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Abstract 

Modern analytical techniques used in the minerals processing industry can provide 

detailed characterization data at the particle level. However, process models that make 

full use of this information are currently not available, limiting the usefulness of these 

extensive datasets. This contribution addresses this issue. It presents a novel particle-

based approach for process modelling capable of dealing with complete particle 

datasets and operating without human input. The method provides a probabilistic 

description for the behavior of individual particles in a given mineral processing unit, 

based on all measurable particle properties. It is applicable to any separation process 

that does not modify the physical dimensions of particles, i.e. it does not cover 

comminution. 

The method comprises a regularized logistic regression model with a probability 

adjustment step to accommodate geological variability. Even though this method 

supports any type of particle-level characterization data, its potential is illustrated here 

using data obtained by scanning electron microscope-based image analysis. 

Constructed cases demonstrate the efficiency of the method in recreating 

characteristic recovery trends for magnetic separation, hydrocyclone, and flotation 

units. In addition, the method was used successfully to reconstruct a real processing 

plant with three flotation and one magnetic separation circuits. Predicted results of 

compositions for all the intermediate and product streams correspond well with the 

results reported from the plant itself. The predicted masses of the products are much 

affected by the quality of sampling and still require improvement. The case study 

illustrates that the method proposed here provides a powerful tool to understand and 

optimize mineral separation processes – and thus increase the resource and energy 

efficiency of mining operations. 

Keywords: Particle-tracking; geometallurgy; mineral processing modelling; flotation; 

resource efficiency; automated mineralogy 

1 Introduction 
Currently, most mineral beneficiation plants are controlled and optimized using bulk 

material characterization data (Hodouin, 2011). This is despite the fact that modern 

analytical methods can yield detailed mineralogical and geometrical information for 

individual particles in a raw material stream, which can in turn be used to understand 

the behavior of the material in different unit operations. Provided that the feed material 

can be suitably characterized and that robust models for the unit operations are 

available, it should be possible to use particle-based data to predict the efficiency and 



selectivity of each unit. It is a major goal of the circular economy (Kirchherr et al., 2017) 

and sustainable production practices to optimize resource efficiency, e.g., by providing 

a clear understanding of particle recoverability in minerals processing circuits. This 

pertains to conventional minerals processing operations as well as tailings dam 

reclamation (Büttner et al., 2018) or by-product recovery (Frenzel et al., 2019; Pereira 

et al., 2019).  

In this article, we present a new method for particle-based process modelling that 

quantifies the probability of each particle to be recovered into a concentrate stream 

according to its properties. No human input is required, and the method is self-adaptive 

to any minerals processing unit that does not modify the physical dimensions of the 

particles. 

1.1 Background 
Minerals processing machinery operates by exploiting the physical and chemical 

properties of ore and gangue minerals to achieve efficient separation (Wills and Finch, 

2015). For example, gravity separation devices (e.g. hydrocyclones) create conditions 

in which particles of different sizes and densities follow distinct trajectories. Flotation, 

a more complex technique, exploits differences in surface chemistry of the different 

mineral groups.  

All particle separation processes are best described in a probabilistic manner using the 

long-established concept of recovery probability as a function of particle characteristics 

(Jowett, 1986; Tromp, 1950, 1937). A practical example is the hydrocyclone partition 

curve (King et al., 2012; Wills and Finch, 2015), which gives the probability of a particle 

to enter the underflow as a function of its density and size.  

Probabilities are also a useful measure to compare the effect of different equipment 

set-ups on the recoverability of a particle, e.g., when optimizing a processing unit for a 

specific ore type (Jowett, 1986; Schach et al., 2019; Tromp, 1937). However, the extent 

to which particle-based process description was possible in the past was limited by 

both the available computing power as well as a lack of suitable characterization 

techniques. Thus, most available modelling tools can only process particle property 

distributions rather than whole particle property datasets (King et al., 2012). Recently, 

the use of advanced Machine Learning (ML) techniques has been explored to enhance 

numerical models and improve predictive power (McCoy and Auret, 2019). The main 

appeal of ML is its capability to handle the unprecedented amount of complex data 

produced by modern analytical techniques (e.g. Ilisei et al., 2019; Khodadadzadeh et 

al., 2014; Maxwell et al., 2018). 

Several analytical methods are now available that provide detailed characterization 

data at the single-particle level. The most important ones are scanning electron 

microscope (SEM)-based image analysis (Fandrich et al., 2007; Sandmann, 2015), X-

ray computed tomography (Godinho et al., 2019; Ketcham and Carlson, 2001) and 

optical microscopy (Petruk, 2000). SEM-based image analysis, arguably the most 

relevant analytical technique in minerals processing research in the last two decades, 

quantifies both the composition and the dimension of particles in 2D sections. The 

method is well suited to characterize particle streams with P50 grain sizes lower than 

~1 mm and greater than ~5 µm. Other methods may be more suitable beyond this 

particle size range.  



A particle-based approach to process prediction, called particle tracking, was first 

introduced by Lamberg and Vianna (2007). It uses the mineralogy, surface composition 

and particle size data from SEM-based image analysis systems. Five steps of data 

binning, treatment and smoothing, one step of data reduction, and one step of chemical 

and mineralogical data integration are necessary before predictions can be made. 

These complex data-manipulation steps force an internal consistency on the data, 

which may or may not exist. In addition, the method requires significant human input 

(e.g. for elemental to mineral conversion) that might lead to biased estimates. While it 

was successful in predicting the outcome of a specific sulfide flotation test (Lamberg 

and Vianna, 2007), limitations due to unbalanced particle bins quickly appeared when 

applied to a case of iron ore separation with the Davis Tube (Cárdenas, 2017).  

At the same time, Pascoe et al. (2007) introduced a similar approach to calculate 

particle recovery from SEM-based image analysis data. In this method, particles are 

binned according to density and size. Recovery is then expressed by the percentage 

of particles in each bin reporting to the concentrate fraction. This approach was used 

to predict particle behavior in a gravity separation unit. Its main drawbacks are the 

limitation to two variables and the decrease in data resolution due to binning.  

Recently, Hannula et al. (2018) proposed a modification of these previous particle 

tracking methods. The authors introduced a dynamic binning strategy in which the user 

selects the particle properties to be used for the simulation of a specific process, and 

the variable distribution defines the binning classes – an improvement towards the 

statistical representation of particles. In addition, the authors applied neural networks 

to generalize the predictive model and provide continuous recovery probabilities for 

each bin.  

Finally, Schach et al. (2019) created a method that directly links particle-tracking to 

partition curves. For this, the authors used kernel density estimates to quantify 

continuous probabilities over the complete 2D sample space defined by particle density 

and size. While the method can in principle be extended to higher dimensions, the total 

number of variables is limited by computational complexity and data density to less 

than ~10. A pre-selection of variables is therefore still required.  

To our knowledge, no user-independent particle-tracking method that does not require 

any data reduction step (neither variable selection nor particle binning) has been 

developed so far. When experts dictate the variables to be used in such methods, they 

apply knowledge gained in times when detailed characterization data was not 

available. This strategy may not only add human bias to the results, but also hinders 

the exploration of the influence of “new” variables such as particle mineralogy and 

surface composition in separation processes.  

To fill this gap, this contribution presents a new particle-tracking method that makes 

full use of complex particle datasets with minimum human input required, and that is 

self-adaptive to different processing unit types. The method delivers quantitative 

measures for particle behavior in the form of probabilities. It can be extended to model 

the effect of variations in machine operating conditions and thus has the potential to 

become a powerful tool for process optimization.  



2 Methodology 
This section gives a brief overview of the assumptions made in the design of the new 

method, the structure of particle datasets and the data treatment steps applied, 

followed by a complete description of the algorithm. Even though the new particle-

tracking method can be applied to particle datasets acquired by different 

characterization techniques, it is demonstrated in this paper using SEM-based image 

analysis data.  

2.1 Assumptions and limitations 

The proposed method is aimed at identifying patterns and creating predictive models 

for different process units by comparing the properties of particles present in each of 

the output streams. Several assumptions are implicit in this approach: 

1) Sample representativity. Analyzed samples are assumed to be representative 

of the process streams they were taken from. 

2) Particle preservation. The separation process is assumed not to modify physical 

particle properties (e.g. size), with the exception that modifications to surface 

chemistry, e.g. during froth flotation, are allowed.  

3) Analytical representativity. Measured particle properties are assumed to be 

representative of the true properties of the particles.  

While assumption 1) is generally fulfilled as long as best-practice sampling (Lotter, 

2011; Wills and Finch, 2015) and sample preparation (e.g. Heinig et al., 2015) 

procedures are observed, assumptions 2) and 3) provide some limitations towards the 

use of the new method. Specifically, assumption 2) means that the method cannot be 

applied to any process involving particle modification, particularly comminution.  

Assumption 3) refers to the stereological bias associated to analytical techniques that 

measure the 2D sections of particles rather than true 3D characteristics, such as SEM-

based image analysis. While particle properties such as particle size or mineral 

liberation measured under these conditions generally still correlate strongly with true 

characteristics, there is a limit to the accuracy with which prediction is possible (cf. 

Miller et al., 2009; Ueda et al., 2018). We nevertheless use such data here, since SEM-

based image analysis is currently the most suitable technique for the analysis of the 

mineralogical complexity and particle size ranges encountered in the processing of 

complex ores (cf. Sandmann, 2015). To date, no other analytical method can provide 

datasets with similar resolution. We further note that stereological bias influences all 

samples measured under the same conditions in a similar way, such that measured 

particle properties should be comparable within a sample set. This should tend to limit 

the detrimental effects of stereological bias.  

Finally, it is worth noting that the nature of the method is such that predictions are only 

possible within the parameter space covered by the samples included in the training 

data for the models. If the models are extrapolated to completely new material types, 

they are not expected to provide reliable results. 

2.2  Data structure and required pre-treatment 
Particle datasets typically contain information on each particle’s modal composition (in 

units of volume or weight), surface composition (area), and different measurements of 

size (e.g. equivalent circle diameter, maximum Feret diameter) and shape (e.g. aspect 



ratio, solidity). In addition, these variables can be combined to yield further information 

such as particle density and chemical composition. The set of minerals in each ore is 

unique and defines the total number of variables. Sandmann (2015) presents more 

details about SEM-based image analysis datasets.  

Before collating this multitude of data types together, most of them require pre-

treatment or transformation. Below, the treatments applied in the present case are 

described in detail. Note, however, that particle datasets acquired by analytical 

methods other than SEM-based image analysis, e.g. hyperspectral-imaging or X-ray 

computed tomography, may require different pre-treatments. This is particularly true 

where they contain data types not included in the list below such as spectral 

absorbance features for hyperspectral imaging, or grey-value data for X-ray computed 

tomography.  

2.2.1 Particle bulk and surface compositions 

In SEM-based image analysis data, the bulk mineralogical make-up of a particle is 

generally described via the volumes or masses contributed by different minerals, and 

particle surface composition is described by mineral area. To remove the strong 

correlation between these quantities and particle size, we normalized all data referring 

to particle compositions to a sum of 100 %. This was done separately for the bulk and 

surface compositions of each particle. The subsequent log-ratio transformation that is 

usually recommended for compositional data was not applied in our method (cf. van 

den Boogaart and Tolosana-Delgado, 2013). The main reason for this is that particle 

composition data is usually strongly zero-inflated (Barry and Welsh, 2002), and most 

of the zeroes are true zeroes, such that imputation is not a suitable option (cf. van den 

Boogaart and Tolosana-Delgado, 2013). Furthermore, mineral groupings were avoided 

to minimize human bias. 

2.2.2 Particle dimension properties 

2.2.2.1 Size data 

Different measurements of size are available for 2D image analysis, each of them with 

advantages and disadvantages depending on particle shape. Equivalent circle 

diameter (ECD) is one of the most widely used measurements of size in SEM-based 

image analysis (Sandmann, 2015), with particular advantages for quasi-spherical 

particles. Since ECD is measured exclusively on a positive scale, ECD values are 

expected to follow a log-normal distribution (Gaddum, 1945), which has long been 

used by mineral processing engineers to describe particle size distributions (King et 

al., 2012; Wills and Finch, 2015). Thus, a log-transformation was applied to ECD for 

data normalization.  

Furthermore, it was necessary to include the square of the log-transformed ECD so 

that the fitted regularized logistic regression model would be capable of reconstructing 

the roughly parabolic shape of the dependence of flotation recovery on log-particle size 

(King et al., 2012; Wills and Finch, 2015). This is illustrated with a constructed test case 

in section 3.1.  

2.2.2.2 Shape data 

To compensate for the use of a size variable that can be biased according to a particle’s 

shape, two shape parameters are also added to the dataset. Solidity, S, is the measure 



of the overall concavity of a particle. It is defined as the particle area divided by the 

particle convex hull area: S = A/Ac (Olson, 2013). Aspect ratio, AR, relates to the overall 

shape of a particle and can be calculated by dividing the particle minimum Feret 

diameter by its maximum Feret diameter: AR = xFmin/xFmax (Olson, 2013). To ensure 

that the correction of ECD by these shape parameters is easily possible within the 

model, they were also log-transformed.  

2.2.2.3 Unique dimension influence on each mineral 

In order to capture a mineral-specific effect of particle dimension properties on the 

recoverability of a particle, a categorical variable that indicates the main mineral in 

mass of each particle is required. An interaction between continuous and categorical 

variables in the form of an analysis of covariance model (Keppel and Wickens, 2004) 

is thus added to the particle dataset. 

2.3 Algorithm 
To model a processing unit, particle data from its output streams is collected, treated, 

and merged to form a training dataset. For this merging, the same fixed number of 

particles is sampled with replacement from each stream, resulting in equal numeric 

proportions of particles from all streams. A class label is then added to each particle to 

indicate its source stream.  

A least absolute shrinkage and selection operator (lasso)-regularized logistic 

regression model (LR) is then trained as a classifier (Hastie et al., 2015). Logistic 

regression is a robust statistical method commonly used to model the probabilities of 

individual observations to belong to specific classes (Cox, 1958). Even though logistic 

regression is mathematically able to deal with high-dimensional datasets, it commonly 

fails in the assignment of meaningful coefficients to each variable. In such cases, 

regularization is required and the lasso-regularized regression is commonly applied for 

the task. This technique uses a penalty factor to set the coefficients for non-significant 

variables to zero and estimate more reliable coefficients for the remaining predictors. 

The best penalty factor is identified for each case through cross-validation (model 

accuracy maximization). As a result, the LR is sparser and has a lower tendency to 

overfit the data (Hastie et al., 2015). In its original form, it can only deal with binomial 

classes (e.g. “concentrate” vs. “tailings”). However, an extension to additional outcome 

classes exists with lasso-regularized multinomial logistic regression (Khodadadzadeh 

et al., 2014). This also makes the method suitable for the modelling of separation 

processes with multiple outcome streams such as shaking tables.  

In summary, the logistic regression consists of the use of a logistic function to model a 

binary dependent variable. It works by fitting a linear combination of variables to the 

log-odds of the binary dependent variable, and the conversion of log-odds to 

probabilities can be done using the logistic function (Cox, 1958). 

The fitted coefficients of the LR model can be interpreted as the impacts that the 

different variables have on the probabilities of each particle to behave in a certain way 

in the process (Hastie et al., 2015). Since the data treatment step does not guarantee 

similar scales among variables, their coefficients do not present comparable scales 

and should be interpreted with particular care (Hastie et al., 2015). The sign of each 

coefficient is related to the definition of the probabilities used to describe the process. 

For instance, if the probability of a particle to report to the concentrate is predicted, 



positive coefficients indicate variables that have a positive influence on particles to 

report to concentrate.   

It is important to mention here that other classifiers such as the random forest 

(Breiman, 2001), linear discriminant analysis (Ripley, 1996), and XG-Boost (Chen and 

Guestrin, 2016) could in principle be used in our proposed system. However, LR is the 

best option in this case given the data complexity and need to obtain reliable probability 

estimates (De Vasconcelos et al., 2001; Khodadadzadeh et al., 2014; Wilks, 2009).  

After training, the resultant LR model can be applied to a particle dataset representing 

the actual feed material of the corresponding processing unit to predict the likelihood 

of the possible processing outcomes for each particle. However, the influence of the 

relative abundances of different particle classes in the feed on the predicted 

probabilities needs to be taken into account. Following Bayes’ theorem, the posterior 

probability of a particle to report to a stream can be obtained given its likelihood and 

prior probability to belong to that stream.   

In the case of particle tracking, the prior probability of a particle to report to a given 

process stream can be taken as the overall frequency at which particles report to that 

stream. This is closely related, but not equal, to the system’s mass balance.  

While prior probabilities can be easily estimated from the mass balance for the training 

data, it is extremely unlikely that a new feed material will have the same proportions of 

concentrate- and tailings-like particles. In fact, the opposite would be expected given 

the natural variability of ore deposits. In such cases, we suggest that the method 

developed by Saerens et al. (2002) be used to estimate the prior probabilities for every 

new feed based on its composition – and accordingly correct each particle’s posterior 

probability.  

However, if the prior probabilities of a new sample are the same as in the training set, 

this prior estimation procedure is not advisable since it may lead to erroneous 

estimations (Saerens et al., 2002). The authors provided a test to define whether the 

correction should be performed or not. 

For process simulation, the probabilities obtained from the LR model can be used to 

assign feed particles to each of the output classes. In accordance with accepted 

conceptual models for minerals processing operations (Tromp, 1937, 1950), this 

assignment is random, using the modelled probabilities to assign a class label to each 

particle. Following the assignment of all particle labels, the overall composition of the 

output streams can then be characterized in terms of their mass, modal mineralogy, 

particle size distribution etc.  

The random nature of particle class assignments introduces uncertainties in the overall 

result. Therefore, bootstrapping is applied to determine the most probable outcome of 

this probabilistic process, as well as the relevant confidence intervals. The overall 

uncertainty reflected in these confidence intervals will be chiefly related to sample size 

and, in the present case, some of the random deviations of 2D particle cross-sections 

from their true 3D properties. Systematic errors introduced during sampling or analysis 

will not be captured by these uncertainty estimates.  



The bootstrapping routine (Henderson, 2005) is implemented as follows: the feed 

dataset is repeatedly sub-sampled with replacement (same number of particles) to 

simulate the natural variability of the ore. The posterior probability calculation, class 

assignments, and overall characterization of each stream are then repeated, yielding 

a range of aggregate values for each property (e.g. modal mineralogy). This is done 

1000 times to get reliable estimates of median values and confidence intervals. 

Figure 1 summarizes this workflow. 

3 Demonstration 
The functionality of the method is demonstrated in this section using several artificial 

and real cases. All calculations were done in R (R Core Team, 2017) using package 

“glmnet” for the lasso-regularized logistic regression (Friedman et al., 2010), and 

package “ggplot” for the plots of results (Wickham, 2016). 

3.1 Artificial test cases 
To test the ability of our method to correctly predict the probabilities of individual 

particles to report to a given process stream, several artificial cases were constructed. 

This was necessary since particle-specific probabilities cannot be obtained 

independently for any real dataset. We therefore used part of a treated particle dataset 

(100,000 particles; 10 predictors) in combination with quantitative models of mineral 

processing units derived from King et al. (2012) to construct four test cases. Table 1 

displays the specific equations.  

Both case 1 and 2 correspond to a simplified magnetic separation unit, in which all 

machine variables are represented by a constant, ECD is used as a proxy of particle 

volume, and two minerals are present: one paramagnetic and the other of negligible 

magnetic susceptibility. The sole difference between the two cases is their resulting 

entropy (Schach et al., 2019; Velázquez Martínez et al., 2019) due to the used 

coefficients. This was varied to test the effect of separation efficiency on the accuracy 

of LR model predictions.  

Case 3 is a hydrocyclone with a 20 µm cut-size. A standard model for hydrocyclone 

recovery to concentrate is used to simulate the true probabilities of each particle of 

reporting to concentrate. Referring to the corresponding equation in table 1 shows that 

this curve is a monotonous transformation (via the function f(x) = 1 – e -x) of a linear 

function of log-transformed ECD. Thus LR, having a similar functional structure as the 

hydrocyclone equation (using the logistic function f(x) = 1/(1 + e-x) for the monotonous 

transformation), can reasonably approximate the theoretical behavior of this unit, but 

not perfectly, as will be seen later.  

Case 4 corresponds to a flotation unit in which each of the minerals has a different 

flotation rate constant (k) and influence of size on the recoverability (φ, King et al., 

2012, eq. 9.126). To calculate φ, 7.75 and 5.9 µm were used as the size of maximum 

recovery (ε) for minerals 1 and 2, respectively, while 145 and 90 µm were used as the 

respective maximum particle sizes at which a particle can be floated without 

detachment (δ) for minerals 1 and 2. The residence time is kept constant at 5 minutes. 

In order to assess the performance of the method, the particle dataset was divided into 

train and test subsets following a 7:3 ratio. For each constructed case, a label was 

randomly assigned to each particle in the train subset according to its calculated 



probabilities. A LR model was then fitted using the assigned particle labels. The 

predicted probabilities from this model can be compared directly with the “true” 

probabilities in the test subset (Fig. 2). Both train and test subsets are publicly available 

(Pereira et al., 2020). 

As Figure 2 shows, the LR models were able to reconstruct the given probabilities in 

every case, albeit with better precision in cases 1, 2, and 3 than case 4 – the one with 

the most complex probability-defining equation. Even though the precision obtained in 

case four is lower, Figure 3 illustrates how the LR can reconstruct the approximately 

parabolic effect of particle size on recovery, given that ECD2 is provided as an input 

variable (cf. section 2). Furthermore, figure 3 also illustrates how the LR captures the 

distinct flotation behavior of each mineral correctly. However, the fit is not perfect and 

this explains the deviations between calculated and predicted probabilities seen in 

Figure 2D. 

The fitted model coefficients (Table 2) can also be examined to evaluate the capacity 

of the lasso regularization to omit non-relevant variables and assign meaningful 

coefficients to the ones incorporated into the model. In the simplest cases (1, 2, and 

3), the LR-coefficients for the input variables roughly follow the magnitude and sign 

given in the defining equations. In addition, it every variable that was not given in the 

case-defining equation was omitted (Table 1).  

However, the interpretation of coefficients in case 4 is more complicated since the 

assigned values depend on the main mineral (by mass) composing the particle. In this 

case, the magnitude of the coefficients related to mineral 1 are higher than the ones 

related to mineral 2 – an agreement with the case-defining equation. However, the 

regularization did not omit all variables that were not used in the equation (aspect ratio 

and solidity). 

The failure of the models to consistently omit variables that were not used in the 

construction of case 4 may be attributed to the following factors: 

1) Covariance structure of the explanatory variables. When some of the 

explanatory variances covary, it will generally be difficult to isolate the ones 

which are truly meaningful. For instance, particle shape may correlate strongly 

with particle size, such that it is also included in the model, even though it is not 

expressed in the defining equation.  

2) Non-linear physical relationships. The functional form of LR models is 

restricted to linear combinations of the input variables to find the vector which 

best separates the different output classes within the space defined by the 

explanatory variables (Cox, 1958). In cases where the physical nature of the 

separation process is not described by a function with a similar structure, other 

variables may be included in the model to compensate for the effects of this 

non-linearity. This is seen clearly in case 4.   

Overall, the constructed cases show that while LR models are clearly suitable for the 

reconstruction of probabilities, they are not a perfect tool for variable selection and 

fitted coefficients should therefore be analyzed with care.  



3.2 Real case study  

The practical applicability of the developed method is further demonstrated in a real 

case study on samples from the Boa Vista pyrochlore mine in Catalão, Brazil. The mine 

is part of the Catalão II carbonatite complex, one of the many intrusions of the Alto 

Paranaíba Igneous Province (Brod et al., 2000). The Boa Vista mine, owned and 

operated by CMOC International Brazil, commenced operations mining the weathered 

parts of the deposit but today exploits the fresh carbonatite. Pyrochlore is the main ore 

mineral, while phlogopite, calcite, dolomite, ankerite, apatite, feldspar, and magnetite 

constitute the main gangue minerals (Machado Junior, 1991; Palmieri, 2011). 

The pyrochlore ore is processed in the Boa Vista Fresh Rock plant (BVFR). After 

comminution, the ore is treated with reverse carbonate flotation, reverse silicate 

flotation, magnetic separation, and finally pyrochlore flotation (Fig. 4). To demonstrate 

the adaptability of the proposed method, it is applied to reconstruct the continuous 

operation of the complete processing plant.  

A sampling campaign was executed on the processing plant covering the feed of the 

first beneficiation unit (carbonate flotation), the products of every intermediate 

processing step, and the final tailings (Figure 4). The comminution and classification 

circuit was disregarded. Even though each flotation set-up has several units organized 

in rougher, cleaner and scavenger banks, the samples taken represent the total 

concentrate or tailings of the entire set-up. Thus, no attention is given to the internal 

streams of the flotation set-ups and each of the trained models represents the entire 

circuits encompassed by the darker boxes in Figure 4. This sampling strategy allowed 

us to use a minimal sample number without compromising too much on detail. The 

samples provided for the study were composites, taken under steady-state conditions, 

but without following the unit’s residence time. The sample preparation and automated 

mineralogy analytical procedures are described in Pereira et al. (2019).  

The concentrate and tailings streams of each circuit were used to train a LR model 

representing each processing unit. Summing up the particles of every concentrate and 

tailings samples, 1,162,090 particles described by 203 variables were used in the 

training phase. Afterwards, the plant feed (i.e. feed to carbonate flotation) was 

processed through the virtual processing plant following its real setup, and having the 

particles assigned as tailings in each step being fed to the next virtual unit operation 

until the final Nb concentrate is obtained (Figure 4). The feed sample contained 

118,995 particles. The virtual process was bootstrapped 1000 times. Although the 

whole process was done without any mineral grouping, the set of 29 identified minerals 

was later grouped into 8 mineral groups to facilitate visualization/comparison of the 

process outcomes (Table 3). The distribution of every variable in every sample used 

to train the logistic regression models is aggregated, in terms of percentiles, in the 

Supplementary material 1. 

For visual assessment, the predicted characterization results in each bootstrap run 

were divided by the actual results observed in the processing plant. The distribution of 

these ratios (log-transformed, base e) is displayed as box-plots in Figure 5. Clearly, 

the predicted results overlap with or are very close to 0 in most cases, indicating that 

the method provided accurate predictions of the mineral contents in every stream. The 

masses, however, are systematically incorrect in the carbonate and pyrochlore 



flotation units. The mass is calculated from the prior adjustment step, therefore is 

mostly influenced by the balance of particle types (concentrate- and tailings-like) in the 

feed. Considering that the sampling scheme did not account for unit residence time, it 

might be that the proportion of particle types was affected by variations in feed 

composition due to the natural variability of the ore. This may have led to the 

incongruence between the simulation results and the real masses. Yet, since our 

method accurately assigned particles to the concentrate or tailings streams, the 

product compositions remained stable. 

Another interesting observation is that the uncertainties for each variable increase 

towards the final processing units. This is because fewer particles reach the last 

processing units, and the random assignment of particles to output streams therefore 

has a greater impact on product composition than for the first steps of the process. A 

similar effect is seen for the minor components of individual streams. Mineral groups 

with large predicted uncertainties in specific streams (e.g. pyrochlore in the magnetic 

separation circuit or sulfides in the pyrochlore flotation – Figure 5) are generally minor 

constituents of these streams (Figure 6). 

For a further physical comparison between the predicted and real results, Figure 6 

displays the agreement between real and predicted mass flows of each mineral group 

in each stream. The median of the bootstrapped predictions is used to represent its 

obtained product, while the minimum and maximum error bars are represented by the 

2.5 and 97.5 quantiles, respectively. Since only one sample of each stream was 

analyzed with the automated mineralogy system, no confidence interval could be 

plotted for the real masses.  

Table 4 presents the entropy, number of omitted variables, and the most influential 

variables in each of the process units. Following the entropy calculation, the pyrochlore 

flotation and magnetic separation units are significantly more efficient than the 

carbonate and silicate flotation units are. In almost every case, the system omitted 

almost half of the total number of variables. For interpreting the coefficients, high and 

low values indicate the influence on reporting to the concentrate and tailings, 

respectively. Our method clearly selected some relevant variables in each case (e.g. 

apatite and strontianite surface content in the carbonate flotation, or the modal content 

of pyrochlore in the pyrochlore flotation). However, some coefficient assignments 

appear questionable, for instance in the magnetic separation unit where the modal 

content of siderite positively influences a particle’s deportment to the concentrate, 

while the surface content of the same mineral has the opposite influence. The complete 

list of coefficients assigned to each variable in each separation unit is available in the 

Supplementary material 2. 

Furthermore, the obtained particle probabilities are meaningful to identify optimization 

strategies for processing units. For this, the particles should be grouped according to 

their main mineral component. The distribution of probabilities of particles in each 

group can then be plotted in the form of a histogram. The efficiency of a process unit 

increases with the certainty that each mineral group will mostly report to one of its 

output streams. Within the proposed histogram, efficiency would be illustrated by a 

narrow distribution of probabilities of each mineral group, either lying close to 0 or to 1. 

The recovery of the carbonate minerals in the carbonate flotation is used here as an 



example (Figure 7 A). Even though most particles of this mineral group have a high 

probability to report to the carbonate-rich product, a skewed distribution with many 

particles showing low recovery probabilities is noticeable. Figure 7 B illustrates that 

carbonate minerals have high recovery probabilities up to 35 µm. Siderite and 

magnesite_Fe are the only minerals from the group with low overall recovery 

probability. Studies on the effects of cell hydrodynamic conditions or regrinding would 

be key to optimize the recovery or carbonates to the carbonate-rich product. 

4 Discussion and final considerations 
As shown in the previous section, our method greatly enhances currently available 

approaches for particle tracking by successfully using complete high-dimensional 

particle datasets, with minimum human-input, to provide accurate estimations of the 

probabilities of each particle in a process unit to report to a specific output stream. 

Using the estimated probabilities, the method not only allows for accurate and detailed 

process prediction, but also opens up new possibilities for the understanding and 

optimization of minerals processing units. Below we discuss some aspects of the 

achieved results in more detail, and provide an outlook on potential future applications 

of particle tracking methods. 

We start by noting that good results were achieved for the real case study despite the 

fact that we used a 2D dataset to describe 3D objects. This confirms our initial 

expectation that stereological effects, as long as they are the same across the entire 

dataset, will not strongly affect simulation outcomes (cf. section 2). Rather, they 

introduce additional statistical uncertainty. This may become a problem in cases where 

high precision is required for process prediction. In such cases, the acquisition of larger 

data volumes may provide the necessary detail. However, the extent to which this is 

possible may be limited by available computational capacity. Previous investigations 

(Miller et al., 2009; Ueda et al., 2018) suggest that the use of 3D-based particle data 

(e.g. provided by X-Ray computed tomography) could also improve results. We note 

in this context, that our method can readily incorporate such 3D particle datasets. It is 

not limited by the kinds of data that are currently available, and could even be used in 

future studies to investigate the effects of stereological bias in more detail. 

Second, the lasso regularization successfully selected physically meaningful variable 

coefficients in both the constructed and real case studies. In addition, it omitted most 

of the other variables, providing relatively sparse predictive models. This indicates the 

efficiency of the method in reducing the dimensionality of a particle dataset without 

human supervision. However, it is also clear from the specific results that there is 

substantial complexity in the relationship of the fitted coefficients with actual variable 

importance, mostly due to using an analysis of covariance model. For instance, we 

already described above the difficulties in understanding the influence of specific 

variables for the constructed case 4. This case contained only two minerals. The 

difficulties in interpretation are expected to increase substantially in real ores 

composed of many more distinct minerals.  

At least in part, these difficulties are due to the difference in measurement scales 

between the different variable classes (e.g. size and compositional variables). For 

instance, a naïve interpretation of raw coefficient values would suggest that particle 

mineralogy is more important than particle size for all units of the Catalão processing 



plant, since the corresponding coefficient values are the largest (cf. Table 4). Fitted 

coefficients of ECD and ECD2 are only intermediate in size (Table 4). However, the 

strong influence of particle size on the recovery of carbonate minerals in the carbonate 

flotation unit is clearly illustrated in Figure 7. Given this observation, we would suggest 

the use of plots such as those shown in Fig. 7, as the major tool to understand the 

influence of specific particle properties on process outcomes. Maps of average 

recovery probability as a function of two particle properties, similar to those presented 

in Schach et al. (2019; Fig. 11), could also be compiled. 

Third, we note in this context that particle distribution-based models for minerals 

processing machinery were first developed from empirical observations of individual 

process units that were later generalized to quantitative physical models of mineral and 

particle behavior (King et al., 2012). The extensive application of our method in 

targeted case studies, followed by a complete exploration of the obtained particle 

probabilities, could be the next step to achieve the same development for particle 

datasets. 

Fourth, we would like to point out that our method can be extended to provide an 

interface between particle and machine properties. This can be achieved by sampling 

a process under variable operating conditions, allowing for the quantification of the 

impact of these variations on the recoverability of individual particles, and the 

identification of optimum operating conditions given the process goals. In combination 

with the fact that our method provides reliable process predictions even when variable 

feed compositions are considered, this could be used to virtually assess plant 

performance prior to the processing of new feed, provided the material falls within the 

same parameter space as the original training data. Such a virtual assessment would 

in turn enable the fine-tuning of operational parameters to guarantee efficient 

operation, enabling resource and energy savings, and thus cleaner production. 

Also in the framework of future applications, we should contemplate the relevance of 

this method in brownfield exploration. Considering an ore deposit in the vicinities of an 

operating processing plant, which can be assumed to belong to the same geological 

framework, this method could be used to evaluate the significance of its exploitation 

and processing in the existing facilities. However, this prospective application would 

require laboratory comminution tests that mimic the industrial operations since the 

method cannot yet forecast comminution processes. Moreover, dedicated test work 

should be done in parallel to validate the modelling results. 

Altogether, the versatility of our method allows for its direct application in diverse cases 

and for varying purposes. Its predictive power makes it a suitable basis for improving 

plant control systems – an essential pre-condition for dealing with complex ores. 

Previous particle-based studies that lacked precise estimations of particle 

recoverability (e.g. Büttner et al., 2018; Pereira et al., 2019) can now be updated with 

this method for more accurate results. Using the entire information contained in particle 

datasets is the key to increasing the resource efficiency of the mining industry of the 

future, and thus advance towards a sustainable circular economy. 
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7 Tables and Figures 
Table 1: The probability formula used in each of the constructed cases. ECD stands for equivalent circle diameter, 
mainmineral for the mineral of higher mass in the particle, Mini for modal content of mineral i, Mini.s for surface 
content of mineral i, p for probability, φ for size-related parameter for flotation recovery, k for flotation rate constant, 
ε for size of maximum recovery, and δ for maximum particle size at which a particle can be floated without 
detachment  

Case Probability equation 
1 𝑥 = 0.20 + 0.10log⁡(𝐸𝐶𝐷) + 0.35𝑀𝑖𝑛1 

2 𝑥 = 0.05 + 0.001log⁡(𝐸𝐶𝐷) + 0.90𝑀𝑖𝑛1 

3 
𝑝 = 1 − 𝑒𝑥𝑝

[−0.693(
log⁡(𝐸𝐶𝐷)
log⁡(20)

)
1.7

]
 

4 

𝜑 = 2.33√
0.5𝜀2

(𝐸𝐶𝐷)2
𝑒𝑥𝑝 (−

0.5𝜀2

(𝐸𝐶𝐷)2
) (1 − (

𝐸𝐶𝐷

𝛿
)
1.5

) 

𝑝 = 1 − 𝑒𝑥𝑝−(5𝑘𝜑) 

{

𝜀 = 7.75; 𝑘 = 0.7; ⁡⁡𝛿 = 145, 𝑖𝑓⁡𝑚𝑎𝑖𝑛𝑚𝑖𝑛𝑒𝑟𝑎𝑙 = 𝑚𝑖𝑛𝑒𝑟𝑎𝑙⁡1
𝜀 = 5.9; 𝑘 = 0.1; ⁡⁡𝛿 = 90, 𝑖𝑓⁡𝑚𝑎𝑖𝑛𝑚𝑖𝑛𝑒𝑟𝑎𝑙 = 𝑚𝑖𝑛𝑒𝑟𝑎𝑙⁡2

𝑝 = 0, 𝑖𝑓⁡𝜑 < 0
 

 

Table 2: Coefficients obtained for each variable in the constructed cases. Different coefficients are assigned to the 

size and shape variables according to the particle’s main mineral 

Applies 
to 

Variable Case 1 Case 2 Case 3 Case 4 

Both 
minerals 

Mineral 1 modal 1.39 5.24 0.00 0.00 

Mineral 2 modal 0.00 0.00 0.00 0.00 

Mineral 1 surface 0.00 0.07 0.00 -0.20 

Mineral 2 surface 0.00 0.00 0.00 0.00 

Mineral 1 

Intercept -1.01 -2.62 -2.63 -17.74 

Aspect ratio 0.00 0.00 0.00 -0.03 

Solidity 0.00 0.00 0.00 -1.87 

ECD 0.34 0.00 0.85 14.11 

ECD2 0.00 0.00 0.00 -2.36 

Mineral 2 

Intercept -1.01 -2.62 -2.63 -12.82 

Aspect ratio 0.00 0.00 0.00 -0.05 

Solidity 0.00 0.00 0.00 0.53 

ECD 0.34 0.00 0.85 9.44 

ECD2 0.00 0.00 0.00 -1.78 

 

Table 3: Mineral groups with each of its members and their formulas. *The MLA analysis was not setup for 
distinguishing between hematite and magnetite, thus this mineral group might contain both species even though 
the mineral formula of hematite is indicated on the table 

Group Mineral Mineral formula 

Carbonates 

Calcite CaCO3 

Siderite Fe2+CO3 

Strontianite SrCO3 

Ankerite Ca(Fe2+,Mg,Mn)(CO3)2 



Magnesite_Fe (Mg,Fe)CO3 

Dolomite CaMg(CO3)2 

Siderite_Mn (Fe2+,Mn)CO3 

Dolomite_FeSr CaMgSr(CO3)2 

Barytocalcite BaCa(CO3)2 

Rare earth 
minerals (REM) 

Ancylite SrCe(CO3)2(OH)•(H2O) 

Calcioancylite CaCe(CO3)2(OH)•(H2O) 

Cebaite Ba3Ce2(CO3)5F2 

Apatite Apatite Ca5(PO4)3(OH,F,Cl) 

Phlogopite Phlogopite KMg3Fe(Si3Al)O10(F,OH)2 

Pyrochlore Pyrochlore_Ca (Na,Ca)2Nb2O6(OH,F) 

Iron and 
titanium oxides 

(FeTiO) 
 

Iron oxide* Fe2O3 

Ilmenite Fe2+TiO3 

Rutile_Nb TiO2 

Other silicates 

Quartz SiO2 

Amphibole (Na,K,Ca)(Na,Mg,Fe2+,Mn2+,Ca)(Na,Mg,Fe2+,Mn2+,Ca)Si8O22 

K-feldspar KAlFeSi3O8 

Pyroxene_Ca Ca(Mg,Fe)(Si2O6) 

Albite NaAlSi3O8 

Sorosilicate Ca2Al2(Fe3+;Al)(SiO4)(Si2O7)O(OH) 

Pyroxene_Mg-Fe (Mg,Fe,Ca,Ti,Al)2Si2O6 

Hornblende (Ca,Na)2–3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2 

Sulfides 

Barite BaSO4 

Pyrite FeS2 

Chalcopyrite CuFeS2 

 

Table 4: Calculated entropy of each processing unit, together with the number of variables that have not been used 
and the five variables of highest and lowest coefficients assigned by the LR model. High and low coefficients indicate 
influence to be deported to the concentrate and tailings, respectively. Mineral names followed by “.s” mean its 
content on a particle’s surface 

Product Entropy 
N° omitted 
variables 

Highest coefficients Lowest coefficients 

Carbonate 
flotation 

0.54 133 
Apatite.s, Strontianite.s, 

Calcite.s, Dolomite_FeSr.s, 
Barytocalcite.s 

Solidity.Apatite, Fe_oxide.s, 
Solidity, K.feldspar.s, 

Phlogopite.s 

Silicate 
flotation 

0.60 133 
Phlogopite.s, Ca_Pyroxene.s, 

Amphibole.s, K.feldspar.s, 
Quartz.s 

Solidity.Ca_Ancylite, 
Solidity.Quartz, Fe_oxide.s, 

Solidity.Phlogopite, 
Solidity.K.feldspar 

Magnetic 
separation 

0.14 140 
Fe_oxide.s, Siderite, 
Mn.siderite, Pyrite, 

Ca_Pyroxene.s 

Solidity.Fe_oxide, 
Solidity.Mn.siderite, Siderite.s, 

Intercept, Solidity 

Pyrochlore 
flotation 

0.07 122 
Chalcopyrite.s, 

Ca_pyrochlore, Rutile_Nb.s, 
Pyrite, Solidity.Dolomite_FeSr 

Solidity.Cebaite, Calcite.s, 
Strontianite.s, 

Solidity.Magnesite_Fe, 
Dolomite_FeSr.s 



 

 

Figure 1: Workflow of method developed in this contribution. QM corresponds to quantitative mineralogy. 

 

Figure 2: Fit of the probabilities obtained with the regularized logistic regression (LR) to the probabilities 
calculated for each case. In addition, the correlation between predicted and actual probabilities (R²) and process 
entropy in each case. 



 

Figure 3: Aptitude of the lasso-regularized logistic regression on reconstructing the parabolic influence of a particle’s 
size on its recoverability via flotation given that ECD2 is provided as a variable (constructed case nº 4). 

 

Figure 4: Simplified flowsheet of the Boa Vista Fresh Rock plant in Catalão, Brazil, with sampling points indicated. 
Each of the darker-outlined boxes corresponds to a model trained by the approach introduced here for virtually 
reconstructing the processing plant. 

 

Figure 5: Distribution of the logarithm (base e) of the ratios between predicted and actual concentrate masses and 
compositions. The median, 0.25 & 0.75 percentiles, and 0.05 & 0.95 percentiles are represented by the center line, 
boxes, and whiskers, respectively. 



 

Figure 6: Median, minimum and maximum predicted and actual masses (t/h) of each mineral group in each 

concentrate stream. 



 

Figure 7: Probability histograms of particles in the carbonate flotation unit grouped by the main mineral comprising 
each particle. The distribution of particles among the mineral groups is indicated in the header boxes. 


