INTERACTIONS &

Bernhard Manfred Gruber

bernhardmgruber@gmail.com
Professional support under extreme conditions

DATA &
PREDICTION

(} CASUS
OPTIMIZATION
‘ Cv’ , CENTER FOR ADVANCED
N SYSTEMS UNDERSTANDING

LLAMA: COMPILE TIME AUTOMATIC MEMORY
LAYOUT OPTIMIZATION.

WRITE CODE ONCE AND PERFORM WELL ON MANY SYSTEMS.

Current and future hardware architectures are
heterogeneous. Performance portability with a
single code base is an increasingly relevant
challenge.

Performance portable parallelism, to exhaust
multi-, manycore and GPU systems, is largely
addressed, e.g. Alpaka or Kokkos.

Efficient use of a system’s memory and cache
hierarchies is equally crucial. First attempts like
A0S/SoA containers and std::mdspan exist, but
general solutions do not exist yet.

We propose a novel software library called
LLAMA to address this gap. LLAMA will:

> Build infrastructure for memory layout
transformation

> Provide means for automatic memory layout
optimizations for various hardware
architectures.

CERN CMS DETECTOR (1)

struct Pos{};
struct X{};
struct Y{};
struct Z{};
struct Mass{};

struct Particle {
struct Pos {
float x;
floaty;
float z;
} pos;
float mass;

2

CHALLENGES

bMProgrammers use incredibly diverse
data structures.

MINO user code changes when switching
memory layout or target hardware.

using Particle = llama::DS<
llama::DE<Pos, llama::DS<

llama::DE<X, float>,
llama::DE<Y, float>,
llama::DE<Z, float>
>>,
llama::DE<Mass, float>
>;

[Automatically] find the optimal layout
for a target hardware, resulting in fast,
efficient code.

dlUser facing APl should feel like a native
data structure.

MAIM for a standard C++ library solution.

auto particles =
std::vector<Particle>(N);
for (auto& p : particles) {
P.pOS.X = ...;
p.pos.y = ...;
p.pos.z = ...;
p.mass = ..,

}

auto particles = llama::allocView(

llama::Mapping<Particle>(N));
for (inti=0;i<N;++i){

auto p = particles(i);

P(POSE X{Y) = ...

P(POS{, Y{}) = .o

p(POS{, Z{) = ...

p(Mass{}) =..;

NAIVE C++ VERSION LLAMA VERSION

METHOD

Based on some theory around index spaces and linear mappings we build a C++ template meta programming library
that optimizes a memory layout at compile time. The implementation will be verified in PIConGPU and ROOT and
tested on heterogeneous HPC systems and conventional desktop workstations.

[or | o | comex | ovmmx | varex | carms | uoco | oo |
T T T T T o e T
e | o | oo | | g | oy | ouex | o |

[corpoms | e | cmex | umemx | eorms | oo | emrox | eavex |

e [e | o | o | gmvex | gmvex | oasax | one |

B =
SIMULATIONS HIGH-PERFORMANCE BIG DATA e R : : =TT R N
ARRAY OF STRUCTS STRUCT OF ARRAYS 8 STRUCT OF ARRAYS 32

PERSPECTIVE

We expect a prototypic C++17 software library that scientists can gradually adopt into their existing code bases
achieving cross platform and cross architecture performance portability on the use of memory. We expect great
synergy with performance portable parallelization frameworks such as Alpaka and Kokkos.

CROSS-DISCIPLINARY

We aim at providing fundamental software infrastructure
technology without bias for a specific domain. Any computationally
and memory intensive application should benefit.

COPYRIGHTS: (1) MAXIMILIEN BRICE, 2008 CERN
REFERENCES: ALPAKA: GITHUB.COM/ALPAKA-GROUP/ALPAKA; KOKKOS: GITHUB.COM/KOKKOS/KOKKOS; STD::MDSPAN: WG21.LINK/P0O009; PICONGPU: GITHUB.COM/COMPUTATIONALRADIATIONPHYSICS/PICONGPU; ROOT: ROOT.CERN

