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Abstract

Sun glint in hyperspectral images (HSIs) leads to undesirable spectral interference, which severely

affects the subsequent image interpretation, such as the environmental monitoring of coastal areas.

Sun glint removal methods aim at recovering a high quality image without sun glint from the original

image. Most of methods mainly depend on an assumption that the near infrared band is strongly

absorbed by water. However, this assumption is not always reliable because the infrared radiation

in shallow or turbid water can be reflected back by the seabed or sediment, while it cannot be fully

absorbed. Therefore, the reflected infrared radiation band still contains sun glint, and these methods

cannot sufficiently remove the sun glint in HSIs. To address this problem, a texture-aware total

variation (TATV)-based method is proposed to remove the sun glint of HSIs. The original HSI first is

formulated as a desired clean image and a sun glint image. Then, in order to sufficiently remove the

sun glint, we propose a variational model, where the different spectral characteristics of sun glint and

other surrounding materials are considered. Specifically, we propose a texture-aware total variation

regularized method to heavily penalize the variation of the sun glint areas. Experiments performed on

simulated and real data sets demonstrate that our method can greatly outperform other state-of-the-art

methods in removing sun glints.

Keywords: Hyperspectral image, sun glint removal, texture-aware total variation

1. Introduction

Nowadays, hyperspectral images (HSIs) can provide rich spectral information along with the high

spatial resolution of the imaging scene. This excellent characterization makes such data very useful

in solving practical problems [1–9], such as mapping bathymetry [10], water quality monitoring [11],

and coral reef habitats [12]. However, owing to the specular reflection of solar radiation on non-flat5

water surface in the imaging process, the captured HSIs easily suffer from the contamination of the
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sun glints, which affects seriously the acquisition of underwater characteristics and the following image

analysis.

Over the past decades, many sun glint methods have been proposed for multispectral images, which

can be summarized into two categories [13–15], i.e., sea surface-based methods and band information-10

based methods. The sea surface-based methods are based on an assumption that the glint intensity is

highly related to the probability distribution function of the wave slope, and then, to model a wind-

speed dependent probability distribution function for the sea surface slope using aerial photographs of

reflected sunlight. For example, Breon et al. analyzed a large set of reflectance measurements from

glint-contaminated areas, and obtained the linear correlation between the wind speed and the mean15

square sloop [16]. In [17], Fukushima et al. built a new linear relationship between the surface mean

square slope and wind using radiance data, which can achieve a better fit in calm conditions. In [18],

Ottaviani et al. proposed an improved atmospheric correction scheme to estimate the glint-corrected

radiance via considering multiple scattering including aerosol, azimuth angle and wind speed. These

methods mainly rely on the wind speed and wind direction to model the probability distribution of20

sea surface slopes. However, such prior knowledge cannot be easily obtained in practical applications.

The band information-based methods are based on an assumption that the water-leaving radiance

in the near infrared (NIR) band is close to zero [1, 19, 20]. For example, in [21], Lyzenga et al. built

the relationship among bands by using the covariance between each visible band and the NIR band.

In [22], Goodman et al. introduced a wavelength-independent offset to correct each pixel, in which25

the band with wavelength 760nm was taken as the NIR band. In [23], Kutser et al. utilized the

characteristic of the oxygen absorption band at 760nm to evaluate the size of the sun glint. These

methods use the relationship between NIR and visible wavelengths to remove the contamination of

sun glint. However, one main limitation of these methods is that the assumption may not be true

for highly turbid environments [24]. To overcome the limitation, in [25], Harmel et al. exploited30

two short-wavelength infrared (SWIR) bands (centered on 1610 and 2190nm) to estimate the sun

glint component of Sentinel-2 data, and then, the sun glint was removed from the top-of-atmosphere

radiation over coastal and inland waters. Nevertheless, one limitation of this method is that it needs

ancillary data about the atmospheric properties.

Considering the limitations of the previous methods, in this work, the original HSI S ∈ RP×Q×M35

is modeled as a linear combination of the desired clean image X ∈ RP×Q×M and the sun glint image

Z ∈ RP×Q×M , expressed as: S = X + Z. The main aim of removing sun glint is to distinguish the

sun glint-free image X and the sun glint image Z from an input hyperspectral image S. This is an

ill-posed inverse issue, which is able to be solved via introducing prior information. Therefore, from

this perspective, the most important problem is how to design an effective prior knowledge, which is40

beneficial for cleaning the sun glint and restoring the sun glint-free image.

Currently, various image priors have been utilized in image processing problems. For example,
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(a) (b)

Fig. 1. A hyperspectral image and spectral curves of different objects.

in [26], He et al. used the low-rank prior of HSI to remove the mixed noise. In [27], Kang et al.

adopted the smoothness prior of multipass InSAR, i.e., total variation (TV) norm, for deformation

monitoring. In [28], Dian et al. used the convolutional neural network to extract the prior information45

of the original image for pan-sharpening. In this paper, since the spectral reflectance value of the sun

glint is always higher than one of the surrounding land covers [see Fig.1], the gradient values at the

location of the sun glint becomes higher. Based on this observation, the TV prior is adopted in our

method. Standard TV regularization imposes the same weights over the gradients of all the pixels.

Simply minimizing the corresponding total variation may not sufficiently remove the sun glint, since50

the variations of all the pixels are equally reduced.

To overcome this issue, in this work, we propose a texture-aware total variation (TATV) method for

sun glint removal of HSIs, in which the texture information is incorporated into the TV model. This

incorporation can enforce that the discriminative characteristics between land covers and sun glints

are maximal. The variations of sun glint areas are penalized with larger weights, so that the spectral55

values induced by sun glints can be significantly reduced. Experimental results also demonstrate that

such modeling idea can more effectively remove the sun glint of HSIs with respect to previous methods.

The main contributions of this paper are summarized as follows:

1) To the best of our knowledge, this is the first time to formulate the sun glint removal problem

as a variational optimization model. Different from previous methods, this model does not need any60

auxiliary data, such as wind speed or spectral range. The proposed model opens new opportunities

for the challenging problem of sun glint removal.

2) We propose a texture-aware total variation method to remove sun glints, which can sufficiently

decompose the original image into the sun glint image and the glint-free image for the downstream

tasks. For instance, the classification performance can be greatly improved on the glint-free image.65

3) The alternating direction method of multiplier (ADMM) is adopted to solve the proposed model.

Experimental results confirm that the proposed method can effectively remove the sun glint of HSIs
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Fig. 2. Sun glint removal model of HSI.

with respect to other state-of-the-art techniques.

The rest of this paper is organized as follows. In Section 2, the proposed method is introduced in

details, including the problem formulation and optimization. In Section 3, the experimental results70

on simulated and real datasets are described and discussed. Finally, the conclusions are presented in

Section 4.

2. Proposed Method

In this section, the proposed TATV method is presented for sun glint removal of HSI.

2.1. Problem Formulation75

As introduced before, an HSI S ∈ RP×Q×M , where P and Q are the spatial dimension and M is

the number of spectral bands, can be modeled as a linear superimposition of the desired clean image

X and sun glint image Z [see Fig. 2]:

S = X + Z (1)

Our goal is to estimate the clean image X with only S known. Obviously, this is an ill-posed inverse

problem, and has no unique solution. To solve this ill-posed problem, we need to use some prior80

information of the unknown X and then add corresponding regularizer. In this work, one popular

smoothness prior [29–31], i.e., total variation (TV) is adopted, which is extensively applied in many

image processing problems, such as denoising, inpainting, and classification. The gradients of all the

pixels are assigned with equal weight for calculating the TV term. The minimization based on it leads

to an equal reduction of spectral values of sun glint and other areas. Although such operation can85

mitigate the spectral values of sun glints, the spectral information of other areas can be also lost. To

address this issue, the texture information is imposed on the TV term, which can heavily penalize

the variation values of the sun glint areas. Accordingly, the proposed optimization model can be

represented as:

X = arg min
X
{µ

2
‖S − X‖2F + η

∑
m

‖Xm‖TV +
∑
m

|Sm −Xm| � ‖Xm‖TV } (2)
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where ‖X‖TV =
∑
i

‖Dix‖ is the first-order difference of x in both horizontal and vertical directions90

at pixel i. S is the original hyperspectral image, and X is the resulting image. m represents the mth

band. µ and η denotes the weights. Thus, the objective function above can be described as:

X = arg min
X
{µ

2
‖S − X‖2F + η

∑
m

∑
i

‖Dixm‖2 +
∑
m

∑
i

|sim − xim| · ‖Dixm‖2} (3)

2.2. Optimization

In order to solve the objective function, we consider an equivalent of (3) by introducing two auxiliary

variables yim = Dixim and Z = S − X . Problem (3) can be converted into the following problem:95

X = arg min
X
{µ

2
‖Z‖2F +

∑
m

∑
i

(η + |zim|) · ‖yim‖2} (4)

The optimization problem (4) can be solved by the ADMM framework [32–34], and Its augmented

Lagrangian function is shown as follows:

L = arg min
x,y,z

{µ
2
‖Z‖2F +

∑
m

∑
i

(η + |zim|) · ‖yim‖2 − λ
T
1 (yim −Dixm) +

β1

2

∑
m

∑
i

‖yim −Dixm‖22−

λT2 (Z − X + S) +
β2

2
‖Z − X + S‖2F }

(5)

where λ1 and λ2 are the Lagrange multipliers. β1 and β2 are the penalty parameters. The ADMM

makes use of splitting one difficult optimization problem into several subproblems, where each of them

has a closed-form solution. Accordingly, the minimization of L with respect to each variable can be100

solved by optimizing the following subproblems.

1) y subproblem: By fixing variables z and x, the optimization of L with respect to y in (5) can

be written as:

min
y

∑
m

∑
i

(η +
∣∣zkim∣∣) · ‖yim‖2 +

β1

2

∑
m

∑
i

∥∥∥∥yim −Dix
k
m −

λ1

β1

∥∥∥∥2

2

(6)

Problem (6) is L1-norm-induced subproblem, which can be easily solved via a soft thresholding method

as105

yk+1
i = Rγ(Dix

k
m +

λ1

β1
) (7)

where

Rγ(α) = sign(α)�max{|α| −
η +

∣∣zkim∣∣
β1

, 0} (8)

with sign(·) and |·| of a vector considered to be applied element-wise, and � representing element-wise

product.

2) z subproblem: By fixing variables y and x, the optimization of L with respect to z in (5) can be

written as:110

min
z

∑
m

∑
i

(η + |zim|) ·
∥∥yk+1
im

∥∥
2

+
µ+ β2

2

∥∥∥∥Z − β2

µ+ β2
(X k − S +

λ2

β2
)

∥∥∥∥2

F

(9)
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Likewise, the subproblem can also be solved via soft thresholding method.

Zk+1 = max{ β2

µ+ β2
(X k − S +

λ2

β2
)−

∥∥DX k∥∥
F

µ+ β2
, 0} � sgn{ β2

µ+ β2
(X k − S +

λ2

β2
)} (10)

3) x subproblem: By fixing variables y and z, the optimization of L with respect to x in (5) can be

written as:

= min
x

β1

2

∑
m

∑
i

∥∥∥∥yk+1
im −Dixm −

λ1

β1

∥∥∥∥2

2

+
β2

2

∥∥∥∥Zk+1 −X + S − λ2

β2

∥∥∥∥2

F

(11)

The solution of subproblem (11) can be obtained by calculating the derivative of (11) with respect to

x and setting it as zero. Then, we can obtain the following equation:115

(β1D
TD + β2)x = β1D

T (yk+1 − λ1

β1
) + β2(Zk+1 − S − λ2

β2
) (12)

Owing to the block-circulant structure of the matrix DTD, the inverse problem can be solved by 2D

Fourier Transform and its inverse transform [35]. We can obtain the solution of xk+1:

F−1{F(β1D
T (yk+1 − λ1/β1) + β2(Zk+1 + S − λ2/β2))

β1F∗(D)�F(D) + β2
} (13)

where F denotes the 2D discrete Fourier transform. “∗” represents the conjugate.

4) Update Lagrange Multipliers: Before stepping into the next iteration, all Lagrange multipliers

must be updated:120

λk+1
1 = λk1 − β1(yk+1 −Dxk+1)

λk+1
2 = λk2 − β2[Zk+1 − (X k+1 − S)]

(14)

The proposed RATV method for sun glint removal of HSIs is summarized in Algorithm 1.

Algorithm 1 RATV for sun glint removal of HSIs

Input: S, µ, η

1: Initialize λ
(0)
1 = λ

(0)
2 = 0

2: For k = 0 to kmax do

3: Update yk+1 via Eq. (7)

4: Update zk+1 via Eq. (10)

5: Update xk+1 via Eq. (13)

6: Update λk+1 via Eq. (14)

7: End For

Output: X

3. Experiments

In this section, experiments performed on the simulated and real data sets are presented. In order

to better demonstrate the superiority of the proposed method, six state-of-the-art methods are adopted
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(a) (b)

Fig. 3. Three bans composite of the Simulated data set. (a) Clean image. (b) Contaminated image

by sun glint.

for comparison, including three sun glint removal methods, and three hyperspectral denoising methods,125

i.e., Lyzenga’s method [21], Goodman’s method [22], Kutser’s method [23], total variation-regularized

low rank matrix factorization (LRTV) [36], hyperspectral mixed Gaussian and sparse noise reduction

method (HyMiNoR) [37], and non-i.i.d. low-rank matrix factorization model with Bayesian framework

(LRMFBF)[38]. For the parameters of these methods, we carefully followed the authors’ suggestions

in the corresponding papers to obtain optimal results.130

3.1. Data sets

1) Simulated data set: In order to objectively evaluate the performance of the proposed method,

we use a clean data set for the simulated experiment. This data set has 561× 570 pixels in the spatial

domain, and consists of 270 spectral bands from 0.4 to 1 µm. To simulate the complicated sun glint

case in a real scene, a real sun glint pixel is selected from the contaminated data set, and then, 1000135

pixels chosen randomly from the water region of the clean data set are replaced with the sun glint

pixel. Fig. 3 shows the clean image and the simulated image.

2) Real data sets: In order to validate the effectiveness of the proposed method, several real

hyperspectral data sets, i.e., Penglai, YellowRiver-1, YellowRiver-2, and YellowRiver-3, are employed

in the following experiments. These data sets are from two types of hyperspectral sensors, in which140

YellowRiver-1, YellowRiver-2, and YellowRiver-3 data sets were captured from the same hyperspectral

sensors with different flight routes.

The Penglai data set was acquired by the AISA+ hyperspectral sensor on August 23, 2011 over

the Penglai 19-3 C platform oil field located in China Bohai Sea, which was a serious oil spill accident.

This image has 258 spectral bands from 0.4 to 0.97 µm, and its spatial size is 610 × 340. Fig. 4145

shows the location of the oil spill and the AISA+ hyperspectral image. Detailed information about

the AISA+ hyperspectral sensor is shown in Table 1.

Other three data sets, i.e., YellowRiver-1, YellowRiver-2, and YellowRiver-3, were all acquired by

7



Table 1. Detailed information about AISA+ hyperspectral sensor.

Parameters Index

Number of bands 258

Spectral range 400-970nm

Spectral resolution 2.3nm/pixel

Spatial size 800*450

Field of view 39.7°

Instantaneous field of view 0.078

(a)

Fig. 4. Location of the oil spill and hyperspectral image of Penglai.
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(a) (b) (c)

Fig. 5. False color composite images of different regions: (a) YellowRiver-1 image, (b) YellowRiver-2

image, and (c) YellowRiver-3 image.

the Headwall hyperspectral sensor over the Yellow River located in China, Ying Dong city. They have

270 spectral bands from 0.4 to 1 µm. All the three data are contaminated by sun glint with different150

intensities. Detailed information about the Headwall hyperspectral sensor is shown in Table 2. Fig. 5

shows the color composite images.

Table 2. Detailed information about Headwall hyperspectral sensor.

Parameters Index

Number of bands 270

Spectral range 400-1000nm

Spectral resolution 2.2nm/pixel

Field of view 33°

Instantaneous field of view 0.9

3.2. Parameter settings

In the proposed TATV method, the selection of parameters, i.e., µ and η, affects the performance

of sun glint removal. Therefore, the influence of these parameters on the performance is analyzed.155

Fig. 6 shows the contour plots of the PSNR and MSAM with respect to µ and η. It can be seen from

Fig. 6 (a) that the proposed method obtains the highest value when µ = 2 and η = 0.015. Moreover,

when µ and η are relatively small or large, the performance of the proposed method tends to decrease.

Furthermore, the same tendency can also be found in Fig. 6 (b). Therefore, in this work, the default

9



(a) (b)

Fig. 6. The influence of different parameters on the performance of the proposed method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Simulated image before and after removing sun glint. (a) Original image (R:124,G:65,B:37).

(b) Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et al. method [23]. (e)

LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h) Our method.

parameters settings are set as µ = 2 and η = 0.015. The following experiments have demonstrated160

that the proposed method is able to obtain satisfactory performance with this parameter setting.

3.3. Simulated experiment

To evaluate objectively the performance of all studied methods, two widely used quantitative

indexes are adopted, i.e., the peak signal-to-noise ratio (PSNR) and mean spectral angle mapper

(MSAM) [36]. In the objective results, the PSNR result is the average value of those on all spectral165
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Penglai image before and after removing sun glint. (a) Original false-color image (R:140, G:180,

B:220). (b) Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et al. method

[23]. (e) LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h) Our method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Magnified results from Fig. 8. (a) Original false-color image (R:140, G:180, B:220). (b)

Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et al. method [23]. (e)

LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h) Our method.

bands. Higher values indicate better performances. For the MSAM index, the lower values represent

a better quality.

Fig. 7 presents the visual comparison of all studied methods. As shown in this figure, all denoising

methods, i.e., LRTV, HyMiNoR, and LRMFBF, cannot completely eliminate the sun glint in the

presented results. The reason is that these TV terms are constructed for removing mixed noise. For170

sun glint methods, they also yield the similar results, since the assumption used in these methods are

not hold in the complex scene. Compared to other methods, it can be clearly seen that our method can

effectively remove the sun glint in the contaminated water, and also well preserve the spatial details of

land covers. Besides, Table 3 shows the quantitative assessment of all compared methods. It can be

seen that our method outperforms other studied methods in terms of all quality indexes, which also175

indicates the superiority of our method.

Table 3. Objective comparison of different methods on the simulated data set. The highlighted bold

value of each index represents the highest value among all studied methods.

Indexes Lyzenga Goodman Kutser LRTV HyMiNoR LRMFBF Our method

PSNR 19.474 7.835 23.857 31.435 31.277 31.055 48.512

MSAM 0.135 0.294 0.088 0.085 0.096 0.099 0.028

12



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Penglai image before and after removing sun glint. (a) Original image of band 200. (b)

Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et al. method [23]. (e)

LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h) Our method.

(a) (b) (c) (d) (e) (f) (g)

Fig. 11. Difference images between the source band 200 and the resulting images on Penglai image.

(a) Lyzenga et al. method [21]. (b) Goodman et al. method [22]. (c) Kutser et al. method [23]. (d)

LRTV method [36]. (e) HyMiNoR method [37]. (f) LRMFBF method [38]. (g) Our method.

13



3.4. Experiments on real data sets

The first experiment is performed on Penglai data set. This image is contaminated by the sun

glint because of the specular reflection of light from the oil spill areas. Fig. 8 (a) shows the false-color

composite image, and Fig. 8 (b)-(h) presents the resulting images of different methods. As shown in180

this figure, it can be seen that the Lyzenga’s method only can slightly remove the sun glint in the

original image, but leave heavy sun glint in the experimental result. The reason is that the relationship

between each band and the NIR band cannot be modeled well by the covariance. For the Goodman’s

method, it suppresses the specular reflection of the entire image. However, it still cannot remove

the sun glint, since the assumption about zero water-leaving radiance in the NIR region of spectrum185

is not hold in the sea surface corrupted by the oil spill. For the Kutser’s method, the sun glint in

the original image still cannot be removed because it also assumes that the water-leaving radiance in

the NIR band is negligible. The denoising methods, i.e., LRTV, HyMiNoR, and LRMFBF, do not

work appropriately in removing sun glint. This is mainly because the regularization term of those

denoising approaches fails to smooth out the sun glint. The denoising methods are targeted for noise190

removal, where the corresponding penalty terms are designed based on the prior knowledge of the

noise. However, the structural information like sun glint cannot be modeled well by these methods.

By contrast, the proposed method can achieve better performance in removing the sun glint than other

methods.

In addition, the magnified results of Fig. 8 are shown in Fig. 9. It can be clearly seen that the195

Goodman’s method can more or less remove the sun glint, but the performance is not satisfactory.

The Kuster’s method obtains the similar result. Three mixture denoising methods including LRTV,

HyMiNoR, and LRMFBF fail to remove the sun glint. From these figures, it can be observed that the

proposed TATV method can produce the best performance in removing sun glint.

Fig. 10 presents the results of different approaches before and after removing sun glint from band200

200. To clearly evaluate the performance of different approaches in terms of removing sun glint, Fig.

11 displays the difference images between the original band 200 and the resulting band obtained by

different methods. By comparing the resulting images of different methods, several observations can

be easily obtained from both Figs. 10 and 11. First, the three sun glint methods, to some extent, can

suppress the sun glint with low intensity [see Fig. 10 (b)-(d)]. They also remove the main structures205

of land covers such as the ‘working ship’[see Fig. 11 (a)-(c)]. Second, all denoising methods fail to

restore the desired clean image from the sun glint-contaminated image. Specifically, from the Fig. 11

(d)-(f), it can be seen that there are very little information in the difference images, which illustrates

that the difference between band 200 and each result is relatively small. Third, it is not hard to see

that the proposed TATV method can effectively remove sun glint [see Fig.10 (h)] and better preserve210

the spatial structure of the original image [see Fig.11 (g)].

The second experiment is tested on YellowRiver data set. There are heavy contamination of sun

14



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. YellowRiver-1 image before and after removing sun glint. (a) Original false-color image

(R:124, G:65, B:37). (b) Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et

al. method [23]. (e) LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h)

Our method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. YellowRiver-1 image before and after removing sun glint. (a) Original image of band 20. (b)

Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et al. method [23]. (e)

LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h) Our method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. YellowRiver-2 image before and after removing sun glint. (a) Original false color image (

R:124, G:65, B:37). (b) Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et

al. method [23]. (e) LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h)

Our method.
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glint in the Yellow River region. Fig. 12 presents the false-color composite image of three bands

before and after removing sun glint. In this figure, Goodman’s method does not work, and distorts

the spectral-spatial information. This is mainly because the assumption that the reflectance at 750nm215

is equal to a constant may be not true for this image captured by the headwall sensor. For Lyzenga’s

method, it still cannot remove the sun glint. A similar phenomenon also appears in Kuster’s method.

The reason is that current methods for correcting sun glint generally rely on the NIR band-based

information to assessing the sun glint contamination level. However, for the complex water environ-

ment, this assumption may be not reliable, which causes the performance to be unsatisfactory. Three220

denoising methods still cannot remove the sun glint in the water area because the regularization term

is designed to remove mixture noise. Different from other methods, the proposed TATV method still

can better remove the sun glint and preserve the spatial details of land covers.

In addition, Fig. 13 presents the resulting images of different methods for band 20 of YellowRiver-1

image. As shown in this figure, it can be observed that all compared methods cannot eliminate the sun225

glint in the original image. In comparison, the proposed method achieves better visual performance.

The third experiment is performed on YellowRiver-2 data set. In Fig.14 (a), the contaminated

three-channel image is composed of the 124th, 65th, and 37th bands. In this example, it can be seen

from Fig.14 (b)-(d) that three methods about sun glint removal still fail to correct the sun glint. This

is due to the fact that these methods depend on the assumption that all near-infrared radiation is230

absorbed by water, and thus, the water-leaving radiance is close to zero. In practice, however, the

infrared radiation has been reflected into the air in turbid water. For three denoising methods, since

the TV-terms are designed to smooth image mixture noise, these methods cannot restore the desired

clean image. Based on the visual comparison in Fig. 14, the proposed method can generate the better

visual performance in removing the sun glint and preserving the details.235

The fourth experiment is performed on YellowRiver-3 data set. As before, the same phenomenon

can be observed in Fig.15. Our method still provides the best performance compared to other methods.

The main reason is that the texture-aware TV term is able to well discriminate the sun glint and water

body.

3.5. Classification Performance240

In this subsection, in order to demonstrate the effectiveness of the sun glint removal approaches for

the land cover classification, a spectral classifier, i.e., support vector machine (SVM) [39, 40], is utilized

to assess the accuracies of different resulting images. The SVM classifier is implemented with the

LIBSVM library, in which the radial basis function kernel with fivefold cross-validation is adopted. Four

widely used objective metrics, i.e., the overall accuracy (OA), the average accuracy (AA), the kappa245

coefficient, and the class individual accuracy (CA), are used to evaluate the classification performance.

OA denotes the percentages of correctly classified pixels. AA indicates the mean of the percentage

of correctly classified pixels for each class. kappa coefficient represents the percentage of correctly
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15. YellowRiver-3 image before and after removing sun glint. (a) Original false color image (

R:124, G:65, B:37). (b) Lyzenga et al. method [21]. (c) Goodman et al. method [22]. (d) Kutser et

al. method [23]. (e) LRTV method [36]. (f) HyMiNoR method [37]. (g) LRMFBF method [38]. (h)

Our method.
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classified pixels corrected by the number of agreements. CA calculates the percentage of correctly

classified pixels for each class.250

The experiment is performed on the Penglai data set. The oil spill region of this image is contam-

inated by the sun glint. Therefore, when the sun glint is removed, the accuracy of oil spill detection

will be increased. To a certain extent, this experiment also demonstrates the effectiveness of different

sun glint removal methods. Fig. 16 shows the comparative results obtained by different methods. The

reference data of this image consists of 3 classes. The training samples which account for 1% of the255

reference data are selected randomly, and the remaining samples are used as the test set. It can be

seen from Fig. 16 that other studied methods produce many noise-like mislabeled pixels in the oil

spill region. Different from these approaches, our method yields a smoother visual appearance in oil

spill region. The main reason is that the proposed method can better remove the sun glint in the oil

spill region. Furthermore, our method provides the highest OA reported in Table 4, and the detection260

accuracy of the oil spill region is also increased by 5.5%.

Table 4. Classification accuracies of the SVM classifier on the different resulting images, i.e., Raw Data,

Lyzenga et al. [21], Goodman et al. [22], Kuster et al. [23], LRTV [36], HyMiNoR [37], LRMFBF [38]

and our method, respectively. Numbers in the parenthesis represents the standard variances of the

accuracies obtained in 10 repeated experiments.

Classes Raw data Lyzenga Goodman Kutser LRTV HyMiNoR LRMFBF Our method

Seawater 97.30(0.12) 97.17(0.12) 97.17(0.14) 97.22(0.16) 97.71(0.17) 97.40(0.14) 96.12(0.17) 98.13(0.16)

Oil film 69.59(1.13) 69.24(1.25) 67.98(1.17) 69.86(1.35) 71.31(1.77) 68.68(1.04) 68.67(1.05) 73.42(0.91)

Working ship 66.48(5.12) 67.79(6.36) 63.84(8.02) 68.98(4.27) 66.10(6.25) 69.53(7.25) 61.37(4.13) 63.24(5.64)

OA 89.26(0.38) 89.11(0.41) 88.49(0.19) 89.41(0.41) 90.04(0.56) 89.05(0.33) 88.26(0.43) 90.86(0.35)

AA 77.79(1.62) 78.07(2.0) 76.33(2.35) 78.69(1.28) 78.37(1.90) 78.54(2.23) 75.39(1.50) 78.26(1.93)

Kappa 72.41(0.75) 72.00(0.81) 70.70(0.39) 72.68(0.85) 74.35(1.22) 72.01(0.69) 69.53(0.84) 76.41(0.70)

3.6. Analysis of Computational Complexity

The complexities of the proposed TATV method are shown below item by item (the numbers

between the parentheses show the corresponding equation):

• (7): O(PQM).265

• (10): O(PQM).

• (13): O(PQMlog(PQ)) +O(PQM).

Among three steps of the TATV method, (13) dominates the computational complexity of the proposed

method. Therefore, the complexity of the proposed method isO(K(PQMlog(PQ))+O(PQM)), where

K denotes the total number of the iterations. In this work, K is set to be 40 for all experiments.270
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 16. Classification results obtained by using SVM on different resulting images. (a) Ground truth.

(b) Class names. (c) Raw data. (d) Lyzenga et al. method [21]. (e) Goodman et al. method [22]. (f)

Kutser et al. method [23]. (g) LRTV method [36]. (h) HyMiNoR method [37]. (i) LRMFBF method

[38]. (j) Our method.
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4. Conclusions

In this work, we have introduced a texture-aware total variation model for removing sun glint.

Unlike existing approaches, the sun glint removal problem is first considered as a linear combination

of the desired clean image and the sun glint image. We formulate the sun glint removal problem via

a variational model, where a texture-aware total variation term is proposed to penalize the induced275

spectral reflection of the sun glints. Extensive experiments conducted on the simulated and real HSIs

demonstrate the effectiveness and superiority of the proposed TATV method in removing sun glint

with respect to other state-of-the-art approaches. We have to admit, however, that despite a great

improvement for the TATV method, yet there is still room for improvement. The correlation among

bands has not taken into consideration. This is a disadvantage that needs to be solved in the future280

work.

Acknowledgment

This paper is supported by the Major Program of the National Natural Science Foundation of China

(No. 61890962), the National Natural Science Foundation of China (No. 61871179), the National

Natural Science Fund of China for International Cooperation and Exchanges (No. 61520106001), the285

Natural Science Foundation of Hunan Province (No. 2019JJ50036), the Fund of Key Laboratory of

Visual Perception and Artificial Intelligence of Hunan Province (No. 2018TP1013), and the China

Scholarship Council.

References

[1] J. F. Mustard, M. I. Staid, W. J. Fripp, A semianalytical approach to the calibration of AVIRIS290

data to reflectance over water: Application in a temperate estuary, Remote Sens. Environ. 75 (3)

(2001) 335–349 (2001).

[2] J. Kang, M. Krner, Y. Wang, H. Taubenbck, X. X. Zhu, Building instance classification using

street view images, ISPRS J. Photogramm. Remote Sens. 145 (2018) 44–59 (2018).

[3] P. Ghamisi, N. Yokoya, J. Li, W. Liao, S. Liu, J. Plaza, B. Rasti, A. Plaza, Advances in hyper-295

spectral image and signal processing: A comprehensive overview of the state of the art, IEEE

Geosci. Remote Sens. Mag. 5 (4) (2017) 37–78 (2017).

[4] D. Hong, N. Yokoya, N. Ge, J. Chanussot, X. X. Zhu, Learnable manifold alignment (LeMA):

A semi-supervised cross-modality learning framework for land cover and land use classification,

ISPRS J. Photogramm. Remote Sens. 147 (2019) 193–205 (2019).300

22



[5] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls,

J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, G. Trianni,

Recent advances in techniques for hyperspectral image processing, Remote Sens. Environ. 113

(2009) S110–S122 (2009).

[6] A. Ibrahim, B. Franz, Z. Ahmad, R. Healy, K. Knobelspiesse, B.-C. Gao, C. Proctor, P.-W. Zhai,305

Atmospheric correction for hyperspectral ocean color retrieval with application to the hyperspec-

tral imager for the coastal ocean (HICO), Remote Sens. Environ. 204 (2018) 60–75 (2018).

[7] P. Duan, X. Kang, S. Li, P. Ghamisi, J. A. Benediktsson, Fusion of multiple edge-preserving

operations for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 57 (12) (2019)

10336–10349 (2019).310

[8] Y. Liu, G. Gao, Y. Gu, Tensor matched subspace detector for hyperspectral target detection,

IEEE Trans. Geosci. Remote Sens. 55 (4) (2017) 1967–1974 (2017).

[9] X. Xu, J. Li, C. Wu, A. Plaza, Regional clustering-based spatial preprocessing for hyperspectral

unmixing, Remote Sens. Environ. 204 (2018) 333–346 (2018).

[10] J. D. Hedley, C. Roelfsema, V. Brando, C. Giardino, T. Kutser, S. Phinn, P. J. Mumby, O. Bar-315

rilero, J. Laporte, B. Koetz, Coral reef applications of Sentinel-2: Coverage, characteristics,

bathymetry and benthic mapping with comparison to Landsat 8, Remote Sens. Environ. 216

(2018) 598–614 (2018).

[11] C. Petus, J. Waterhouse, S. Lewis, M. Vacher, D. Tracey, M. Devlin, A flood of information:

Using sentinel-3 water colour products to assure continuity in the monitoring of water quality320

trends in the great barrier reef (australia), J. Environ. Manage. 248 (2019) 109–255 (2019).

[12] C. Roelfsema, E. Kovacs, J. C. Ortiz, N. H. Wolff, D. Callaghan, M. Wettle, M. Ronan, S. M.

Hamylton, P. J. Mumby, S. Phinn, Coral reef habitat mapping: A combination of object-based

image analysis and ecological modelling, Remote Sens. Environ. 208 (2018) 27–41 (2018).

[13] S. Kay, J. D. Hedley, S. Lavender, Sun glint correction of high and low spatial resolution images325

of aquatic scenes: a review of methods for visible and near-infrared wavelengths, Remote Sens.

1 (4) (2009) 697–730 (2009).

[14] M. Wang, S. W. Bailey, Correction of sun glint contamination on the seawifs ocean and atmosphere

products, Appl. Opt. 40 (27) (2001) 4790–4798 (Sep. 2001).

[15] A. M. Muslim, W. S. Chong, C. D. M. Safuan, I. Khalil, M. S. Hossain, Coral reef mapping of330

UAV: A comparison of sun glint correction methods, Remote Sens. 11 (20) (2019) 2422 (2019).

23



[16] F. M. Breon, N. Henriot, Spaceborne observations of ocean glint reflectance and modeling of wave

slope distributions, J. Geophys. Res. 111 (2) (2006) C06005:1–C06005:10 (2006).

[17] H. Fukushima, K. Suzuki, L. Li, N. Suzuki, H. Murakami, Improvement of the ADEOS-II/GLI

sun-glint algorithm using concomitant microwave scatterometer-derived wind data, Adv. Space335

Res. 43 (6) (2009) 941–947 (2009).

[18] M. Ottaviani, R. Spurr, K. Stamnes, W. Li, W. Su, W. Wiscombe, Improving the description of

sunglint for accurate prediction of remotely sensed radiances, J. Quant. Spectrosc. Radiat. Transf.

109 (14) (2008) 2364–2375 (2008).

[19] E. J. Hochberg, S. Andrefouet, M. R. Tyler, Sea surface correction of high spatial resolution ikonos340

images to improve bottom mapping in near-shore environments, IEEE Trans. Geosci. Remote Sens.

41 (7) (2003) 1724–1729 (2003).

[20] J. Martin, F. Eugenio, J. Marcello, A. Medina, Automatic sun glint removal of multispectral

high-resolution Worldview-2 imagery for retrieving coastal shallow water parameters, Remote

Sens. 8 (1) (2016) 37 (2016).345

[21] D. R. Lyzenga, N. P. Malinas, F. J. Tanis, Multispectral bathymetry using a simple physically

based algorithm, IEEE Trans. Geosci. Remote Sens. 44 (8) (2006) 2251–2259 (2006).

[22] J. A. Goodman, Z. Lee, S. L. Ustin, Influence of atmospheric and sea-surface corrections on

retrieval of bottom depth and reflectance using a semi-analytical model: a case study in kaneohe

bay, hawaii, Appl. Opt. 47 (28) (2008) F1–F11 (Oct. 2008).350

[23] T. Kutser, E. Vahtme, J. Praks, A sun glint correction method for hyperspectral imagery contain-

ing areas with non-negligible water leaving NIR signal, Remote Sens. Environ. 113 (10) (2009)

2267–2274 (2009).

[24] K. G. Ruddick, V. D. Cauwer, Y. je Park, G. Moore, Seaborne measurements of near infrared

water-leaving reflectance: The similarity spectrum for turbid waters, Limnol. Oceanogr 51 (2)355

(2006) 1167–1179 (Mar. 2006).

[25] T. Harmel, M. Chami, T. Tormos, N. Reynaud, P.-A. Danis, Sunglint correction of the multi-

spectral instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands,

Remote Sens. Environ. 204 (2018) 308–321 (2018).

[26] H. Zhang, W. He, L. Zhang, H. Shen, Q. Yuan, Hyperspectral image restoration using low-rank360

matrix recovery, IEEE Trans. Geosci. Remote Sens. 52 (8) (2014) 4729–4743 (2014).

[27] J. Kang, Y. Wang, M. Körner, X. X. Zhu, Robust object-based multipass InSAR deformation

reconstruction, IEEE Trans. Geosci. Remote Sens. 55 (8) (2017) 4239–4251 (2017).

24



[28] R. Dian, S. Li, A. Guo, L. Fang, Deep hyperspectral image sharpening, IEEE Trans. Neural Netw.

Learn. Syst. 29 (11) (2018) 5345–5355 (2018).365

[29] Q. Liu, J. Liu, P. Dong, D. Liang, SGTD: Structure gradient and texture decorrelating regular-

ization for image decomposition, in: IEEE Int. Conf. Comput. Vis., 2013, pp. 1081–1088 (2013).

[30] P. Duan, X. Kang, S. Li, P. Ghamisi, Noise-robust hyperspectral image classification via multi-

scale total variation, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 12 (6) (2019) 1948–

1962 (2019).370

[31] M. V. Afonso, J. M. R. Sanches, Blind inpainting using `0 and total variation regularization, IEEE

Trans. Image Process. 24 (7) (2015) 2239–2253 (2015).

[32] J. Kang, Y. Wang, M. Schmitt, X. X. Zhu, Object-based multipass insar via robust low-rank

tensor decomposition, IEEE Trans. Geosci. Remote Sens. 56 (6) (2018) 3062–3077 (2018).

[33] D. Hong, N. Yokoya, J. Chanussot, X. X. Zhu, An augmented linear mixing model to address375

spectral variability for hyperspectral unmixing, IEEE Trans. Image Process. 28 (4) (2019) 1923–

1938 (2019).

[34] D. Hong, N. Yokoya, J. Chanussot, X. X. Zhu, Cospace: Common subspace learning from

hyperspectral-multispectral correspondences, IEEE Trans. Geosci. Remote Sens. 57 (7) (2019)

4349–4359 (2019).380

[35] Y. Wang, J. Yang, W. Yin, Y. Zhang, A new alternating minimization algorithm for total variation

image reconstruction, SIAM J. Imaging Sciences 1 (2008) 248–272 (2008).

[36] W. He, H. Zhang, L. Zhang, H. Shen, Total-variation-regularized low-rank matrix factorization

for hyperspectral image restoration, IEEE Trans. Geosci. Remote Sens. 54 (1) (2016) 178–188

(2016).385

[37] B. Rasti, P. Ghamisi, J. A. Benediktsson, Hyperspectral mixed gaussian and sparse noise re-

duction, IEEE Geosci. Remote Sens. Letters (2019, doi:10.1109/LGRS.2019.2924344) 1–5 (2019,

doi:10.1109/LGRS.2019.2924344).

[38] Y. Chen, X. Cao, Q. Zhao, D. Meng, Z. Xu, Denoising hyperspectral image with non-i.i.d. noise

structure, IEEE Trans. Cybern. 48 (3) (2018) 1054–1066 (2018).390

[39] X. Kang, P. Duan, X. Xiang, S. Li, J. A. Benediktsson, Detection and correction of mislabeled

training samples for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens. 56 (10)

(2018) 5673–5686 (2018).

[40] F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector

machines, IEEE Trans. Geosci. Remote Sens. 42 (8) (2004) 1778–1790 (Aug. 2004).395

25


