considered flow configurations with the bubble either lagging or
leading the fluid, so as to explore cooperative and antagonistic interactions between the wall- and shear-induced effects.
With the selected range of wall distances, situations with the wall lying in either the inner or the outer region of the
disturbance were both covered in the low-Reynolds-number regime. The selected Reynolds number range allowed us to
consider situations dominated by viscous effects as well as nearly inviscid flows. In both asymptotic regimes, systematic
comparisons with available analytical solutions were carried out.
For bubbles rising in a fluid at rest, low-Reynolds-number asymptotic solutions predict a drag increase due to the
presence of the wall. Additionally, a repulsive transverse force takes place, due to the interaction between the wall
and the wake resulting from the vorticity generated at the bubble surface by the shear-free condition. For a given
separation distance, the magnitude of this repulsive force decreases with the Reynolds number when the wall lies in the
outer region of the disturbance. At low-but-finite Reynolds number, both the drag increase and the transverse force are
proportional to the square of the maximum vorticity at the bubble surface, which increases with the Reynolds number.
Present computational results confirm these predictions, and support the model proposed in [6] for the prediction of
the transverse force at low-to-moderate Reynolds number, albeit with some changes in the empirical coefficients. At
higher Reynolds number, the boundary layers originating at the bubble surface and wall become thin and no longer
interact significantly. This makes the flow in the gap almost irrotational, which results in an attractive transverse force
as predicted by potential flow theory. However, an O(Re‘1L§4) viscous correction remains, and present results show
that it significantly reduces the attractive transverse force for Reynolds numbers of O(10%). A drag increase also exists
in the high-Reynolds-number regime but is significant only when the separation distance is small, typically Lr < 2.
This increase results from two separate mechanisms. On the one hand there is a ‘confinement’ effect imposed by the
non-penetration condition at the wall which induces an increase of the bubble relative velocity, hence a Re-independent
relative drag increase when the Reynolds number is large enough. On the other hand, the wall boundary layer resulting
from the no-slip condition provides a Re-dependent relative drag increase. In the limited Re-range considered here
(Re < 10%), we found these two effects to be proportional to L;f and L;{GRe?’/‘L, respectively. A point of caution,
however, is that although these scalings accurately fit the numerical data in the moderate-to-large Re-range investigated
here, various arguments suggest that they do not hold in the limit Re — oc.

Interactions between shear and wall effects have essentially been considered in the low-Reynolds-number range in the
available literature. In this regime, the solution of [4] valid when the wall stands in the inner region of the disturbance
indicates a decrease (resp. an increase) of the drag due to shear effects when the bubble lags (resp. leads) the fluid, while
the reverse holds for the transverse force. For this reason, the latter may switch from positive to negative at a given Ly
if the bubble leads the fluid and the magnitude of the shear is large enough. Computational results fully confirm these
predictions, both qualitatively and quantitatively. When the wall stands in the outer region of the disturbance, they
also confirm the corresponding theoretical predictions and their fit as proposed in [7]. Empirical expressions taking into
account finite-size effects have been established to estimate the drag increase and the lift force irrespective of the wall
position in the low-but-finite Reynolds number regime. Comparison with numerical results indicates that they provide
reliable predictions up to Re = O(1).

To disentangle the various effects at play in a wall-bounded shear flow at moderate-to-high Reynolds number, we
first considered the well-documented unbounded configuration. The underlying idea was to superimpose linearly the
corresponding results with those obtained in the wall-bounded situation in the absence of shear, in order to determine
the strength of interactions not taken into account in this crude superposition scheme. In the inviscid limit, the lift
and lift-induced drag forces on a bubble translating in an unbounded linear shear flow have the same origin as those
experienced by a wing with a finite span. The tilting of the upstream spanwise vorticity past the body results in a
horseshoe vortex in the wake, which, in the case of a sphere, yields a lift force with a coefficient of %Sr in the weak-shear
limit [25]. Similarly, the drag increase due to the interaction between the upstream vorticity and the vortex-induced
velocity disturbance in the wake causes a relative drag variation proportional to Sr?Re. Computational results in the
range 102 < Re < 10 essentially confirm these predictions, although finite-Re effects are still present at such Reynolds
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numbers and slightly decrease the Sr-exponent involved in the lift-induced drag correction.

When a nearby wall is involved, the presence of the horseshoe vortex makes the wall-shear interaction dependent on the
sign of Sr. Indeed, this vortex deflects the fluid located within the wake towards the wall or away from it, depending
on whether the bubble lags or leads the fluid. Since the interaction between the wake and wall is stronger in the former
case, the drag and total lift force are both increased (resp. decreased) when the bubble lags (resp. leads) the fluid.
Computational results confirm the various aspects of this scenario. They indicate that, for moderate-to-large Reynolds
numbers, say Re 2 100, the wall-shear interaction is significant only when the bubble moves very close to the wall,
typically for Lg < 1.5. As the Reynolds number decreases down to Re = 50, viscous effects gradually inhibit the
bending of the wake, reducing the overall repulsive (resp. attractive) force for Sr > 0 (resp. Sr < 0). At somewhat
lower Reynolds numbers, say 5 < Re < 50, the two boundary layers thicken, strengthening the interaction between the
wake and the wall shear layer if the separation distance is small. This results in an enhanced repulsive wall-induced
contribution to the transverse force, which increases (resp. decreases) the magnitude of this force when Sr > 0 (resp.
Sr < 0). For Re < 5, the picture becomes more complex because several mechanisms combine. First, the Saffman and
Oseen length scales grow as Re decreases in such a way that their ratio, ¢, also grows. For a given Sr, this variation tends
to increase the shear-induced lift force in the unbounded configuration (see Fig. 23(b)), because the role of the shear
increases at the expense of that of the relative velocity in the transport of the disturbance downstream of the bubble.
Then, in the wall-bounded configuration, the wake and wall shear layer are thick enough that they interpenetrate each
other some distance downstream from the bubble, even for separation distances as large as Lr = 8. Keeping Sr and
Re constant, the shear-induced lift mechanism experiences little change compared to the unbounded configuration if
Ly is large, and essentially combines linearly with the wall-induced effect corresponding to the shearless configuration.
Combining the above two arguments explains why, for a given Re, the lift coefficient experiences large variations when
Sr changes sign and Ly is large (consider the pink symbols corresponding to Lr = 8 in Fig. 20). However, as Ly
is decreased, the wall tends to inhibit the tilting of the upstream vorticity past the bubble. Hence the shorter the
separation distance, the smaller the fraction of the transverse force provided by the shear-induced contribution, so that
this force becomes dominated by the repulsive wall-induced contribution. This is why, if the bubble leads the fluid, the
shear has to be large for the transverse force to remain attractive (i.e. C}V < 0) when Re is of order unity or less and
Ly is small (red circles corresponding to Lr = 1.5 in Fig. 20).

Present numerical results help rationalize and quantify the various mechanisms reviewed above and the way they
interact, provided the bubble surface is clean and its shape is approximately spherical. In general, the influence of
deformation effects can drastically change the conclusions obtained with spherical bubbles. Let us just mention two
examples in the case of an unbounded linear shear flow. It was shown experimentally [60] that the lateral migration of
bubbles with equivalent diameters in the range 3 — 6 mm rising at moderate-to-large Reynolds number in highly viscous
fluids (water-glycerin mixtures) changes sign when the bubble deformation is large enough. Similarly, the simulations
in [43] revealed that the lift force experienced by spheroidal bubbles with a large enough oblateness rising at Reynolds
numbers of some hundreds changes sign below a critical shear rate, Sr., which depends on both the Reynolds number
and the bubble oblateness. The classical shear-induced mechanism illustrated in Fig. 9 dominates for |Sr| > Sr., while
wake instability provides a larger contribution of opposite sign for |Sr| < Sr.. In the low-Re regime, the theoretical
predictions of [4] indicate that bubble deformation produces a repulsive wall-induced transverse force in the case where
the fluid is at rest, thus cooperating with the inertia-induced transverse force. In contrast, in the case of a wall-bounded
shear flow, the low-Re deformation-induced migration is towards the wall. Therefore, there is a deformation threshold
beyond which the total transverse force becomes attractive. It is clear that present results are of no help when such large
deformations are involved. In contrast they remain qualitatively valid for bubbles with small-to-moderate deformations.
The high-Re situation was already discussed at the end of Sec. II. Following this discussion, results based on the
spherical shape assumption are expected to be approximately valid up to Re ~ 350, a situation in which the bubble
oblateness is approximately 20% [45]. At low Reynolds number, the ratio of the deformation-induced to inertia-induced
contributions to the lateral force is governed by the Ohnesorge number, Oh = v(p/od)'/?, with o the surface tension.
More precisely, this ratio is proportional to Oh? and (Oh/Lg)? in the case of a wall-bounded linear shear flow and a
stagnant fluid, respectively (see equations (48) and (49) in [4]). Considering again that the error on the total transverse
force cannot exceed 25% for the prediction to remain useful, present results may be used up to Oh = 0.5 in the case of
a wall-bounded linear shear flow, and up to Oh ~ 0.75 in a stagnant fluid, provided Lz > 1.5. Most oils have a surface
tension 3 — 4 times smaller than pure water. Consequently, present low-Re results for a 1 mm-diameter bubble may be
considered reasonably accurate in oils with viscosities up to 70 — 80 times that of water.

From a practical point of view, present results provide several models for the drag correction and transverse force acting
on nearly-spherical bubbles. By incorporating relevant empirical finite-Re-corrections, we proposed models grounded
on asymptotic predictions established in the low- or high-Reynolds number limit. Then we combined these models to
obtain composite fits valid throughout the range of parameters explored numerically. Fits (23) and (25) may be used to
predict the wall-induced drag correction and transverse force in a fluid at rest, respectively. Similarly, fits (30) and (33)-
(34), which reduce to the former set for Sr = 0, apply in wall-bounded shear flows irrespective of the sign of the shear
rate and relative fluid-bubble velocity. These models represent a significant improvement over current ‘point-particle’
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‘ ‘98 X 54 x 6498 x 54 x 128|138 x 78 x 128 |analytical solution

Re=0.1]CY, 196.4 196.9 197.7 197.6
ow 0.470 0.468 0.469 0.467

Re = 100|CY, 0.392 0.391 0.392 -
oYWl -0.016 -0.016 -0.016 -

Re = 500[CY, 0.092 0.092 0.092 -
oWl -0.023 -0.023 -0.023 -0.024

TABLE 1. Effect of grid resolution on the drag and lift coefficients of a bubble translating close to a wall (Lr = 2) in a stagnant
fluid.

models of spherical bubbles which do not account for any wall-induced effect but are nevertheless routinely used to
simulate laminar and turbulent wall-bounded bubbly flows. A similar investigation with rigid spheres, based on the
same numerical approach and considering the same variety of flow configurations and regimes, is currently under way.

ACKNOWLEDGEMENTS

This work was supported by the Chinese Scholarship Council (CSC). We thank Annaig Pedrono for her intensive
help and support with the JADIM code and the grid generator, and Dominique Legendre for his help with the grid
generation technique.

Appendix A: Validation and comparison with existing results

The capability of the JADIM code to accurately compute three-dimensional flows past bubbles and rigid bodies over
a wide range of Reynolds number has already been proved in various contexts, [see e.g. 8, 16, 61]. The (£,n,¢) grid
system used here was also shown to be suitable to obtain accurate grid-independent results regarding the hydrodynamic
interaction between two spherical bubbles rising side-by-side in a stagnant liquid [48]. Therefore, here we mainly check
grid effects in wall-bounded flows and in an unbounded linear shear flow, respectively.

In a first series of tests, we computed the forces acting on a clean bubble translating in a wall-bounded stagnant fluid
at finite Reynolds number. To obtain some insight into the adequacy of the grid resolution, this test was carried out
first at Re = 0.1, 100, and 500 with Lr = 2. Note that for Re = 0.1 and Lg = 2, L, = 0.1. Thus, the wall lies in the
inner region of the disturbance and the solution (10) applies. The corresponding asymptotic drag and lift coefficients
are 197.6 and 0.467, respectively. At Re = 500, the resulting lift coefficient should be close to the irrotational prediction
(17), i.e. CYY, = —0.024.

Computational results obtained with three different grid resolutions are listed in table I. The obtained drag and lift
coefficients show good agreement with the analytical solution at Re = 0.1. At Re = 500, the deviation from (17) is
approximately 4%. This deviation is likely due to the viscous correction proportional to ReflLIZ‘4 in (18). For all three
Reynolds numbers considered in this test, the numerical predictions only exhibit slight variations with the resolution,
the differences between the results obtained with the coarsest (98 x 54 x 64) grid and those provided by the most refined
one being less than 1%.

A second series of tests, still with the fluid at rest far from the bubble, was carried out on the 98 x 54 x 128 grid with
0.1 < Re <500 and 1.5 < Lg < 8. The drag and lift coefficients obtained in the range 0.1 < Re < 2 are compared
with available analytical solutions in Fig. 21. The computational results at Re = 0.1 show good agreement with the
inner solution (10) [62]. On the other hand, the results agree well with the outer solution (12) for Ly = 4 and 8, i.e. for
L, 2 O(1). When Ly < 2, the results deviate somewhat from both the inner and outer solutions for Re 2 0.5. This is
no surprise, as in these cases the wall lies in the intermediate region where none of these solutions is valid [63]. More
precisely, the outer solution is obtained by considering that the sphere is shrunk to a point, whereas a uniformly valid
approximation could only be obtained by taking into account its finite size in the Oseen equation. On a purely heuristic
basis, the inner and outer solutions may be combined into expressions tending toward each of them in the appropriate
limit, namely

ACY (Re < 1) =~ fhACY™  CN(Re < 1) =~ f{CN™m (Ala, b)

with ff; and f{ as given in (12a) and (12b), respectively. Based on these semi-empirical expressions, (Ala, b) approach
the inner and outer solutions in the limits L, — 0 and Lgr — oo combined with L, > O(1), respectively. Predictions
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FIG. 21. Numerical predictions (O) for the wall-induced forces in a quiescent fluid at low-to-moderate Reynolds number. (a)
ACY,; (b) O, (with CfY, multiplied by Ly' for better readability). Dashed lines: asymptotic solution (10a,b) corresponding to
conditions L, < 1, L, < 1; dotted lines: asymptotic solution (11a,b) corresponding to conditions L, > 1, L, > 1; solid lines:
semi-empirical model (Ala,b).
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FIG. 22. Comparison of numerical predictions for CYv, () with the fit (15) of the asymptotic solution corresponding to conditions
L, > 1, L, > 1 (dashed lines), and the irrotational solution (17) (short-dashed lines), for 1.5 < Lr < 8 and 0.1 < Re < 500.

provided by these approximations are displayed with solid lines in Fig. 21 and show good agreement with the numerical
results.

At moderate Reynolds number, the calculated CIY\; may be compared with the fit (15), under conditions Ly > 4. As
shown in Fig. 22, the agreement is excellent for Re < 20, beyond which both the numerical data and the prediction
indicate vanishingly small values of C’m. Numerical predictions in the range 20 < Re < 500 are compared with the
potential flow solution (17) at small wall distances, namely Lg = 1.5 and 2.0. As seen in Fig. 22, the deviation from
the irrotational solution becomes negligible beyond Re ~ 300. At moderate Re, the computed lift coefficient becomes
negative for Re ~ 35 (based on linear interpolation), which agrees well with the critical value found in [6] and [9].

In a further series of tests, we computed the flow field with the 98 x 54 x 128 grid in situations where the normalized
wall distance Ly is very large, more specifically L = R.,. For this purpose, the grid system was adjusted to obtain
Nw = N4. The undisturbed flow is a one-dimensional linear shear flow u, = (Urel +vx)e,, and the forces experienced
by the bubble are expected to correspond to the unbounded shear flow configuration. This test was carried out for
0.1 < Re < 500 with two different shear rates, namely Sr = 0.02 and 0.2. Note that these simulations differ from those
carried out in [8] only with respect to the flow direction: there, the undisturbed flow was set as woo = (Urel + YY) e, (in
current notations), i.e. the flow was primarily along the grid symmetry axis, whereas it stands in a plane perpendicular
to this axis in the present case.
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FIG. 23. Comparison of present numerical predictions with available numerical results and semi-empirical expressions. (a) cy.,
-1
compared with numerical results from [8] and semi-empirical correlation Z£Cp, ~ 1 + [% +1 (1 +3.315Re™ Y/ 2)] proposed

in [64]. (b) CL,, compared with numerical results and the composite fit (A2) from [8].

The comparison of the calculated drag coefficient with values obtained in [8] and with a semi-empirical fit proposed in
[64] is shown in Fig. 23(a). As the shear has virtually no effect on the drag for Sr < 0.2, only numerical data obtained
for Sr = 0.2 in [8] are presented. Results deviate from those of [8] by less than 2% for all values of Re and Sr. Figure
23(b) compares the computed lift coefficient with those obtained in [8] and with the composite fit proposed therein,
namely

1/2
Y (Re, S1) ~ g; {[ L ®e < D]’ + [CL(Re > D]}, (A2)

which combines the low- and high-Re results (6b) and (9b). Again, the agreement with these earlier predictions is good.
Some tiny differences may be noticed for Sr = 0.02 when Re < 2. They are likely due to the difference in the two
numerical settings. Indeed, compared with [8], the current grid is somewhat more refined (98 x 54 x 128 instead of
90 x 45 x 64), especially near the sphere surface (2§/d = 0.002 instead of 2§/d = 0.01).

In summary, the tests reported in this Appendix prove that the wall and shear effects are both accurately captured
by the present numerical procedure throughout the range of Reynolds number 0.1 < Re < 500.
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