
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 10 – The alpaka Programming Model

Lesson 15: The Problem Size

alpaka Parallel Programming – Online Tutorial – Lesson 15: The Problem Size | 2

Lesson 15: The Problem Size

Problem size and hardware capabilities

● The programmer’s questions:
● How large is the problem? (= How many data elements need processing?)
● Which capabilities are offered by the hardware? (= How many cores are available?)

● The programmer’s challenge:
● Problem size and number of cores completely disjoint
● How to distribute the former amongst the latter?

alpaka Parallel Programming – Online Tutorial – Lesson 15: The Problem Size | 3

Lesson 15: The Problem Size

How to choose the number of alpaka Threads

● The two important factors:
● Problem size number of data elements→
● Hardware capabilities number of cores→

● Rule of thumb: One Thread per data element
● Not always ideal (depending on algorithm)
● Chance for optimisation

alpaka Parallel Programming – Online Tutorial – Lesson 15: The Problem Size | 4

Lesson 15: The Problem Size

Choosing the number of Threads

● (Usually) you have more Threads than cores

● In alpaka, the overall number of Threads is
blocksPerGrid * threadsPerBlock
● We will introduce Thread Blocks in a later lecture!

using Idx = uint32_t;

Idx blocksPerGrid = 8;
Idx threadsPerBlock = 1;

alpaka Parallel Programming – Online Tutorial – Lesson 15: The Problem Size | 5

Lesson 15: The Problem Size

Beware!

● Don’t run too many Threads in parallel!
● An exact definition of “too many” depends on your hardware.

● Some hardware resources are always shared between Threads

● Having too many Threads accessing shared resources results in bottlenecks
● Can seriously impact your program’s performance
● Chance for optimisation

alpaka Parallel Programming – Online Tutorial – Lesson 15: The Problem Size | 6

Lesson 15: The Problem Size

Example: I/O buffer

● All Threads call printf

● The access to the output
buffer needs to be
serialized

● More Threads
 → more serialization
 → worse performance

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc) const {
 using namespace alpaka;

 uint32_t threadIdx = idx::getIdx<Grid, Threads>(acc)[0];
 printf("Hello, World from alpaka thread %u!\n", threadIdx);
}

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

